Содержание
Калькулятор расчета термоизоляции труб отопления при наружной прокладке
Гамма средств при устройстве изоляции весьма обширна. Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции. Особенности нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов. По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.
Более экономичными и прочными являются полимерно-битумные составы. Они позволяют вести быстрый монтаж а качество покрытия при этом получается долговечным и эффективным. Материал, называемый ППУ, надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей. Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:
- полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;
- стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;
- для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.
Монтаж изоляции
Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя. Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов. Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии. Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.
Для труб для водопроводных магистралей применяется внутренняя изоляция. Основное ее назначение – защита металла от коррозии. Ее используют в виде специальных лаков или цементно-песчаной композиции слоем толщиной несколько мм. Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения. Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.
Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным. Для этого нужно специальное инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
Формула расчета теплоизоляции труб.
ln B = 2πλ [K(tт — tо) / qL — Rн]
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт — температура в градусах транспортируемой среды или теплоносителя;
- tо — температура наружного воздуха, ⁰C;
- qL — величина теплового потока, Вт/м2;
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | 1.15 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | 1.05 |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. | 1.15 |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | 0.12 | 0.10 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.017 | 0.015 |
tт = 300 ⁰C | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.015 | 0.013 |
tт = 500 ⁰C | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.016 | 0.014 | 0.012 |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз — наружный диаметр теплоизоляционной конструкции, м;
- dтр — наружный диаметр защищаемой трубы, м;
- δ — толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт — tо) / qF — Rн]
- δ — толщина теплоизоляционной конструкции, м;
- qF — величина нормируемого теплового потока, Вт/м2;
- остальные параметры — как в расчетной формуле для цилиндрической поверхности.
Онлайн калькулятор для вычисления требуемого объема теплоизоляции для трубопроводов
В условиях нашей страны с ее огромными просторами трубопроводный транспорт является самым эффективным средством транспортировки жидких продуктов. Размеры труб при этом достигают трехметрового диаметра, что позволяет транспортировать по ним большие объемы продуктов. Естественно, что такие магистрали нуждаются в определенной защите от разных факторов:
- коррозии всех видов;
- промерзания;
- физического воздействии природных явлений;
- от несанкционированного вмешательства посторонних лиц.
Все магистрали, включая газопроводы и нефтепроводы, не говоря уже о водных системах, подлежат изолированию работы в температурном интервале -45 + 60 градусов. Массовое применение такой технологической операции требует тщательного расчета потребности в материалах покрытия поверхности труб, чтобы расходы на нее были оптимальными, подсчет изоляции трубопроводов с использованием различных калькуляторов является необходимостью.
Варианты изоляции трубопровода
Напоследок рассмотрим три эффективных способа теплоизоляции трубопроводов.
Возможно, какой-то из них вам приглянется:
- Утепление с применением обогревающего кабеля. Помимо традиционных методов изоляции, есть и такой альтернативный способ. Использование кабеля весьма удобно и продуктивно, если учитывать, что защищать трубопровод от замерзания нужно всего лишь полгода. В случае обогрева труб кабелем происходит значительная экономия сил и денежных средств, которые пришлось бы потратить на земельные работы, утеплительный материал и прочие моменты. Инструкция по эксплуатации допускает нахождение кабеля как снаружи труб, так и внутри них.
Дополнительная теплоизоляция греющим кабелем
- Утепление воздухом. Ошибка современных систем теплоизоляции заключается вот в чем: зачастую не учитывается то, что промерзание грунта происходит по принципу «сверху вниз». Навстречу же процессу промерзания стремится поток тепла, исходящий из глубины земли. Но так как утепление производят со всех сторон трубопровода, получается, также изолирую его и от восходящего тепла. Поэтому рациональнее монтировать утеплитель в виде зонтика над трубами. В таком случае воздушная прослойка будет являться своеобразным теплоаккумулятором.
- «Труба в трубе». Здесь в трубах из полипропилена прокладываются еще одни трубы. Какие преимущества есть у этого способа? В первую очередь к плюсам относится то, что трубопровод можно будет отогреть в любом случае. Кроме того, возможен обогрев при помощи устройства по всасыванию теплого воздуха. А в аварийных ситуациях можно быстро протянуть аварийный шланг, тем самым предотвратив все отрицательные моменты.
Изоляция по принципу «труба в трубе»
Разновидности утепляющего материала
Утеплители по области применения бывают:
1.утеплители, подходящие для водопроводов с холодной и горячей водой, для сетей с центральным отоплением, для технического оборудования разного типа.
2.для труб канализации, также труб водоотведения.
3.для оборудования вентиляции, морозильных устройств.
Утеплители имеют разный внешний вид, который определяет технологию укладки:
1.рулонный тип.
Внимание! Утепляющие материалы должны иметь низкий уровень теплопроводности, высокую устойчивость к воспламенению. Этими свойствами наделены:
Этими свойствами наделены:
1.утеплитель из минеральной ваты, который выпускается в рулонах. Применяют для проведения теплоизоляции трубопроводов, имеющих теплоноситель с высокими температурами. Минеральную вату наматывают на трубопровод. Закрепляя с помощью бечевки из синтетики, либо проволоки из нержавейки. Поэтому для трубопроводов больших объемов данный материал считается не экономичным.
2.утеплитель из пенополистирола, по — другому скорлупа. Удобен для монтажных работ, устойчив к воспламенению, имеет низкий показатель теплопроводности и влагопоглощения. Материала незаменим во время прокладки водопроводов и отопительных систем. Его применяют при любых значениях температуры, для трубопроводов из стали, металлопластика или полимеров. Материал выпускают в форме цилиндров, внутренний размер утеплителя можно подобрать для любого трубопровода.
3.утеплитель из пеноизола. По характеристикам не уступает пенополистиролу, но отличается методом монтажа. Его наносят с помощью распыляющей установки, потому что материал находится в жидком состоянии. Застывая пеноизол образует герметичную оболочку, которая имеет низкий уровень теплопроводности. Утеплитель не требует каких-либо крепежных элементов.
Внимание! Утеплитель пеноизол относится к дорогим утепляющим материалам. 4.утеплитель из вспененного полиэтилена
Как правило, применяют на водопроводах, отличается легкость монтажных работ. Материал нарезают полосками нужной длины, обматывают трубы, закрепляя при помощи скотча. Некоторые производители выпускают утеплитель в форме разрезанной трубы с одной стороны, который надо надеть на трубу
4.утеплитель из вспененного полиэтилена. Как правило, применяют на водопроводах, отличается легкость монтажных работ. Материал нарезают полосками нужной длины, обматывают трубы, закрепляя при помощи скотча. Некоторые производители выпускают утеплитель в форме разрезанной трубы с одной стороны, который надо надеть на трубу.
5.утеплитель из фольгированного пенофола. Относится к современным типам утеплителей. Материл включает полированную фольгу из алюминия, вспененный полиэтилен. Утеплитель хорошо хранит тепло. Фольга отличается своими теплоотражающими качествами, поэтому накапливает и отражает тепло обратно к трубе.
Выбирая материал, необходимо учитывать условия применения, свойства утеплителя, легкость укладки, также расчетные показатели теплоизоляции, чтобы провести утепляющие работы на высоком уровне.
Методика просчета многослойной теплоизоляционной конструкции
Таблица изоляции медных и стальных труб.
Некоторые перемещаемые среды имеют достаточно высокую температуру, которая передается наружной поверхности металлической трубы практически неизменной. При выборе материала для тепловой изоляции такого объекта сталкиваются с такой проблемой: не каждый материал способен выдержать высокую температуру, например, 500-600⁰C. Изделия, способные контактировать с такой горячей поверхностью, в свою очередь, не обладают достаточно высокими теплоизоляционными свойствами, и толщина конструкции получится неприемлемо большой. Решение — применить два слоя из различных материалов, каждый из которых выполняет свою функцию: первый слой ограждает горячую поверхность от второго, а тот защищает трубопровод от воздействия низкой температуры наружного воздуха. Главное условие такой термической защиты состоит в том, чтобы температура на границе слоев t1,2 была приемлемой для материала наружного изоляционного покрытия.
Для расчета толщины изоляции первого слоя используется формула, уже приводимая выше:
Второй слой рассчитывают по этой же формуле, подставляя вместо значения температуры поверхности трубопровода tт температуру на границе двух теплоизоляционных слоев t1,2. Для вычисления толщины первого слоя утеплителя цилиндрических поверхностей труб диаметром менее 2 м применяется формула такого же вида, как и для однослойной конструкции:
Подставив вместо температуры окружающей среды величину нагрева границы двух слоев t1,2 и нормируемое значение плотности потока тепла qL, находят величину ln B1. После определения числового значения параметра B1 через таблицу натуральных логарифмов рассчитывают толщину утеплителя первого слоя по формуле:
Данные для расчета теплоизоляции.
Расчет толщины второго слоя выполняют с помощью того же уравнения, только теперь температура границы двух слоев t1,2 выступает вместо температуры теплоносителя tт:
Вычисления делаются аналогичным образом, и толщина второго теплоизоляционного слоя считается по той же формуле:
Такие непростые расчеты вести вручную очень затруднительно, при этом теряется много времени, ведь на протяжении всей трассы трубопровода его диаметры могут меняться несколько раз. Поэтому, чтобы сэкономить трудозатраты и время на вычисление толщины изоляции технологических и сетевых трубопроводов, рекомендуется пользоваться персональным компьютером и специализированным программным обеспечением. Если же таковое отсутствует, алгоритм расчета можно внести в программу Microsoft Exel, при этом быстро и успешно получать результаты.
Характеристики прокладки сетей и нормативной методики вычислений
Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный
Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь. Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:
Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:
Схема утепления трубы.
- открытым способом на улице;
- открыто в помещении или тоннеле;
- бесканальным способом;
- в непроходных каналах.
Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе. Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил. Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:
Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя
Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.
Согласно разделу 4 СП 61.13330.2012
4.1 Теплоизоляционная конструкция должна обеспечивать параметры теплохолодоносителя при эксплуатации, нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей.
4.2 Конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям:
- энергоэффективности — иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчетного срока эксплуатации;
- эксплуатационной надежности и долговечности — выдерживать без снижения теплозащитных свойств и разрушения эксплуатационные температурные, механические, химические и другие воздействия в течение расчетного срока эксплуатации;
- безопасности для окружающей среды и обслуживающего персонала при эксплуатации и утилизации.
Материалы, используемые в теплоизоляционных конструкциях, не должны выделять в процессе эксплуатации вредные, пожароопасные и взрывоопасные, неприятно пахнущие вещества, а также болезнетворные бактерии, вирусы и грибки, в количествах, превышающих предельно допустимые концентрации, установленные в санитарных нормах.
4.3 При выборе материалов и изделий, входящих в состав теплоизоляционных конструкций для поверхностей с положительными температурами теплоносителя (20 °С и выше), следует учитывать следующие факторы:
- месторасположение изолируемого объекта СП 131.13330;
- температуру изолируемой поверхности;
- температуру окружающей среды;
- требования пожарной безопасности;
- агрессивность окружающей среды или веществ, содержащихся в изолируемых объектах;
- коррозионное воздействие;
- материал поверхности изолируемого объекта;
- допустимые нагрузки на изолируемую поверхность;
- наличие вибрации и ударных воздействий;
- требуемую долговечность теплоизоляционной конструкции;
- санитарно-гигиенические требования;
- температуру применения теплоизоляционного материала;
- теплопроводность теплоизоляционного материала;
- температурные деформации изолируемых поверхностей;
- конфигурация и размеры изолируемой поверхности;
- условия монтажа (стесненность, высотность, сезонность и др.);
- условия демонтажа и утилизации.
- Теплоизоляционная конструкция трубопроводов тепловых сетей подземной бесканальной прокладки должна выдерживать без разрушения:
- воздействие грунтовых вод;
- нагрузки от массы вышележащего грунта и проходящего транспорта.
- При выборе теплоизоляционных материалов и конструкций для поверхностей с температурой теплоносителя 19 °С и ниже и отрицательной температурой дополнительно следует учитывать относительную влажность окружающего воздуха, а также влажность и паропроницаемость теплоизоляционного материала.
4.4 В состав конструкции тепловой изоляции для поверхностей с положительной температурой в качестве обязательных элементов должны входить:
- теплоизоляционный слой;
- покровный слой;
- элементы крепления.
4.5 В состав конструкции тепловой изоляции для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:
- теплоизоляционный слой;
- пароизоляционный слой;
- покровный слой;
- элементы крепления.
Пароизоляционный слой следует предусматривать также при температуре изолируемой поверхности ниже 12 °С. Устройство пароизоляционного слоя при температуре выше 12 °С следует предусматривать для оборудования и трубопроводов с температурой ниже температуры окружающей среды, если расчетная температура изолируемой поверхности ниже температуры «точки росы» при расчетном давлении и влажности окружающего воздуха.
Необходимость установки пароизоляционного слоя в конструкции тепловой изоляции для поверхностей с переменным температурным режимом (от «положительной» к «отрицательной» и наоборот) определяется расчетом для исключения накопления влаги в теплоизоляционной конструкции.
Антикоррозионные покрытия изолируемой поверхности не входят в состав теплоизоляционных конструкций.
4.6 В зависимости от применяемых конструктивных решений в состав конструкции дополнительно могут входить:
- выравнивающий слой;
- предохранительный слой.
Предохранительный слой следует предусматривать при применении металлического покровного слоя для предотвращения повреждения пароизоляционных материалов.
Укладка изоляции
Расчет изоляции зависит от того, какая укладка применяется. Она может быть наружной либо внутренней.
Наружная изоляция рекомендована для защиты систем отопления. Она наносится по внешнему диаметру, обеспечивает защиту от потерь тепла, появления следов коррозии. Для определения объемов материала достаточно вычислить поверхностную площадь трубы.
Теплоизоляция сохраняет температуру в трубопроводе независимо от воздействия на нее условий окружающей среды.
Внутренняя укладка используется для водопровода.
Она отлично защищает от химической коррозии, предотвращает потери тепла трассами с горячей водой. Обычно это обмазочный материал в виде лаков, специальных цементно-песчаных растворов. Выбор материала может осуществляться и в зависимости от того, какая прокладка будет применяться.
Канальная прокладка востребована чаще всего. Для этого предварительно устраиваются специальные каналы, в них и помещаются трассы. Реже используется бесканальный способ укладки, так как для проведения работ необходимо специальное оборудование и опыт.Метод применяется в том случае, когда выполнять работы по устройству траншей нет возможности.
Примеры теплоизолирующих материалов
Процесс качественной термоизоляции или утепления отопления проводят множество компаний. Хоть этот процесс в наше время и налажен на высоком уровне, основная масса людей предпочитает осуществлять термоизоляцию своими силами.
При этом вспененный пенополиэтилен устойчив к воздействию высоких температур, является экологичным и прост в монтаже прямо на улице. Главное, после того как чехол одет, не забыть склеить между собой его торцы.
Минеральная вата. Она может быть двух видов:
- базальтовая вата – работает при температурном режиме до 650˚С и при этом не выделяет токсичных веществ. Материал производится из горной породы с максимальным составом базальта.
- стекловолоконная вата – изготавливается из кварцевого песка и стекла. Хорошо работает при температурном режиме до 180˚С.
Следующие разновидности теплоизоляции используются параллельно с гидроизоляцией:
- в процессе утепления минеральной ватой поверх основного слоя наматывается алюминиевая фольга, которая крепится при помощи проволоки из металла;
- для инженерных конструкций могут изготавливаться формы из пенопласта, которые позволяют утеплить трубопровод своими силами.
Из-за того, что пенопласт не на 100% отталкивает воду, он не является самым оптимальным вариантом для утепления отопления на улице.
2 Оптимальные утеплители для трубопроводов
Классификация теплоизоляционных материалов для труб выполняется в зависимости от сферы их применения, исходя из чего выделяют:
- Утеплителя для труб канализации, дренажных и сточных труб;
- Утеплители для вентиляционных каналов, и труб систем кондиционирования;
- Утеплители для подземных магистралей горячего и холодного водоснабжения;
- Утеплители для элементов производственных линий.
В зависимости от формы материала выделяют следующие виды утеплителей:
- Рулонные и плитные как пароизоляция Изоспан;
- Напыляемые;
- Утеплители в виде полых цилиндрических гильз.
К категории рулонной теплоизоляции относится минеральная вата и фольгированный пенофол.
Схема напыляемой ППУ теплоизоляции
Минвата является идеальным утеплителем для теплоизоляции трубопроводов с высокой температурой носителя, поскольку данный материал огнеупорен, и не деформируется даже под прямым воздействием огня.
Утепляются трубы минватой посредством наматывания, и последующего закрепления утеплителя скобами, либо проволокой.
Напыляемые утеплители – это пенополистирольная пена, и жидкий пеноизол. Данные материалы эффективны и долговечны, однако у них высокая стоимость, и для нанесения пенной теплоизоляции требуется специальное оборудование.
Утеплители в виде гильз, как правило, производятся из пенопласта и вспененного полиэтилена.
Выбираем утеплитель
Главная причина замерзания трубопроводов – недостаточная скорость циркуляции энергоносителя. В таком случае, при минусовой температуре воздуха может начаться процесс кристаллизации жидкости. Так что качественная теплоизоляция труб – жизненно необходима.
Благо нашему поколению несказанно повезло. В недалеком прошлом утепление трубопроводов производилось по одной лишь технологии, так как утеплитель был один – стекловата. Современные производители теплоизоляционных материалов предлагаю просто широчайший выбор утеплителей для труб, отличающихся по составу, характеристикам и способу применения.
Сравнивать их между собой не совсем правильно, а уж тем более утверждать, что один из них является самым лучшим. Поэтому давайте просто рассмотрим виды изоляционных материалов для труб.
По сфере применения:
- для трубопроводов холодного и горячего водоснабжения, паропроводов систем центрального отопления, различных технических оборудований;
- для канализационных систем и систем водоотвода;
- для труб вентиляционных систем и морозильного оборудования.
По внешнему виду, который, в принципе, сразу же объясняет и технологию применения утеплителей:
- рулонные;
- листовые;
- кожуховые;
- заливочные;
- комбинированные (это скорее уже относится к способу изоляции трубопровода).
Основные требования к материалам, из которых изготавливаются утеплители для труб – это низкая теплопроводность и хорошая устойчивость к огню.
Под эти важные критерии подходят следующие материалы:
Минеральная вата. Чаще всего продается в виде рулонов. Подходит для утепления трубопроводов с теплоносителем высокой температуры.
Однако если использовать минвату для изоляции труб в больших объемах, то такой вариант окажется не очень-то выгодным с точки зрения экономии.
Тепловая изоляция с помощью минваты производится методом намотки, с последующим ее закреплением синтетической бечевкой или нержавеющей проволокой.
На фото трубопровод, утепленный минватой
Пенополистирол. В народе его прозвали «скорлупой». Такой утеплитель удачно сочетает в себе качество, все необходимые свойства и удобство при монтаже.
Пожаростойкость, низкая теплопроводность и низкое влагопоглощение делают пенополистирол незаменимым материалом для изоляции труб водоснабжения и отопления.
Использовать его можно как при низких, так и при высоких температурах. Подходит для стальных, металлопластиковых и других полимерных труб.
Еще одна положительная особенность – пенополистирол имеет цилиндрическую форму, причем его внутренний диаметр можно подобрать под размер любой трубы.
Пеноизол в деле
Фольгированный пенофол. Самая последняя разработка в сфере утеплительных материалов, но уже завоевавшая своих поклонников среди российских граждан. Пенофол состоит из полированной алюминиевой фольги и слоя вспененного полиэтилена.
Такая двухслойная конструкция не просто сохраняет тепло, а даже является неким обогревателем! Как известно, фольга обладает теплоотражающими свойствами, что позволяет накапливать и отражать тепло к изолируемой поверхности (в нашем случае это трубопровод).
Кроме того, фольгированный пенофол экологичен, слабогорюч, устойчив к температурным перепадам и повышенной влажности.
Как вы сами видите, материалов предостаточно! Выбирать, чем утеплять трубы, есть из чего. Но при выборе не забывайте учитывать особенности окружающей среды, характеристики утеплителя и его простоту монтажа. Ну и не помешало бы произвести расчет теплоизоляции труб, дабы сделать все грамотно и надежно.
Система теплоизоляции WDVS
Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.
Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.
Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.
Таблица, где: 1 — географическая точка 2 — средняя температура отопительного периода 3 — продолжительность отопительного периода в сутках 4 — градусо-сутки отопительного периода Dd, °С * сут 5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 — требуемая толщина утеплителя
Условия выполнения расчётов для таблицы:
1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв — сопротивление теплообмену у внутренней поверхности конструкции
Rн — сопротивление теплообмену у наружной поверхности конструкции
Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к — сопротивление теплопроводности несущей конструкции
Rо.к — сопротивление теплопроводности ограждающей конструкции
R = d/l d — толщина однородного материала в м,
l — коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу — толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * ( Rreq — 0,832 )
а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)
* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.
Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».
* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.
Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.
Калькулятор расчета термоизоляции труб отопления при наружной прокладке
Главная причина замерзания трубопроводов – недостаточная скорость циркуляции энергоносителя. В таком случае, при минусовой температуре воздуха может начаться процесс кристаллизации жидкости. Так что качественная теплоизоляция труб – жизненно необходима.
Благо нашему поколению несказанно повезло. В недалеком прошлом утепление трубопроводов производилось по одной лишь технологии, так как утеплитель был один – стекловата. Современные производители теплоизоляционных материалов предлагаю просто широчайший выбор утеплителей для труб, отличающихся по составу, характеристикам и способу применения.
Сравнивать их между собой не совсем правильно, а уж тем более утверждать, что один из них является самым лучшим. Поэтому давайте просто рассмотрим виды изоляционных материалов для труб.
По сфере применения:
- для трубопроводов холодного и горячего водоснабжения, паропроводов систем центрального отопления, различных технических оборудований;
- для канализационных систем и систем водоотвода;
- для труб вентиляционных систем и морозильного оборудования.
По внешнему виду, который, в принципе, сразу же объясняет и технологию применения утеплителей:
- рулонные;
- листовые;
- кожуховые;
- заливочные;
- комбинированные (это скорее уже относится к способу изоляции трубопровода).
Основные требования к материалам, из которых изготавливаются утеплители для труб – это низкая теплопроводность и хорошая устойчивость к огню.
Под эти важные критерии подходят следующие материалы:
Минеральная вата. Чаще всего продается в виде рулонов. Подходит для утепления трубопроводов с теплоносителем высокой температуры. Однако если использовать минвату для изоляции труб в больших объемах, то такой вариант окажется не очень-то выгодным с точки зрения экономии. Тепловая изоляция с помощью минваты производится методом намотки, с последующим ее закреплением синтетической бечевкой или нержавеющей проволокой.
На фото трубопровод, утепленный минватой
Использовать его можно как при низких, так и при высоких температурах. Подходит для стальных, металлопластиковых и других полимерных труб. Еще одна положительная особенность – пенополистирол имеет цилиндрическую форму, причем его внутренний диаметр можно подобрать под размер любой трубы.
Пеноизол. По своим характеристикам находится в близком родстве с предыдущим материалом. Однако способ монтажа пеноизола совсем иной – для его нанесения требуется специальная распыляющая установка, так как он представляет собой компонентную жидкую смесь. После застывания пеноизола вокруг трубы образуется герметичная оболочка, почти не пропускающая тепло. К плюсам здесь также можно отнести отсутствие дополнительного крепления.
Пеноизол в деле
Фольгированный пенофол. Самая последняя разработка в сфере утеплительных материалов, но уже завоевавшая своих поклонников среди российских граждан. Пенофол состоит из полированной алюминиевой фольги и слоя вспененного полиэтилена.
Такая двухслойная конструкция не просто сохраняет тепло, а даже является неким обогревателем! Как известно, фольга обладает теплоотражающими свойствами, что позволяет накапливать и отражать тепло к изолируемой поверхности (в нашем случае это трубопровод).
Кроме того, фольгированный пенофол экологичен, слабогорюч, устойчив к температурным перепадам и повышенной влажности.
Как вы сами видите, материалов предостаточно! Выбирать, чем утеплять трубы, есть из чего. Но при выборе не забывайте учитывать особенности окружающей среды, характеристики утеплителя и его простоту монтажа. Ну и не помешало бы произвести расчет теплоизоляции труб, дабы сделать все грамотно и надежно.
Укладка изоляции
Расчет изоляции зависит от того, какая укладка применяется. Она может быть наружной либо внутренней.
Наружная изоляция рекомендована для защиты систем отопления. Она наносится по внешнему диаметру, обеспечивает защиту от потерь тепла, появления следов коррозии. Для определения объемов материала достаточно вычислить поверхностную площадь трубы.
Теплоизоляция сохраняет температуру в трубопроводе независимо от воздействия на нее условий окружающей среды.
Внутренняя укладка используется для водопровода.
Она отлично защищает от химической коррозии, предотвращает потери тепла трассами с горячей водой. Обычно это обмазочный материал в виде лаков, специальных цементно-песчаных растворов. Выбор материала может осуществляться и в зависимости от того, какая прокладка будет применяться.
Канальная прокладка востребована чаще всего. Для этого предварительно устраиваются специальные каналы, в них и помещаются трассы. Реже используется бесканальный способ укладки, так как для проведения работ необходимо специальное оборудование и опыт.Метод применяется в том случае, когда выполнять работы по устройству траншей нет возможности.
Монтаж изоляции
Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя.
Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов. Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии. Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.
Для труб для водопроводных магистралей применяется внутренняя изоляция. Основное ее назначение – защита металла от коррозии. Ее используют в виде специальных лаков или цементно-песчаной композиции слоем толщиной несколько мм.
Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения. Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.
Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным.
Для этого нужно специальное инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.
Опубликовано: Декабрь 29, 2017
(4оценок, среднее: 5,00из 5)Загрузка…
- Дата: 15-04-2015Просмотров: 139Комментариев: Рейтинг: 26
Правильно произведенный расчет тепловой изоляции трубопровода позволяет существенно увеличить срок эксплуатации труб и уменьшить их теплопотери
Однако для того чтобы не ошибиться в подсчетах, важно учитывать даже незначительные нюансы
Теплоизоляция трубопроводов предотвращает образование конденсата, снижает теплообмен труб с окружающей средой, обеспечивает работоспособность коммуникаций.
Варианты изоляции трубопровода
Напоследок рассмотрим три эффективных способа теплоизоляции трубопроводов.
Возможно, какой-то из них вам приглянется:
- Утепление с применением обогревающего кабеля. Помимо традиционных методов изоляции, есть и такой альтернативный способ. Использование кабеля весьма удобно и продуктивно, если учитывать, что защищать трубопровод от замерзания нужно всего лишь полгода. В случае обогрева труб кабелем происходит значительная экономия сил и денежных средств, которые пришлось бы потратить на земельные работы, утеплительный материал и прочие моменты. Инструкция по эксплуатации допускает нахождение кабеля как снаружи труб, так и внутри них.
Дополнительная теплоизоляция греющим кабелем
- Утепление воздухом. Ошибка современных систем теплоизоляции заключается вот в чем: зачастую не учитывается то, что промерзание грунта происходит по принципу «сверху вниз». Навстречу же процессу промерзания стремится поток тепла, исходящий из глубины земли. Но так как утепление производят со всех сторон трубопровода, получается, также изолирую его и от восходящего тепла. Поэтому рациональнее монтировать утеплитель в виде зонтика над трубами. В таком случае воздушная прослойка будет являться своеобразным теплоаккумулятором.
- «Труба в трубе». Здесь в трубах из полипропилена прокладываются еще одни трубы. Какие преимущества есть у этого способа? В первую очередь к плюсам относится то, что трубопровод можно будет отогреть в любом случае. Кроме того, возможен обогрев при помощи устройства по всасыванию теплого воздуха. А в аварийных ситуациях можно быстро протянуть аварийный шланг, тем самым предотвратив все отрицательные моменты.
Изоляция по принципу «труба в трубе»
Расчет объема изоляции трубопроводов и укладка материала
- Виды изоляционных материалов Укладка изоляции Расчет изоляционных материалов трубопроводов Устранение дефектов изоляции
Изоляция трубопроводов необходима для того, чтобы значительно снизить теплопотери.
Предварительно нужен расчет объема изоляции трубопроводов. Это позволит не только оптимизировать затраты, но и обеспечить грамотное выполнение работ, поддержание труб в надлежащем состоянии. Правильно выбранный материал позволяет предотвратить коррозию, улучшить теплоизоляцию.
Схема изоляции труб.
Сегодня для защиты трасс можно применять разные типы покрытий. Но необходимо учитывать, как именно и где будут проходить коммуникации.
Для водопроводных труб можно использовать сразу два типа защиты – внутреннюю обмазочную и внешнюю. Для отопительных трасс рекомендуется применять минеральную вату или стекловату, а для промышленных приобретать ППУ. Расчеты выполняются разными методами, все зависит от выбранного типа покрытия.
Характеристики прокладки сетей и нормативной методики вычислений
Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный
Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь
Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:
Схема утепления трубы.
- открытым способом на улице;
- открыто в помещении или тоннеле;
- бесканальным способом;
- в непроходных каналах.
Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе. Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил. Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:
Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя
Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.
Тепловой расчет тепловой сети
Для теплового расчета примем следующие данные:
· температура воды в подающем трубопроводе 85 оС;
· температура воды в обратном трубопроводе 65 оС;
· средняя температура воздуха за отопительный период Республики Молдова +0,6 оС;
Рассчитаем потери неизолированных трубопроводов. Приближенное определение тепловых потерь на 1 m неизолированного трубопровода в зависимости от разности температур стенки трубопровода и окружающего воздуха может быть произведен по номограмме. Значение потерь тепла, определенное по номограмме, умножается на поправочные коэффициенты :
где: a — поправочный коэффициент, учитывающий разность температур, а=0,91;
b — поправка на излучение, для d=45 mm и d=76 mm b=1,07,а для d=133 mm b=1,08;
l — длина трубопровода, m.
Тепловые потери 1 m неизолированного трубопровода, определенные по номограмме:
для d=133 mm Qном=500 W/m; для d=76 mm Qном=350 W/m; для d=45 mm Qном=250 W/m.
Учитывая то, что теплопотери будут как на подающем, так и на обратном трубопроводе, то теплопотери необходимо умножить на 2:
На теплопотери опор подвесок и т.п. к теплопотерям самого неизолированного трубопровода добавляется 10%.
Нормативные значения среднегодовых тепловых потерь для тепловой сети при надземной прокладке определяются по следующим формулам :
где: , — нормативные среднегодовые тепловые потери соответственно подающего и обратного трубопроводов участков надземной прокладки, W;
,- нормативные значения удельных тепловых потерь двухтрубных водяных тепловых сетей соответственно подающего и обратного трубопровода для каждого диаметра труб при надземной прокладке, W/m, определяемые по ;
l — длина участка тепловой сети, характеризующегося одинаковым диаметром трубопроводов и типом прокладки, m;
— коэффициент местных тепловых потерь, учитывающий тепловые потери арматуры, опор и компенсаторов. Значение коэффициента в соответствии с принимается для надземной прокладки 1,25.
Расчет теплопотерь изолированных водяных трубопроводов сведен в таблицу 3.4.
Таблица 3.4 — Расчет теплопотерь изолированных водяных трубопроводов
Среднегодовая теплопотеря изолированной тепловой сети составит 49,12 kW/an.
Для оценки эффективности изоляционной конструкции часто пользуются показателем, называемым коэффициентом эффективности изоляции:
где Qг ,Qи — тепловые потери неизолированной и изолированной труб, W.
Коэффициент эффективности изоляции:
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
Формула расчета теплоизоляции труб.
ln B = 2πλ [K(tт — tо) / qL — Rн]
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт — температура в градусах транспортируемой среды или теплоносителя;
- tо — температура наружного воздуха, ⁰C;
- qL — величина теплового потока, Вт/м2;
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | 1.15 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | 1.05 |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. | 1.15 |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | 0.12 | 0.10 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.017 | 0.015 |
tт = 300 ⁰C | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.015 | 0.013 |
tт = 500 ⁰C | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.016 | 0.014 | 0.012 |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз — наружный диаметр теплоизоляционной конструкции, м;
- dтр — наружный диаметр защищаемой трубы, м;
- δ — толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт — tо) / qF — Rн]
- δ — толщина теплоизоляционной конструкции, м;
- qF — величина нормируемого теплового потока, Вт/м2;
- остальные параметры — как в расчетной формуле для цилиндрической поверхности.
Методика просчета многослойной теплоизоляционной конструкции
Таблица изоляции медных и стальных труб.
Некоторые перемещаемые среды имеют достаточно высокую температуру, которая передается наружной поверхности металлической трубы практически неизменной. При выборе материала для тепловой изоляции такого объекта сталкиваются с такой проблемой: не каждый материал способен выдержать высокую температуру, например, 500-600⁰C. Изделия, способные контактировать с такой горячей поверхностью, в свою очередь, не обладают достаточно высокими теплоизоляционными свойствами, и толщина конструкции получится неприемлемо большой. Решение — применить два слоя из различных материалов, каждый из которых выполняет свою функцию: первый слой ограждает горячую поверхность от второго, а тот защищает трубопровод от воздействия низкой температуры наружного воздуха. Главное условие такой термической защиты состоит в том, чтобы температура на границе слоев t1,2 была приемлемой для материала наружного изоляционного покрытия.
Для расчета толщины изоляции первого слоя используется формула, уже приводимая выше:
δ = [K(tт — tо) / qF — Rн]
Второй слой рассчитывают по этой же формуле, подставляя вместо значения температуры поверхности трубопровода tт температуру на границе двух теплоизоляционных слоев t1,2. Для вычисления толщины первого слоя утеплителя цилиндрических поверхностей труб диаметром менее 2 м применяется формула такого же вида, как и для однослойной конструкции:
ln B1 = 2πλ [K(tт — t1,2) / qL — Rн]
Подставив вместо температуры окружающей среды величину нагрева границы двух слоев t1,2 и нормируемое значение плотности потока тепла qL, находят величину ln B1. После определения числового значения параметра B1 через таблицу натуральных логарифмов рассчитывают толщину утеплителя первого слоя по формуле:
Данные для расчета теплоизоляции.
δ1 = dиз1 (B1 — 1) / 2
Расчет толщины второго слоя выполняют с помощью того же уравнения, только теперь температура границы двух слоев t1,2 выступает вместо температуры теплоносителя tт:
ln B2 = 2πλ [K(t1,2 — t0) / qL — Rн]
Вычисления делаются аналогичным образом, и толщина второго теплоизоляционного слоя считается по той же формуле:
δ2 = dиз2 (B2 — 1) / 2
Такие непростые расчеты вести вручную очень затруднительно, при этом теряется много времени, ведь на протяжении всей трассы трубопровода его диаметры могут меняться несколько раз. Поэтому, чтобы сэкономить трудозатраты и время на вычисление толщины изоляции технологических и сетевых трубопроводов, рекомендуется пользоваться персональным компьютером и специализированным программным обеспечением. Если же таковое отсутствует, алгоритм расчета можно внести в программу Microsoft Exel, при этом быстро и успешно получать результаты.
Какая бывает теплоизоляция для труб отопления — виды материалов и монтаж
Снижение тепловых потерь в отопительных коммуникациях предприятий, коммунальных служб и частных домов позволяет сэкономить существенные финансовые средства на подогреве теплоносителя, поэтому всегда актуальны любые способы тепловой изоляции трубопроводов. В отопительных системах частных домов основной способ поддержания температуры теплоносителя в системе — теплоизоляция для труб отопления, при использовании ее устанавливают на наружную поверхность трубопровода.
Любому домовладельцу, у которого отопительный котел расположен на некотором расстоянии от теплообменных приборов (к примеру, в отдельном подсобном помещении на улице) полезно знать основные типы теплоизоляторов, применяемых для защиты трубопроводов от воздействия окружающей среды, и как утеплить трубы отопления. В зависимости от материала изготовления тепловой защиты используют различные способы ее монтажа, большинство из них несложно провести своими руками при знании соответствующей технологии.
Рис.1 Теплоизоляция для труб отопления в индивидуальных домах
Требования к теплоизоляционным материалам для труб отопления
Теплоизолирующие материалы, размещаемые на горячих трубах, должны соответствовать следующим требованиям:
- Иметь низкую тепловую проводимость — тем ниже ее значение, тем более эффективно оболочка удерживает тепло. Высокое сопротивление материала тепловым потерям помогает сэкономить финансовые средства на топливе для котлов.
- Термостойкость к высоким температурам является основным из требований, предъявляемым к изолирующему покрытию, оно не должно плавится и разлагаться при нагреве объекта до температуры кипящей воды в 100 °С.
- Водостойкость — главный критерий выбора термоизоляционного материала при размещении в грунтах, в этом случае применяют изолятор, не способный впитывать воду.
- Биологическая стойкость важна при использовании термоизоляторов в любых условиях, утепляющий материал не должен быть средой для развития различного вида бактерий, микроорганизмов, плесени и представлять интерес для грызунов.
- Химическая устойчивость также полезна изолирующим материалам при укладке под грунтом, содержащим широкий ряд химически активных компонентов.
- Срок службы теплозащитных покрытий важен с точки зрения экономии финансовых средств — материал не придется менять слишком часто, неся дополнительные денежные расходы на закупку нового.
- Физическая и механическая прочность является главным критерием для выбора трубного покрытия, эксплуатируемого в подземных условиях.
- Экологическая чистота важна при использовании тепловых изоляторов внутри помещений, они не должны выделять вредных химических веществ как в обычных условиях, так и при эксплуатации на горячих трубах.
Рис. 2 Термоизоляция трубопроводов отопления – сравнение теплопроводностей по толщине
Функции теплоизоляторов трубопроводов отопления
Если рассматривать частный дом, то отопительный котел может быть расположен внутри знания в подвальном помещении или снаружи в отдельной технической пристройке. Последний вариант часто применяют при отсутствии газопровода и использовании в качестве топлива твердых грязных материалов — угля, дров, торфа, брикетов, пеллет.
Многие частные дома имеют наружные бани или сауны, чтобы не усложнять конструкцию установкой в них отдельного бака для нагрева воды, ее подводят в помещения от котла, при этом расстояние между объектами может быть довольно значительным. Решая, чем утеплить трубы отопления, выбирают материалы, удовлетворяющие приведенным ниже условиям.
Снижение теплопотерь
Принцип действия любого утеплителя заключается в предохранении изолируемой поверхности защищаемого объекта от контакта с окружающей средой. При этом, благодаря низкой теплопроводности изолятора, происходит снижение теплопотерь, и выравнивание температур воздуха и более горячего трубопровода протекает значительно медленнее, чем при отсутствии теплоизолятора.
Любая теплотрасса может размещаться на поверхности земли и под грунтом, в первом случае обычно монтируют мягкий утеплитель для труб отопления на открытом воздухе, при подземном размещении из-за давления почвы устанавливают защиту из жестких материалов.
Рис. 3 Минеральная вата – популярный теплоизоляционный материал для труб отопления
Защита от промерзания
Если горячая вода в системе индивидуального отопления подается от котла к объекту, расположенному от него на значительном расстоянии, водопровод обычно прокладывают под землей на расстоянии от поверхности ниже точки промерзания. При этом не всегда есть возможность расположить трубопровод на достаточной глубине, поэтому если подача горячей воды прерывается на длительное время, оставшаяся и остывшая в трубах жидкость при сильных морозах может замерзнуть. Для защиты подземной линии от вымерзания ее можно теплоизолировать помещением в жесткие скорлупы или в мягкие оболочки, расположенные в трубных каналах.
Препятствование образованию конденсата
Строительными нормативами запрещена прокладка металлических труб в земле при отсутствии изоляции или защиты внешней оболочки вспомогательными материалами, по-иному обстоит дело внутри помещений, где довольно часто прокладывают стальные, стальные с оцинковкой, медные трубопроводы. При отключении отопления жидкость в металлических трубах остывает и на их поверхности появляется конденсат, водяные капли вызывают коррозию внешней стенки и при большом скоплении падают вниз с образованием на полу луж — это может вызвать повреждение полового покрытия.
Для борьбы с этим явлением используют пористые теплоизоляционные материалы для трубопроводов, устойчивые к воздействию воды или с хорошей паропроницаемостью.
Рис. 4 Вспененный полиэтилен — теплоизоляция для труб отопления на открытом воздухе
Защита от термических ожогов
В коммунальном и бытовом хозяйстве температура теплоносителя, транспортируемого по трубам, может достигать величин, близких к 100 °С, поэтому актуальной становится задача защиты обслуживающего персонала или жильцов частного дома от ожогов при контакте с трубами. Для этого их наружные стенки закрывают тепловой защитой из различного вида теплоизоляторов, оболочка которых не может иметь высокой температуры по определению.
Нейтрализация геометрических деформаций
Общеизвестна способность всех материалов расширяться при нагревании, поэтому горячий трубопровод при прохождении сквозь стены или плиты перекрытий помещают в стальные гильзы большего диаметра. На трубу накладывают теплоизолирующую скорлупу, предохраняющую узел от жесткого контакта увеличившейся в диаметре оболочки со стенкой гильзы.
При прокладке трубопроводов в стенах или под полом их расширение может привести к трещинам в штукатурке, стяжке, поэтому использование эластичной оболочки, принимающей на себя часть термического расширения, помогает избежать проблем, связанных с геометрической деформацией труб.
Рис. 5 Скорлупа из пенополистирола — теплоизоляция для труб отопления в земле
Виды теплоизоляционных материалов для труб отопления и их характеристики
Для теплоизоляции труб промышленностью и индивидуальными производствами выпускается широкая линейка материалов, отличающихся друг от друга своими физическими и химическими характеристиками, областью применения, особенностями монтажа.
Минеральные ваты
Минваты из волокон — часто используемые в строительной отрасли термоизоляторы, к примеру плитами из базальта покрывают наружные фасады зданий, в индивидуальных домах их укладывают под кровлю и полы чердаков. Нередко трубопроводы обматываются мягким листовым утеплителем из любого типа минеральных ват, который фиксируют защитными пленками и стяжками.
Обычно используют стеклянную и базальтовую ваты, изготовленные соответственно из мелкодисперсных стеклянный нитей и натуральных волокон горного базальта, в жилых домах не применяют третий вид ваты для технических помещений – шлаковую, из-за ее вредного кислотного воздействия на металлы и экологической опасности.
Каменную минеральную вату формируют из волокон длиной около 16 мм и толщиной 4 — 12 мкм, она соответствует следующим техническими параметрам:
- теплопроводность зависит от формы изготовления и лежит в диапазоне от 0,033 до 0,05 Вт/м·К
- теплоемкость: 1059 Дж/кг·К;
- влагопоглощение: за 24 часа не более 0,01% от объема;
- рабочий диапазон температур: от -60 – до +450 °С для минваты из стеклянных волокон и от -100 до +700 °С для базальтового волокна;
- плотность зависит от формы изготовления (рулоны, плиты, цилиндры) и расположена в границах от 30 — 225 кг/м 3 ;
- коэффициент звукопоглощения: 0,75 — 0,95;
- класс горючести: НГ – негорючая;
- содержание связующих компонентов (формальдегидной смолы): 0,25 — 10% от массы.
Минеральная вата выпускается в виде рулонов, матов, плит, для эксплуатации на трубопроводах жесткие разновидности из базальта делают в виде скорлупы из отдельных сегментов.
Рис. 6 Физические характеристики различных марок минват
Вспененный полиэтилен
Материалы из вспененного полиэтилена ПЭ широко используют в строительной сфере, его применяют для гидро- и звукоизоляции, в качестве подложек под ламинат, утеплителя снаружи и внутри помещений, объектов различной формы. Вспененный полиэтилен отличается следующими физическими характеристиками:
- теплопроводность зависит от фирменного наименования изделия и связана с технологией изготовления (сшивания) ПЭ, диапазон ее значений от 0,30 — 0,55 Вт/м·К;
- рабочий температурный диапазон: от -60 до +75 °С и выше;
- плотность ПЭ в зависимости от марки и лежит в диапазоне 25 — 100 кг/м 3 ;
- паропроницаемость: 0,001 мг/м·ч·Па;
- коэффициент водопоглощения: не более 1%;
- группа горючести: Г1 – слабогорючие, Г2 — умеренно горючие;
- при наличии фольгированного покрытия его отражающая способность для инфракрасного излучения: 80 — 97%;
- водопоглощение: 0,6 — 0,9% от объема
Форма выпускаемых изделий для эксплуатации на трубопроводах — цилиндрическая оболочка нередко с намеченной линией для продольного реза или готовой прорезью, кромки которой иногда покрывают клеевым составом для самосклеивания.
Рис. 7 Характеристики популярных марок вспененных полиэтиленов
Вспененный каучук
Хотя технология вспенивания каучука известна долгое время, в качестве теплоизоляции его стали использовать относительно недавно, материал отличается следующими характеристиками:
- коэффициент теплопроводности: 0,38 Вт/м·К;
- предельная рабочая температура: до 105 °С, специальные высокотемпературные модификации можно эксплуатировать до 180 °С;
- звукопоглощение: 28 Дб при толщине стенки 15 мм;
- группа горючести: Г1 – слабогорючие, затухают без внешнего пламени;
- плотность: 40 — 80 кг/м 3 .
Отличительная черта вспененных каучуков — возможность их непосредственного наклеивания на трубопроводы многими клеевыми составами, в некоторых модификациях на внутреннюю стенку нанесена самоклеющаяся пленка.
Рис. 8 Трубчатая и рулонная теплоизоляция для труб отопления из вспененного каучука
Пенополистирол
Пенопласт и пенополистирол ПС являются названиями одного и того же продукта, жесткие листовые утеплители из данного материала повсеместно применяются в строительной сфере для теплоизоляции наружных фасадов зданий, а пенопластовой скорлупой защищают от окружающей среды подземные и наружные трубопроводы.
Экструдированные пенополистиролы (Технониколь, Пеноплекс) обладают более высокой прочностью и жесткостью, чем обычный пенопласт, его применяют в аналогичных сферах при значительных физических нагрузках на покрытие. Основные технические и эксплуатационные параметры пенопласта:
- низкая теплопроводимость в среднем 0,04 Вт/м·К, зависящая от марки (плотности) и технологии изготовления пенопласта;
- жесткость и прочность ПС колеблется в широких пределах, имеет наивысшее значение у экструдированных оранжевых модификаций Пеноплекс, Технониколь и прочих;
- плотность пенополистирола достигает 50 кг/м 3 ;
- пенополистирол не пропускает влагу и воду, являясь хорошим гидроизолятором;
- водопоглощение ПС: не более 4% от объема в течении 24 часов;
- паропроницаемость пенополистирола: 0,018 мг/м·ч·Па;
- низкая цена, благодаря которой пенополстирол стал доступен любому потребителю;
- эксплуатационный срок ПС скорлуп при подземном использовании доходит до 40 лет;
- рабочие температуры использования пенопласта находятся в диапазоне от -50 до +70 °С, что не всегда достаточно для изоляции теплосетей;
- ПС устойчив ко многим агрессивным химическим веществам, не подвержен гниению, плесени, разрушающему воздействию бактерий микробов и микроорганизмов.
- скорлупа из пенопласта имеет малый вес и легка в монтаже, работа отнимает немного времени и для ее проведения достаточно одного человека;
- форма выпуска для труб — сегменты в виде жесткой скорлупы.
Рис. 9 Технические характеристики пенополистирола
Пенополиуретан
Вспененный полиуретан ПУ — лидер среди всех термоизоляторов по теплозащите, обладает наименьшей теплопроводностью, в связи с чем его широко применяют в промышленном производстве. Для подземной и поверхностной прокладки стальных труб их помещают в защитную оболочку из полимеров или оцинкованной стали, а внутреннее пространство между стенками заполняют полиуретановой пеной, получая максимальную защиту от потерь тепла. В бытовом хозяйстве и промышленном (мебельном) производстве часто используют мягкую разновидность пенополиурета — поролон, который теоретически можно использовать для теплозащиты трубопроводов, если бы не слишком низкая жесткость. Основные технические параметры пенополиуретана:
- для эксплуатации в теплотрассах выпускается в виде скорлупы;
- теплопроводность: от 0,019 до 0,025 Вт/м·К;
- рабочий диапазон температур: от -160 до +150 °С;
- пенополиуретан отличается высокой прочностью и жесткостью, его плотность достигает 280 кг/м 3 ;
- ППУ не подвержен воздействию большого числа агрессивных химических веществ и биоатакам;
- не пропускает воду, его водопоглощение составляет 1 — 2%;
- паропроницаемость ППУ: 0,02 — 0,05 мг/м·ч·Па.
Рис. 10 Теплоизоляция для труб отопления из вспененного пенополиуретана в виде скорлупы
Краски и напыляемые пены
Помимо защитных оболочек, которые при эксплуатации одевают на трубы для отопления, существуют методы защиты в виде долговечных трудноудаляемых покрытий, которые обычно наносят методами напыления. Одно из таких покрытий — термоизолирующая краска, представляющая собой смесь перлитных, стеклянных частиц с микроскопическими силиконовыми и керамическими гранулами, внутри которых находится вакуум, данные компоненты находится в акриловом или каучуковым связующем. Теплокраска отличается следующими физическими свойствами:
- теплопроводность — 0,0012 Вт/м·К;
- паропроницаемость — 0,03 мг/м·ч·Па;
- водопоглощение — 2% от объема;
- температурный эксплуатационный диапазон: от — 60 до +260 °С;
- эксплуатационный срок — не менее 10 лет;
- агдезия к стали — 1,2 мПа.
Несмотря на утверждения производителей, что теплопроводность их термокраски ниже показателей воздуха в 0,022 — 0,025 Вт/м·К, многими экспертами после проведения независимых испытаний установлена реальная величина данного параметра, равная 0,07 Вт/м·К. Такой низкий показатель связан с использованием в теплокраске акрилового связующего, обладающего более высокой проводимостью и нивелирующего низкую теплопроводность керамических оболочек с вакуумом.
Помимо красок для утепления объемных или сложной формы трубопроводов, используют технологию напыления теплозащитных материалов, чаще всего для этого применяет двухкомпонентные полиуретан и реже полистирол из-за более низких показателей теплопроводности и механической прочности. Материалы после смешивания двух компонентов наносят методом напыления специальным пульверизатором с использованием средств индивидуальной защиты от вредных химических веществ.
Рис. 11 Теплоизоляционная краска для труб – примеры использования
Статья по теме:
Все для теплоизоляции труб – материалы, применение, технология монтажа. Читая, какая бывает теплоизоляция для труб отопления, возможно будет более подробно ознакомиться я про все существующие виды теплоизоляционных материалов, применяемые внутри дома или на улице.
Комбинированные материалы
Любой горячий объект теряет свою энергию в виде теплового инфракрасного излучения, для его отражения (удержания в рабочем теле) используют теплоотражающие материалы, основным из которых являются алюминиевая фольга. Практически все теплоизоляторы (за исключением пенопластов) встречаются в комбинированном исполнении с наружной фольгированной оболочкой. Отражателем инфракрасного излучения покрывают вспененные полиэтилены — Пенофол, Изолон, Экофол, Изофлекс, минеральные стеклянные и базальтовые ваты марок Rockwool, Isoroc, Isover, Knauf, оболочки из пенополиуретана.
Для теплосетей коммунального и промышленного использования выпускаются комбинированные теплоизолированные трубы с полиуретановой ППУ изоляцией и оболочкой из полиэтилена или тонколистовой оцинкованной стали (регламентированы ГОСТ 30732-2006). Трубопроводы из данных изделий рассчитаны на давление в системе до 16 бар и температуру рабочего тела не более 140 °С, допустим нагрев транспортируемого теплоносителя в диапазоне от 70 до 150 °С в пределах графика отпуска тепла.
Рис. 12 Комбинированные утеплители с оболочками
Теплоизоляция для наружных труб отопления
Изоляция труб, проложенных снаружи зданий на улице, подвергается температурному воздействию окружающей среды, прямому солнечному излучению и атмосферным осадкам, поэтому для их утепления используют материалы, не поддающиеся влиянию перечисленных выше факторов.
Из вышеприведенного списка всех утеплителей можно исключить пенополистирольные оболочки из-за их разложения при ультрафиолетовом облучении. Минеральные ваты и вспененные полиэтилены, напитывающие влагу без наружной защиты, также можно исключить из списка подходящих.
В коммунальным и промышленном хозяйстве для наружной прокладки теплотрасс используют трубопроводы в ППУ изоляции со стальной оболочкой, в быту при наиболее дешевом и доступном варианте поверхность труб обматывается мягкой стекловатой в сочетании с наружной полиэтиленовой пленкой, которую можно закрепить скотчем.
Чуть более дорогой вариант для бытового использования — применение мягких оболочек из вспененного полиэтилена с фольгированной или пленочной ПЭ поверхностью, которая одновременно защищает материал от проникновения влаги. При монтаже оболочку одевают на трубопровод, а места стыков обматывают скотчем для надежного крепления и герметизации от осадков. Аналогично используют и монтируют оболочки из фольгированной стеклянной и минеральной ваты.
Рис. 13 Напыление пенополиуретана
Теплоизоляция для труб отопления под землей
ГОСТ 30732-2006 регламентирована непосредственная подземная прокладка теплосетей трубопроводами с ППУ изоляцией в полиэтиленовой оболочке или герметичных каналах с оцинкованным стальным наружным защитным слоем.
Для бытового использования прокладка стальных труб под землей с негерметичной защитой запрещена, если используется трубопровод из полипропилена ПП, его можно поместить в жесткую оболочку из обычного или экструдированного пенополистирола ПС, пенополиуретана ППУ.
Многие фирмы и частные лица используют в подземной прокладке комбинацию наружного жесткого трубопровода большого диаметра и мягкого утеплителя из вспененного полиэтилена по аналогии с заводскими трубами с ППУ термоизолятором и защитной ПЭ оболочкой. При прокладке на трубопровод одевают трубку из мягкого вспененного полиэтилена, фиксируют ее скотчем, а затем полученную конструкцию вставляют в трубы для канализации большего диаметра.
Рис. 14 Заводская труба утепленная с ППУ изоляцией
Теплоизоляция для труб внутри помещений
Трубопроводы внутри помещений не подвержены вредному влиянию окружающей среды с перепадами температур, ультрафиолетовым излучением и осадками, поэтому для их тепловой изоляции подходит практически любой из рассмотренных выше материалов.
Чаще трубы небольшого диаметра внутри зданий утепляют оболочками из вспененного полиэтилена или каучука, на более объемных участках при отсутствии оболочек подходящего размера укладывают рулонные материалы из полиэтилена, стекловаты с последующей фиксацией скотчем.
Преимущества и недостатки отдельных утеплителей
Каждый из утеплителей обладает своими преимуществами и недостатками, ограничивающими их область применения, данные факторы учитывают при выборе подходящего материала для конкретных условий.
Волокнистые ваты
Утеплители из стеклянной и базальтовой ваты пользуются широкой популярностью у потребителя из-за своей ценовой доступности и экологической безвредности, допускающей их применение внутри жилых помещений. Минваты обладают следующими свойствами:
- Огнестойки, при пожаре не горят с выделением вредных для здоровья веществ, от воздействия слишком высокой температуры плавятся.
- Стеклянная вата обладает невысокой жесткостью и легко сминается, материал на базальтовой основе жестче, оба вида восстанавливают свою форму после физического воздействия.
- Минвата обладают высокой степенью напитывания влаги, из-за этого недостатка скорлупу из кварца и базальта не укладывают непосредственно под землю.
- Ваты устойчивы к большинству агрессивных химических веществ и биологическому воздействию микроорганизмов, бактерий, грибка, плесени.
- За исключением шлаковаты, минеральные ваты являются экологически чистыми природными материалами и безопасны для человеческого здоровья.
- Материал хорошо пропускает воздух, препятствуют скоплению под его поверхностью влаги и конденсата.
Рис. 15 Теплоизоляция труб отопления на улице
Мягкие вспененные материалы
Материалы из вспененного полиэтилена для изоляции трубопроводов выпускают в виде трубчатых оболочек с продольной прорезью, их характерные отличия от других видов утеплителей:
- Полиэтилен в обычном состоянии безвреден для здоровья.
- ПЭ является химически и биологический нейтральным материалом не подверженным гниению, противостоит появлению грибка и плесени.
- Влагонепроницаем, поэтому часто используются в качестве паро- и гидроизоляции в сочетании с материалами, обладающими высокой адгезией (минеральными ватами).
- В зависимости от производителя, вспененный полиэтилен не поддерживает горение или слабо горюч (группы Г1, Г2), при этом в процессе его воспламенения выделяются вредные и опасные для здоровья человека вещества.
- Вспененные полиэтилены и каучук не дают усадки, после приложения физического усилия быстро восстанавливают форму.
- Пористый каучук рассчитан на приклеивание к металлическим поверхностям — таким образом он обеспечивает длительную и надежную изоляцию трубопроводов.
- Для удобства пользования некоторые трубки в месте продольного шва покрыты клеевым составом (самоклеющиеся разновидности) — это позволяет герметично изолировать объекты без мостиков холода.
- Для наружного применения выпускают трубки из вспененного полиэтилена в защищенных от влаги вариантах с поверхностными пленками различных цветов.
- Защита из трубчатого вспененного полиэтилена быстро монтируется, имеет красивый эстетический внешний вид закрытой оболочки, поэтому широко используется в бытовом хозяйстве.
- Из-за низкой жесткости материал используют на поверхностных трубопроводах, популярные марки: Энергофлекс, Джермафлекс, Порилекс, Вилатерм.
Рис. 16 Применение минват для трубной теплоизоляции
Жесткие скорлупы из пенопласта и полиуретана
Прочные и жесткие пенопластовые, полиуретановые оболочки в виде скорлупы из нескольких сегментов обладают следующими качествами:
- Материал изготовления биологически инертен и противостоит большинству агрессивных химических веществ.
- Не пропускают воду и влагу, являясь паро- и гидроизоляторами.
- Пенопласт — один из самых дешевых материалов.
- Материал делят на несколько групп по плотности и жесткости, наиболее высокими параметрами обладает его экструдированная разновидность.
- Пенопласты относится к слабогорючим, при пожаре они выделяют большое количество ядовитых веществ в виде черного дыма.
- Из-за разрушающего воздействия на их структуру ультрафиолетового излучения пенопластовые и пенополиуретановые оболочки рекомендованы к использованию при подземной прокладке трубопроводов.
- Низкий показатель предельно допустимых температур пенопласта около 70 °С является препятствием для использования ПС в металлических трубопроводах, транспортирующих пар или кипящую воду.
- При наружном использовании, учитывая невысокую прочность и боязнь пенополистиролом и пенополиуретаном ультрафиолетового излучения, их помещает в жесткую оболочку из тонкостенных оцинкованных кожухов.
- Практически все пенопластовые оболочки производятся коммерческими малыми предприятиями, поэтому если нет подходящего диаметра, защиту всегда можно сделать нужного размера и конфигурации под заказ.
Рис. 17 ПЭ изоляция на трубу отопления в частном доме
Теплоизоляционная краски
Отечественным производителем выпускается широкий ряд теплокрасок, наиболее известны марки Броня и Корунд, имеющие следующие преимущества и недостатки:
- Теплокраски наносят на объекты кистью или напылением, благодаря высокой адгезии они хорошо удерживаются на поверхностях из любых материалов.
- Стоимость реализуемых в пластиковых ведрах красок как из-за импортного сырья слишком высока, цена за ведро объемом 5 литров начинается с 1500 руб.
- Рекомендуемый производителем расход краски: 1 л на один квадратный метр для получения оптимального слоя толщиной 1 мм.
- Теплокраску удобно использовать на поверхностных труднодоступных и нестандартных участках труб, изоляции фланцевых соединений, практикуется ее подземное применение для изоляции стальных трубопроводов.
- Помимо теплоизоляции термокраска обеспечивает антикоррозионную защиту объектов.
Технология и монтаж утеплителей в быту — лучшие варианты
Владельцам частных домов для экономии финансовых средств на обогреве помещений нередко приходится решать, чем изолировать трубы отопления, рассматривая различные виды изоляции трубопроводов. При этом теплосети могут располагаться в любом месте индивидуального участка: внутри дома или хозяйственной пристройки, под землей или на ее поверхности.
Рис. 18 Нанесение Теплокраски
Утепление труб отопления на улице
Решая, как утеплить трубы отопления на улице своими руками, следует в первую очередь рассматривать ПЭ оболочки подходящего внутреннего диаметра с закрытыми ячейками. Они имеют поверхностную пленку различных цветов, чтобы закрыть продольный шов, используют скотч, скобы, самоклеющиеся разновидности трубок или любой клей для полиэтилена. ПЭ трубки в зависимости от удобства использования приобретают стандартной длины 2 или 10 м, работы по монтажу проводят в следующей последовательности:
- Очищают трубопровод от грязи и пыли и одевают на него ПЭ трубку необходимого размера, когда шов собираются промазывать клеем, его размещают вверху.
- Если используют не самоклеющуюся разновидность, промазывают стенки продольного разреза клеем и соединяют их до полного высыхания, затем переворачивают оболочку швом вниз.
- Аналогичным образом склеивают между собой торцы целых трубок или обрезанных участков, получая в результате работы цельную и эстетически красивую защитную оболочку.
Рис. 19 Монтаж ПХ трубок – основные этапы
Утепление труб отопления в неотапливаемом помещении
Внутри помещений для утепления трубопроводов можно использовать более дешевые в сравнении с рассмотренным выше вариантом ПЭ трубки с открытыми ячейками, также нередко применяют варианты монтажа защиты с фольгированным поверхностным слоем. Некоторые производители, к примеру Энергофлекс, реализуют вместе со своими трубками специальный клей для соединения ПЭ изделий и дополнительный инструмент в виде специального ножа для резки ПЭ оболочек и пластикового стусла для обрезания трубок прямо или под углом 45 градусов. ПЭ теплоизоляция для труб отопления в квартире или частном доме бренда Энергофлекс монтируется следующим образом:
- В трубке дополнительно прорезают выделенный продольный шов специальным ножом.
- Раздвигают шов и помещают изделие на трубу.
- Скрепляют края швов специальными пластиковыми зажимами в виде полуколец, для этого их соединяют вместе и вставляют зажимные скобы в количестве 4 — 5 штук на один погонный метр.
- Если необходимо изолировать угловой фрагмент трубопровода, поступают следующим образом:
- В специальное стусло вставляют обрезок трубы и вырезают серединный фрагмент, а также обрезают торцы соединяемых элементов под нужным углом.
- Склеивают между собой полученные детали, промазав их кромки специальным клеем Энергофлекс.
- Обрезают полученный угловой элемент вдоль специальным ножом, промазывают его продольные торцы клеем и одевают детали на угол трубопровода, половинки можно обмотать скотчем на 2 — 3 часа до высыхания клея, после чего фасонный узел готов к эксплуатации.
Рис. 20 Монтаж углового элемента изоляции Энергофлекс внутри здания
Утепление труб отопления под землей
Решая, чем утеплять трубы отопления на улице при подземной укладке в бытовом хозяйстве, обычно используют жесткие оболочки или помещают мягкие пористые материалы в полимерные трубы большего диаметра. Для теплоизоляции трубопроводов пенопластовой скорлупой поступают следующим образом:
- Лежащий на поверхности трубопровод очищают от грязи и размещает на нем сегменты скорлупы соединением шип в паз с таким расчетом, чтобы верхний и нижний элемент ложились со сдвигом.
- По мере укладки фрагментов их связывают между собой скотчем, для соединения можно воспользоваться и специальным клеем для пенопласта.
- После монтажа на поверхности трубопровод помещают в траншею на заранее засыпанную подушку из песка и присыпают землей.
Рис. 21 Монтаж жестких скорлуп
При теплоизоляции отопительных трубопроводов широко используют материалы, применяемые в строительной отрасли, для удобства использования на трубопроводах их выпускают в виде цилиндрических скорлуп или полых трубок различной длины. Для изоляции наружных и внутренних трубопроводов отопления наиболее рациональный вариант — применение мягких трубок из вспененного полиэтилена, подземный трубопровод обычно изолируют жесткими скорлупами из пенопласта или пенополиуретана.
Источник https://odstroy.ru/kalkulator-rasceta-izolacii-uteplenia-trub-otoplenia-pri-naruznoj-prokladke-s-poasneniami/
Источник https://mr-build.ru/newteplo/rascet-tolsiny-teploizolacii-truboprovodov.html
Источник https://montagtrub.ru/teploizolyacziya-dlya-trub-otopleniya/