Как сделать ветряк из кулера от компьютера своими руками? Ветрогенератор из вентилятора Генератор из кулера

Содержание

Как сделать ветряк из кулера от компьютера своими руками? Ветрогенератор из вентилятора Генератор из кулера

Когда речь заходит о ветрогенераторах, воображение рисует серьезные , способные снабжать энергией целые города. При этом, вполне возможно использование этой технологии и в прикладных, бытовых целях. Это полезно для иллюстрации вопроса, помогает оценить возможности и перспективы ветроэнергетики на простом и понятном примере. Создание маленьких устройств не решит проблему энергообеспеченности, но сможет поспособствовать развитию технологии и пробудить интерес к такому способу выработки электроэнергии.

Мини-ветрогенератор из старого компьютерного кулера

Вполне функциональной и способной выполнять полезную работу, может стать вышедший из строя компьютерный вентилятор. Подойдет практически любой кулер, но лучше всего выбирать самый большой, поскольку двигатель в том виде, какой он есть, для вырабатывания электротока не годится. Причина этой необходимости в том, что обмотки моторчика намотаны двойным проводом и в разном направлении, поэтому он создает переменный ток.

Максимум, на что можно рассчитывать при изготовлении ветрогенератора из компьютерного кулера — это питание нескольких светодиодов , для которых требуется постоянный ток. Поэтому надо будет изготовить выпрямитель, который тоже отнимет немного мощности. Поэтому двигатель без переделок неспособен зажечь даже единственный светодиод. Для модернизации понадобится изготовить более мощные обмотки, способные выдавать более высокое напряжение.

Важно! Не следует рассчитывать на создание устройства, способного заряжать батарею мобильного телефона или питать ноутбук. Энергии, полученной таким образом хватит только для питания светодиодного фонаря. Вся затея полезна именно с образовательной или познавательной точки зрения.

Технология изготовления

Для переделки компьютерного вентилятора в ветрогенератор потребуется выполнить следующие действия:

  • модернизировать моторчик;
  • увеличить размер крыльчатки;
  • изготовить подставку с возможностью вращения вокруг своей оси (настройки на ветер).

Рассмотрим эти этапы более подробно:

Модернизируем моторчик

Для того, чтобы переделать двигатель, понадобится разобрать кулер. Это делается следующим образом:

  • снимается наклейка с крышки моторного отсека в центральной части кулера;
  • аккуратно вынимается крышка отсека;
  • удаляется стопорное кольцо, фиксирующее ось крыльчатки;
  • снимается крыльчатка.

После этого появляется свободный доступ к обмоткам двигателя. Их надо удалить, так как они не подходят для нашей цели. Проще всего их аккуратно срезать и выдернуть из гнезд.

Затем наматываются обмотки более тонким проводом. Количество витков должно быть максимальным, сколько сможет вместить статор. Обмотки наматываются вразнобой — первая по часовой стрелке, вторая — против, затем опять по часовой стрелке и снова против. Это обеспечит подачу переменного тока.

Неплохо будет поменять магниты на более мощные, например, неодимовые. Это позволит значительно увеличить мощность генератора и стабилизирует напряжение на выходе.

После этого к выводам обмоток припаиваются провода, к которым впоследствии присоединится выпрямитель.

После завершения этих действий вся конструкция собирается в обратном порядке. Из 4 диодов собирается выпрямитель, и на этом модернизация двигателя завершается.

Изготовление рабочего колеса

Имеющиеся на кулере, по своим размерам хороши для охлаждения внутренностей компьютера, но для работы в качестве ветрового колеса они слишком малы. Для того, чтобы обеспечить максимально возможную эффективность взаимодействия с ветровыми потоками, рекомендуется изготовить новые лопасти. Понадобится произвести следующие действия:

  • аккуратно отрезать старые лопасти;
  • изготовить новые из пластмассовых бутылок или иных изделий;
  • приклеить новые лопасти на крыльчатку.

Для изготовления лопастей лучше всего использовать пластиковые бутылки или любые предметы цилиндрической формы. Это необходимо для того, чтобы лопасти имели нужный профиль, позволяющий ветру вращать крыльчатку. Плоская листовая пластмасса для изготовления лопастей не годится.

Размер новых лопастей должен быть примерно в 2-3 раза превышать те, которые были раньше. Слишком большие усложняют использование устройства и не обладают достаточной жесткостью, а слишком маленькие не дают нужного эффекта, вся процедура теряет смысл.

Внимание! Форма должны быть такой, чтобы готовые лопасти оказались под небольшим углом к вертикальной плоскости. Все лопатки должны быть одинаковыми.

Подставка

Подставка служит для установки устройства в нужном положении и ориентирования его по ветру. Проще всего использовать отрезок трубки, в который вставляется пруток, свободно двигающийся в ней. Трубка крепится на неподвижную часть устройства, а пруток устанавливается на основание или прикрепляется к опоре, например, на балконе.

Кроме того, понадобится устройство автоматического наведения на ветер , проще говоря — хвост. Он представляет собой подобие хвоста или флюгера и жестко крепится к ветряку по оси вращения крыльчатки.

Полностью собранное устройство устанавливается в подходящем месте, в качестве полезной нагрузки подключается фонарик со светодиодными лампочками, производится запуск ветряка. Устройство можно использовать для освещения каких-либо участков, а также для приобретения навыков изготовления таких изделий.

Видео

Бесплатное электричество в мини объемах, поможет быстро понять силу, свободной энергии. Понадобится старый вентилятор (он же кулер) от компьютера и три неодимовых магнита. Этот простой вариант исполнения БТГ бестопливного генератора, миниатюра больших генераторов бесплатного электричества.

Вот как выглядит готовый вечный двигатель, он же генератор электричества:

Вот что понадобится для сборки вечного генератора:

  • Три неодимовых магнита
  • Вентилятор от системного блока
  • Лампочка на 12 вольт
  • Диод для закольцовки тока

А также деревянная платформа (или любая на ваш вкус), а также клеевой пистолет.

1. Кулер

2. Магниты неодимовые тонкие:

3. Лампочка на 12 вольт (35 Вт)

4. Диод

Начинаем сборку.

На лопасть наносим клей и приклеиваем.

второй магнит на противоположную сторону

приклеиваем так же

вот этого делать не надо! — первоначально было желание сделать 4 магнита, но они были больше и тяжелее, так что движок кулера не работал.

и так в итоге — до отклеивания двух больших.

Шаг №2 (собираем генератор энергии на плато)

приклеиваем к нему кулер

проклеить лучше хорошенько, а то вибрация…

приклеиваем лампу к кулеру

вот что в итоге:

Шаг №3 (припаиваем провода и диод)

первый провод через диод

второй напрямую к лампочке

Начинаем испытания генератора!

Предварительно отклеив два магнита, так что вам будет проще.. приклеить нужно только два

Подносим магнит

обороты растут, лампа горит ярче

Найдя идеальную точку для расположения магнита, приклеиваем его.

Теперь запускать вечный двигатель можно толчком пальца…

Свободной Вам Энергии!

Готовы повторить этот эксперимент?

Как считаете есть ли здесь обман?

  • пишите свой комментарий на странице ниже:

Помните!

Что вы можете стать частью сообщества, где есть база знаний, в которой сборник готовых инструкций по сборке БТГ, чертежи, схемы, ОБСУЖДЕНИЯ, и такие же энтузиасты.

В сообществе ФриТеслаЭнерджи — вы всегда можете найти друзей и единомышленников, таких же энтузиастов свободной энергии.

Мы собрали сборник инструкций, моделей, чертежей БТГ, которые сможете собрать и вы. Вступайте в закрытое сообщество энтузиастов FreeTeslaEnergy

Участники сообщества вместе обсуждают модели и сборки авторов, ищут тех кто может собрать бестопливный генератор энергии, для освещения или отопления дома или квартиры…

Напишите ниже на этой странице, о своем опыте, что вы об этом думаете…

Как собрать вечный двигатель из кулера и магнитов? Вот инструкция:. Как сделать генератор из кулера

Ветрогенератор из вентилятора: изготовление своими руками

Изготовить ветрогенератор, взяв за основу вентилятор, казалось бы, чего проще? Однако на пути такого технического перевоплощения встанут несколько препятствий. Как их преодолеть, для чего может быть применена ветроэлектростанция, изготовленная из вентилятора, и расскажет эта статья.

Сфера применения

Изготовить ветрогенератор, взяв за основу вентилятор, казалось бы, чего проще? Однако на пути такого технического перевоплощения встанут несколько препятствий. Как их преодолеть, для чего может быть применена ветроэлектростанция, изготовленная из вентилятора, и расскажет эта статья.Сразу стоит оговориться, рассчитывать, что плодом трудов станет агрегат, которым можно заряжать промышленные аккумуляторы или отапливать здания не стоит. Зарядка мобильного телефона, или работа небольшого осветителя на светодиодах — примерно такие задачи сможет решать ветрогенератор, явившийся, если можно так выразиться, продуктом глубокой переработки вентилятора.

Отчего же внешне такие похожие устройства для перевоплощения друг в друга требуют усилий? Этому есть технические объяснения, которые нелишним будет рассмотреть.

Различия

Особенности конструкции электродвигателей и генераторов

Движение электронов, электрический ток, происходит в проводнике под воздействием изменяющегося внешнего магнитного поля. Аналогично устроены и электрические двигатели, только в обратной последовательности — на движущиеся заряженные частицы в магнитном поле действует сила, которая и заставляет проводник менять свое положение в пространстве, т.е. приводит к движению ротора.

Как в генераторах, так и в двигателях это самое магнитное поле создается в статоре, или в роторе, в зависимости от модели, постоянными магнитами или электромагнитами (обмотками возбуждения). Если мотор притягивает железные предметы — он на постоянных магнитах. Этот вариант с точки зрения использования его в качестве генератора оптимален, так как не требует никакой модернизации.

«Применение же для получения электроэнергии двигателя с обмотками возбуждения окажется сложнее, ведь придется обеспечить питание этих самых обмоток. А это заметно усложнит конструкцию».

Так на самом деле работает автомобильный генератор. На ротор через «таблетку», щетки и контактные кольца подается 12В. Вместе с ротором вращается созданное им магнитное поле. Оно-то и создает электрический ток в обмотке статора (конечно же, вырабатывается тока больше чем тратится, иначе зачем нужен генератор).

Когда АКБ полностью заряжена, а мощные потребители выключены, ток на ротор почти не подается и генератор вращается вхолостую. А используя автогенератор в качестве ветроэлектростанции, этот ток придется подавать и контролировать его параметры.

Иногда предлагают для такого случая удалять обмотки с ротора и вместо проволоки вклеивать ниодимовые постоянные магниты (в этом случае ток не нужен), но это тема для отдельной статьи. к содержанию

Особенности геометрии лопастей

Так как конструкция вентилятора отвечает цели — толкать массу воздуха, а лопасти ветрогенератора, наоборот, приводятся в движение течениями воздушных масс, то и геометрия будет незначительно отличаться. Угол атаки кончиков лопастей обоих типов мало различается.
Чем ближе перемещаться к центру — наблюдаются различия.

Винт ветроэлектростанции:Участок лопасти у центра практически не участвует в выработке энергии, так как движется во много раз медленнее, чем вся лопасть, поэтому его делают с углом атаки равным нулю, чтобы воздушные массы могли спокойно проходить, не создавая заторов в виде завихрений. У неподвижного вентилятора потребности в изменении угла атаки лопасти нет.

Так как в целом геометрия схожа, то пропеллер вентилятора будет работать и как ветрогенератор.

Примеры изготовления

Из детского игрушечного вентилятора на батарейках

Такой ветрогенератор изготовить проще простого. В игрушке используется электромотор чаще всего на 1,5 или 4,5 вольта с независимым возбуждением от постоянных магнитов. Имеется готовый винт. Необходимо достать батарейки, к контактам + и − подсоединить провода, поместить вентилятор в поток воздуха, включить, и можно замерять на контактах характеристики вырабатываемого тока.

Чтобы такой ветрогенератор работал лучше, лопастям винта не помешает добавить мощности, например, накладками, вырезанными из пластиковой трубы в форме лепестков. Ну и придется снабдить агрегат некоторыми другими обязательными для электроветряка элементами.

Вентилятор придется защитить от осадков специальным кожухом и закрепить на подвижной раме. Подвижное крепление рамы к мачте, должно включать в себя контактно-щеточный механизм (без него ток вниз не передашь). Противоположный конец рамы снабжают стабилизатором, его задача — разворачивать ветрогенератор навстречу воздушным потокам.

То, на что можно рассчитывать, если двигатель 4,5В, это 2,5…3В максимум, не хватает даже для зарядки телефона (как правило 5В). Но питание светодиодов, которыми, к примеру, можно обозначить границы въездных ворот, или осветить границы садовой дорожки, такое устройство при достаточном ветре вполне способно обеспечить.

Отличия состоят в том, что:

  • лопасти кулера изначально никуда не годятся — пропеллер нужен новый;
  • вырабатываемого тока при определенной скорости ветра вполне хватает для зарядки андроида или планшета 5в (использования контроллера в этом случае не избежать и как нельзя лучше подойдет обычное автомобильное зарядное устройство).

Из вентилятора охлаждения радиатора двигателя автомобиля

Вариант посложнее, но если предыдущие варианты изначально рассматривались как игрушки, то от этой конструкции может быть вполне осязаемая отдача. Рассматриваемый ветрогенератор может служить, к примеру, для зарядки аккумулятора 12в. Запасенную в АКБ электроэнергию, пропустив через преобразователь 12/220, можно использовать в качестве домашней сети.

В конструкции применяется двигатель от вентилятора 24в. Лопасти укорачивают, оставляя лишь фрагменты, необходимые для крепления новых — вырезанных из трубы ПВХ (использовать для этих целей бутылки ПВХ не получится — из-за малой жесткости их будет попросту загибать ветром).

Вырезаются лопасти примерно по такому шаблону, как на фото.
Количество лопастей может быть любым, чаще всего используются варианты 3, 4 или 6.

Компонуется ветрогенератор по классической схеме (Рис. 3). Напряжение, им вырабатываемое при умеренном 4…7 м/с, будет больше 12в, что позволит заряжать АКБ. В электрическую цепь должен быть добавлен диод, чтобы в случае отсутствия ветра электростанция не превратилась в вентилятор на мачте.

Не помешает и контроллер зарядки АКБ, регулирующий зарядный ток и размыкающий цепь по окончании зарядки. Можно обойтись и без него, но тогда придется постоянно следить за процессом зарядки и регулировать его вручную.

Строим мини-ветрогенератор из старого компьютерного кулера

У вас завалялись старые и ненужные компьютерные комплектующие? Загляните и поищите там вентилятор для охлаждения процессора, так называемый кулер. Есть? Отлично. Сейчас я вам расскажу как заставить его работать не в совсем привычном для него режиме. Теперь он будет не поглощать энергию для последующего охлаждения процессора, а наоборот — вырабатывать. Да, я не оговорился. В своем ветряном мини-генераторе я использовал его как основной элемент. При ветре 12 км/ч, или привычных для метеорологии 3,3 м/с, он позволяет вырабатывать электричество напряжением 1,5 — 2 вольта и силой тока 20 миллиампер.

Какие нам понадобятся материалы?

Толстая пластиковая бутылка- старый вентилятор для охлаждения процессора (кулер), чем больше тем лучше- несколько метров слаботочного провода- деревянный брусок круглого сечения диаметром 1,5 дюйма и длинной 20 см.- две металлические трубки с заходом одна в другую- 4 диода «Шоттки»- эпоксидный клей- супер клей- затяжные галстуки- старый CD диск

Итак рассмотрим пошагово этапы изготовления мини-ветрогенератора.

Пропеллер обычно удерживаются на валу электродвигателя с помощью стопорного кольца. Зачастую оно скрыто под резиновым уплотнителем. После его снятия вы увидите стопорное кольцо, которое вы можете снять маленькой плоской отверткой. Получилось? Если да, то штатные лопасти вентилятора можно спокойно снять.

Взгляните на медные катушки вентилятора, там может быть два или три проводных соединения, это и есть коннекторы катушек. У одного из участков два подсоединенных медных провода, в то время как у других двух только по одному. Вы должны подпаять два провода к ножкам, имеющие только один медный провод.

Выпрямитель превращает переменный ток в постоянный. Нужно 4 диода. Обрезаем их таким образом, чтобы на одной паре с одной стороны (с черными штрихами) осталось по 1 см, аналогично на другой паре, только с противоположной стороны. Длинные концы загибаем. Должна получится фигурка в виде буквы «П». Паяем все вместе. Подпаиваем выходящие с вентилятора провода нужной вам длины.

Вы можете протестировать работает ли генератор подсоединив светодиоды к выходу, ну или тестер. Хорошенько раскрутите и посмотрите работает ли он.

Удаляем весь ненужный пластик

Удаляем наружный пластик, защищающий лопасти, и собственно сами лопасти. Можно просто отломать лопасти и потом доработать неровности ножом.

Делаем лопасти будущего ветрогенератора

Лопасти вырезаются из толстой пластиковой бутылки, обычная пластиковая бутылка с тонкими стенками не подойдет. Отлично подойдёт бутылка от отбеливателя или шампуня. Срезаем верхушку и донышко бутылки. Получаем цилиндр. Разрезаем его вдоль.

Далее лучше сделать шаблон лопастей на бумаге и начертить на пластике. Будьте внимательны, чтобы лопасти были одинаковыми по размеру. Здесь нет особенно точных размеров. Длинна лопастей задается длинной бутылки. Для удобной дальнейшей состыковки конец стыка лопастей вырезается под углом 120 градусов.

Склеивания лопастей и кулера

Три лопасти приклеиваем с помощью суперклея к пластиковой стороне кулера. Кстати, если вы думаете о кривизне лопастей, то уверяю вас, натуральный изгиб пластиковой бутылке работает отлично. Как правило, не требуется большего угла изгиба.

Мотор приклеивается к деревянному бруску круглого сечения, который вращается на металлических трубках.

Хвостовик делаем из старого CD диска. Сверлим в деревянном бруске отверстие насквозь, диаметром металлической трубки. Если трубка села не плотно вы можете заклеить эпоксидным клеем. Затем делам пропил на конце бруска для вставки CD диска. Просверливаем пару отверстий через брусок и CD и закручиваем шурупами.

Место соединения моторчика и бруска по краям можно обработать эпоксидным клеем. Также можно обработать места соединения проводов и пайки для защиты от коррозии.

Опору хорошо бы изготовить из двух трубок. Одна в нашем случае уже уже прикреплена к деревянному бруску, а вот вторая должна быть организована с вращением относительно первой. Можно выполнить с помощью подшипников скольжения в трубе более большего диаметра. В качестве материала подшипника скольжения можно использовать фторопласт.

Как изготовить ветрогенератор из кулера своими руками

Самое логичное применение компьютерного вентилятора не по назначению — это конечно же ветрогенератор. Простота и доступность компьютерного кулера вдохновили многих самодельщиков. Идея создать портативную зарядку своими руками для мобильных устройств не дает покоя многим. Вот и автор этого замечательного видеоурока давно хотел проверить — на что реально способна это вертушка?

Берем любой корпусной вентилятор, чем больше в диаметре, тем лучше. Многие наивно полагают, что его электродвигатель сразу превратится в генератор, стоит его только покрутить. Однако, максимум, на что он способен в таком исполнении — это зажечь слабенький светодиод. Неужели это предел? Почему так мало? Чтобы понять причину, нужно заглянуть внутрь устройства. Весь фокус в том, что в таких кулерах стоит безколлекторный двигатель. Он конструктивно не приспособлен работать в обратном режиме как генератор, и вот почему: его обмотки намотаны последовательно двойным проводом, да еще и противоположно друг другу, а полюса магнита чередуются. Поэтому при вращении вентилятора в катушках будет возникать противо-эдс и такой генератор будет неэффективен.

Первый способ реконструкции кулера в генератор тока

Первый способ выхода из этой ситуации — это попытаться вылечить родной моторчик, то есть перемотать статор новым проводом. Конечно, процедура эта весьма кропотливая, но для тех кто умеет работать руками — вполне посильная.А в образовательных целях даже полезно. Главное теперь — чередовать направления намотки провода на каждом сердечнике. Таким образом у нас получится простейший однофазной генератор переменного тока. Между собой катушки соединены последовательно. Чем больше число витков и тоньше провода, тем лучше. Начало первой катушки и конец последней будут соответственно выводами нашего генератора. Теперь можно все собрать и проверить. Но не забываем, что напряжение получится переменное. Поэтому нужно сделать простенький выпрямитель или купить готовый.После всей этой процедуры лечения показатели конечно улучшились, но не радикально. Причиной тому может быть как слишком большой зазор между статором и ротором, так и слабое магнитное поле

Кольцевого магнита. Его собственно магнитом-то можно назвать с большой натяжкой. Плюс выпрямитель еще съедает от одного до двух вольт. К сожалению, такая переделка себя не оправдала.

Купить готовый можно в этом китайском магазине.

Второй вариант переделки кулера в ветряк

Ну что же, переходим к плану «Б». Возьмем обычный щеточный моторчик от принтера. Он легко превращается в генератор без всяких переделок. А благодаря механическому коллектору при вращении сразу выдает постоянный ток. И никаких выпрямителей не нужно. Сила страгивания у него минимальная, что немаловажно для маленькой крыльчатки. Однако, надо заметить, для эффективной работы ему требуются высокие обороты, а значит и скорость ветра. Посмотрим что удастся из него выжить, проведя серию испытаний. Можно сделать вывод, что на ветре со скоростью до пяти метров в секунду ловить вообще нечего, а вот в диапазоне от пяти до десяти метров в секунду вполне можно запитать крупный светодиодный фонарь и на практике применить для дежурного освещения небольших помещений, коридоров, уличных дорожек или в качестве маячка. Можно отказаться от батарей в небольшом радиоприемнике, а если в цепь добавить накопитель в виде ионистора, то решится проблема с порывами ветра и конструкция станет более практичной. Если вы проживаете в высотном доме, то идеально разместить такой ветрогенератор на балконе и найти ему свое применение. А вот о зарядке мобильных телефонов таким ветрячком, придется забыть. Просто не хватит мощности. Набрать вольтаж не проблема, на что сработает схема телефона и как бы покажет процесс зарядки, но ток при этом будет не более 50 мА при ветре около десяти метров в секунду. А это мизерная мощность. Для нормальной зарядки нужно раз в десять больше. Увы, такое возможно только при ураганном ветре. Кстати, большой плюс маленького ветрячка в том, что он не боится сильных порывов ветра и ему соответственно не нужна защита, а дешевизна и простота конструкции способны разбудить фантазию гораздо большего числа самодельщиков, которые способны своими руками творить чудеса.Детально процесс изготовления ветряка из кулера от компа показан на видео.

Бесплатное электричество в мини объемах, поможет быстро понять силу, свободной энергии. Понадобится старый вентилятор (он же кулер) от компьютера и три неодимовых магнита. Этот простой вариант исполнения БТГ бестопливного генератора, миниатюра больших генераторов бесплатного электричества.

Вот как выглядит готовый вечный двигатель, он же генератор электричества:

Вот что понадобится для сборки вечного генератора:

  • Три неодимовых магнита
  • Вентилятор от системного блока
  • Лампочка на 12 вольт
  • Диод для закольцовки тока

А также деревянная платформа (или любая на ваш вкус), а также клеевой пистолет.

Как сделать ветряной генератор своими руками. Как сделать ветряную электростанцию своими руками Что нужно для ветряка

Одним из самых доступных вариантов использования возобновляемых источников энергии — является использование энергии ветра. О том, как самостоятельно сделать расчёт, собрать и установить ветряк, читайте в этой статье.

Классификация ветряных генераторов

Установки классифицируются исходя из следующих критериев ветродвигателя:

  • расположение оси вращения;
  • число лопастей;
  • материал элементов;
  • шаг винта.

ВЭУ, как правило, имеют конструктивное исполнение с горизонтальной и вертикальной осью вращения.

Исполнение с горизонтальной осью — пропеллерная конструкция с одной-двумя-тремя и более лопастями. Это самое распространенное исполнение воздушных энергетических установок по причине высокого КПД.

Исполнение с вертикальной осью — ортогональные и карусельные конструкции на примере роторов Дарье и Савониуса. Последние два понятия следует пояснить, так как оба имеют определенную значимость в деле конструирования ветряных генераторов.

Ротор Дарье — ортогональная конструкция ветродвигателя, где аэродинамические лопасти (две или более), расположены симметрично друг другу на некотором расстоянии и укреплены на радиальных балках. Достаточно сложный вариант ветродвигателя, требующий тщательного аэродинамического исполнения лопастей.

Ротор Савониуса — конструкции ветродвигателя карусельного типа, где две лопасти полуцилиндрической формы расположены одна против другой, образуя в целом форму синусоиды. Коэффициент полезного действия конструкций невысок (около 15%), но может быть увеличен практически вдвое, если лопасти ставить по направлению волны не горизонтально, а вертикально и применять многоярусное исполнение с угловым смещением каждой пары лопастей относительно других пар.

Преимущества и недостатки «ветряков»

Преимущества данных устройств очевидны, особенно применительно к бытовым условиям эксплуатации. Пользователи «ветряков» фактически получают возможность воспроизводства бесплатной электрической энергии, если не считать небольших издержек на сооружение и обслуживание. Однако очевидны также и недостатки ветроэлектрических установок.

Так, чтобы добиться эффективной работы установки, требуется выполнение условий стабильности ветровых потоков. Такие условия человек создать не в силах. Это чисто прерогатива природы. Ещё одним, но уже техническим недостатком, отмечается низкое качество вырабатываемого электричества, в результате чего приходится дополнять систему дорогостоящими электрическими модулями (мультипликаторами, зарядными устройствами, аккумуляторами, преобразователями , стабилизаторами).

Преимущества и недостатки в плане особенностей каждой из модификаций ветродвигателей, пожалуй, балансируют на нулевой отметке. Если горизонтально-осевые модификации отличаются высоким значением КПД, то для стабильной работы требуют применения контроллеров направления ветрового потока и устройств защиты от ураганных ветров. Вертикально-осевые модификации имеют малый КПД, но стабильно работают без механизма слежения за направлением ветра. При этом такие ветродвигатели отличаются малым уровнем шумов, исключают эффект «разноса» в условиях сильных ветров, достаточно компактны.

Самодельные ветровые генераторы

Изготовление «ветряка» собственными руками — задача вполне решаемая. Причём конструктивный и рациональный подход к делу поможет свести до минимума неизбежные финансовые траты. В первую очередь стоит набросать проект, провести необходимые расчёты балансировки и мощности. Эти действия будут не просто залогом успешной постройки ветряной электростанции, но также залогом сохранения в целостности всего приобретенного оборудования.

Начать рекомендуется с постройки микро-ветряка, мощностью в несколько десятков ватт. В дальнейшем полученный опыт поможет создать более мощную конструкцию. Создавая домашний ветряной генератор, не стоит делать упор на получение качественного электричества (220 В, 50 Гц), так как этот вариант потребует существенных финансовых вложений. Разумнее ограничиться использованием изначально полученного электричества, которое можно успешно применять без преобразования для иных целей, к примеру, для поддержки систем отопления и горячего водоснабжения, построенных на электронагревателях (ТЭН) — такие приборы не требуют стабильного напряжения и частоты. Это делает возможным создавать простую схему, работающую напрямую от генератора.

Скорее всего, никто не будет утверждать, что отопление и горячее водоснабжение в доме по значимости уступают бытовой технике и осветительным приборам, для питания которых зачастую стремятся устанавливать домашние ветряки. Устройство ВЭУ именно с целью обеспечения дома теплом и горячей водой — это минимальные затраты и простота конструкции.

Обобщенный проект домашней ВЭУ

Конструктивно домашний проект во многом повторяет промышленную установку. Правда, бытовые решения зачастую базируются на вертикально-осевых ветродвигателях и комплектуются низковольтными генераторами постоянного тока. Состав модулей бытовой ВЭУ при условии получения качественного электричества (220 В, 50 Гц):

  • ветродвигатель;
  • устройство ориентации по ветру;
  • мультипликатор;
  • генератор постоянного тока (12 В, 24 В);
  • модуль заряда аккумуляторных батарей;
  • аккумуляторные батареи (литий-ионные, литий-полимерные, свинцово-кислотные);
  • преобразователь постоянного напряжения 12 В (24 В) в переменное напряжение 220 В.

Bетрогенератор PIC 8-6/2.5

Как это работает? Просто. Ветер крутит ветродвигатель. Крутящий момент передается через мультипликатор на вал генератора постоянного тока. Полученная на выходе генератора энергия через зарядный модуль аккумулируется в батареях. От клемм аккумуляторных батарей постоянное напряжение 12 В (24 В, 48 В) подается на преобразователь, где трансформируется в напряжение, пригодное для питания бытовых электрических сетей.

Вам будет интересно  Флюгер из пластиковой бутылки своими руками; разъясняем со всех сторон

О генераторах для домашних «ветряков»

Большинство бытовых конструкций ветровых установок , как правило, конструируются с применением малооборотных электродвигателей постоянного тока. Это самый простой вариант генератора, не требующий модернизации. Оптимально — электродвигатели с постоянными магнитами, рассчитанные на питающее напряжение порядка 60-100 вольт. Имеется практика применения автомобильных генераторов, но для такого случая требуется внедрение мультипликатора, так как автогенераторы выдают нужное напряжение только на высоких (1800-2500) оборотах. Один из возможных вариантов — реконструкция асинхронного двигателя переменного тока, но также достаточно сложный, требующий точных расчётов, выполнения токарных работ, установки неодимовых магнитов в области ротора. Есть вариант для трехфазного асинхронного двигателя с подключением конденсаторов одинаковой емкости между фазами. Наконец, существует возможность изготовления генератора с нуля собственными руками. Инструкций на этот счёт имеется масса.

Вертикально-осевой самодельный «ветряк»

Достаточно эффективный и главное недорогой ветрогенератор можно соорудить на основе ротора Савониуса. Здесь в качестве примера рассматривается микро-энергетическая установка, мощность которой не превышает 20 Вт. Однако этого устройства вполне достаточно, например, для обеспечения электрической энергией некоторых бытовых приборов, работающих от напряжения 12 вольт.

  1. Лист алюминиевый толщиной 1,5-2 мм.
  2. Труба пластиковая: диаметр 125 мм, длина 3000 мм.
  3. Труба алюминиевая: диаметр 32 мм, длина 500 мм.
  4. Двигатель постоянного тока (потенциальный генератор), 30-60В, 360-450 об/мин, к примеру, электродвигатель модели PIK8-6/2.5.
  5. Контроллер напряжения.
  6. Аккумулятор.

Изготовление ротора Савониуса

Из алюминиевого листа вырезаются три «блина» диаметром 285 мм. По центру каждого просверливаются отверстия под алюминиевую трубу 32 мм. Получается что-то подобное компакт-дискам. От пластиковой трубы отрезаются два куска длиной по 150 мм и разрезаются пополам вдоль. Результат — четыре полукруглых лопасти 125х150 мм. Все три алюминиевых «компакт-диска» надеваются на трубу 32 мм и закрепляются на расстоянии 320, 170, 20 мм от верхней точки строго горизонтально, образуя два яруса. Между дисками вставляются лопасти, по две штуки на ярус и закрепляются строго одна против другой, образуя синусоиду. При этом лопасти верхнего яруса смещаются относительно лопастей нижнего яруса на угол 90 градусов. В итоге получается четырехлопастной ротор Савониуса. Для крепежа элементов можно использовать заклепки, саморезы, уголки или применить другие способы.

Соединение с двигателем и установка на мачту

Вал двигателей постоянного тока с указанными выше параметрами обычно имеет диаметр не более 10-12 мм. Для того чтобы соединить вал двигателя с трубой ветродвигателя, в нижнюю часть трубы запрессовывается латунная втулка, имеющая требуемый внутренний диаметр. Сквозь стенку трубы и втулки просверливается отверстие, нарезается резьба для вкручивания стопорного винта. Далее труба ветродвигателя надевается на вал генератора, после чего соединение жестко фиксируется стопорным винтом.

Оставшаяся часть пластиковой трубы (2800 мм) — это мачта ветроустановки. Генератор в сборе с колесом Савониуса монтируются наверху мачты — просто вставляется внутрь трубы до упора. В качестве упора используется металлическая дисковая крышка, закрепленная на переднем торце мотора, имеющая диаметр несколько больший диаметра мачты. На периферии крышки просверливаются отверстия для крепления растяжек. Так как диаметр корпуса электродвигателя меньше внутреннего диаметра трубы, для выравнивания генератора по центру применяются прокладки либо упоры. Кабель от генератора пропускается внутри трубы и выводится через окно в нижней части. Необходимо учесть при монтаже исполнение защиты генератора от воздействия влаги, используя для этого герметизирующие прокладки. Опять же с целью защиты от осадков, выше соединения трубы ветродвигателя с валом генератора можно установить зонт-колпак.

Установка всей конструкции выполняется на открытой хорошо обдуваемой площадке. Под мачту выкапывается яма глубиной 0,5 метра, нижняя часть трубы опускается в яму, конструкция выравнивается растяжками, после чего яма заливается бетоном.

Контроллер напряжения (простое зарядное устройство)

Изготовленный ветряной генератор, как правило, не способен выдавать напряжение 12 вольт по причине низкой частоты вращения. Максимальная частота вращения ветродвигателя при скорости ветра 6-8 м/сек. достигает значения 200-250 об/мин. На выходе удается получить напряжение порядка 5-7 вольт. Для заряда аккумулятора требуется напряжение 13,5-15 вольт. Выход из положения — применение простого импульсного преобразователя напряжения, собранного, допустим, на основе регулятора напряжения LM2577ADJ. Подавая на вход преобразователя 5 вольт постоянного тока, на выходе получают 12-15 вольт, что вполне достаточно для заряда автомобильного аккумулятора.

Готовый преобразователь напряжения на LM2577

Данный микро-ветрогенератор, безусловно, можно совершенствовать. Увеличить мощность турбины, изменить материал и высоту мачты, добавить преобразователь постоянного напряжения в переменное сетевое напряжение и т. д.

Горизонтально-осевая ветреная электроустановка

  1. Пластиковая труба диаметром 150 мм, алюминиевый лист толщиной 1,5-2,5 мм, деревянный брусок 80х40 длиной 1 м, сантехнические: фланец — 3, уголок — 2, тройник — 1.
  2. Электродвигатель постоянного тока (генератор) 30-60 В, 300-470 об/мин.
  3. Колесо-шкив для двигателя диаметром 130-150 мм (алюминий, латунь, текстолит и т. п.).
  4. Стальные трубы диаметром 25 мм и 32 мм и длиной соответственно 35 мм и 3000 мм.
  5. Зарядный модуль для аккумуляторов.
  6. Аккумуляторы.
  7. Преобразователь напряжения 12 В — 120 В (220 В).

Изготовление горизонтально-осевого «ветряка»

Пластиковая труба необходима для изготовления лопастей ветродвигателя. Отрезок такой трубы, длиной 600 мм, разрезается вдоль на четыре одинаковых сегмента. Для ветряка требуются три лопасти, которые изготавливаются из полученных сегментов путем среза части материала по диагонали на всю длину, но не точно с угла на угол, а от нижнего угла к верхнему углу, с небольшим отступом от последнего. Обработка нижней части сегментов сводится к формированию крепёжного лепестка на каждом из трёх сегментов. Для этого по одному краю вырезается квадрат размером примерно 50х50 мм, а оставшаяся часть служит крепежным лепестком.

Лопасти ветродвигателя закрепляются на колесе-шкиве с помощью болтовых соединений. Шкив насаживается непосредственно на вал электродвигателя постоянного тока — генератора. В качестве шасси ветродвигателя используется простой деревянный брусок сечением 80х40 мм и длиной 1 м. Генератор устанавливается на одном конце деревянного бруска. На другом конце бруска монтируется «хвост», изготовленный из листа алюминия. В нижней части бруска, крепится металлическая труба 25 мм, предназначенная исполнять роль вала поворотного механизма. В качестве мачты используется трехметровая металлическая труба 32 мм. Верхняя часть мачты является втулкой поворотного механизма, куда вставляется труба ветродвигателя. Опора мачты изготавливается из листа толстой фанеры. На этой опоре, в виде диска диаметром 600 мм, собирается конструкция из сантехнических деталей, благодаря которой, мачту можно легко поднимать или опускать, либо монтировать — демонтировать. Для крепления мачты применяются растяжки.

Вся электроника ветряной установки монтируется отдельным модулем, интерфейс которого предусматривает подключение аккумуляторов и потребительской нагрузки. В состав модуля входит контроллер заряда батарей и преобразователь напряжения. Подобные устройства можно собирать самостоятельно при наличии соответствующего опыта, либо приобретать на рынке. В продаже имеется множество разных решений, позволяющих получить нужные выходные значения напряжений и токов.

Комбинированные ВЭУ

Комбинированные ВЭУ — серьезный вариант домашнего энергетического модуля. Собственно, комбинация предполагает объединение в единой системе ветряного генератора, солнечной батареи, дизельной или бензиновой электростанции . Комбинировать можно всячески, исходя из возможностей и потребностей. Естественно, когда имеет место вариант — три в одном, это наиболее эффективное и надежное решение.

Также под комбинацией ВЭУ предполагается создание ветроэнергетических установок, имеющих в своём составе сразу две разные модификации. Например, когда в одной связке работают ротор Савониуса и традиционная трехлопастная машина. Первая турбина работает при малых скоростях ветрового потока, а вторая только при номинальных. Тем самым сохраняется эффективность установки, исключаются неоправданные энергетические потери, а в случае с асинхронными генераторами компенсируются реактивные токи.

Комбинированные системы — это варианты технически сложные и затратные для домашней практики.

Расчёт мощности ветряной домашней электростанции

Для расчёта мощности ветряного генератора горизонтально-осевого исполнения можно пользоваться стандартной формулой:

  • N = p · S · V3 / 2
  • N — мощность установки, Вт
  • p — плотность воздуха (1,2 кг/м 3)
  • S — продуваемая площадь, м 2
  • V — скорость потока ветра, м/сек

Например, мощность установки, обладающей максимальным размахом лопастей 1 метр, при скорости ветра 7 м/сек., составит:

  • N = 1,2 · 1 · 343 / 2 = 205,8 Вт

Приближенный расчёт мощности ВЭУ, созданной на основе ротора Савониуса можно посчитать, используя формулу:

  • N = p · R · H · V3
  • N — мощность установки, Вт
  • R — радиус рабочего колеса, м
  • V — скорость ветра, м/сек

К примеру, для упомянутой в тексте конструкции ветроэнергетической установки с ротором Савониуса, значение мощности при скорости ветра 7 м/сек. будет составлять:

  • N = 1,2 · 0,142 · 0,3 · 343 = 17,5 Вт

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

При этом, почему-то игнорируется факт, что в других местах той же Европы, подобных ветроэлектростанций практически нет. С чего бы это?
Вот именно об этом, когда, где и как ветряки использовать выгодно, а когда нет, и пойдет речь в статье.

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

И дабы вы не тратили понапрасну свои деньги, расскажем с выкладкой всех цифр, почему это именно так.

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Если в вашем районе ветер 7м/с, то генератор будет работать максимум на 50% от своего номинала. А если всего 2м/с, то и вовсе на 5%.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Так, при увеличении давления ветра в два раза, генерируемая мощность возрастает в восемь раз!

Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:

  • и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Аккумуляторные батареи для ветряков

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Где лучше установить

Еще о чем стоит серьезно задуматься — это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

Цена за 1квт мощности

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Срок окупаемости и расчет экономии

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Для вашей индивидуальной ветровой установки этот срок – НИКОГДА.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Но если вспомнить начальные траты в 200тыс., то вернете вы их через тридцать два года!

И все это без учета эксплуатационных затрат. А если прикинуть, что средний срок службы хорошего ветряка – около 20лет, то получается, что он окончательно и безвозвратно поломается еще до того, как выйдет на окупаемость.

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Когда стоит покупать ветряк

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Какие ветряки выбирать

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

При росте цен на электроэнергию повсюду идёт поиск и разработка её альтернативных источников. В большинстве регионах страны целесообразно применять ветрогенераторы . Чтобы полностью обеспечить электричеством частный дом, требуется достаточно мощная и дорогостоящая установка.

Ветряной генератор для дома

Если сделать небольшой ветрогенератор, с помощью электрического тока можно подогревать воду или использовать для части освещения, например, хозяйственных построек, садовых дорожек и крыльца. Подогрев воды для хозяйственных нужд или отопления – это простейший вариант использования ветровой энергии без её аккумулирования и преобразования. Здесь вопрос больше заключается в том, достаточно ли мощности будет для отопления.

Перед тем как сделать генератор, сначала следует выяснить особенности ветров в регионе.

Большой ветрогенератор, для многих мест российского климата, мало подходит из-за частой смены интенсивности и направления воздушных потоков. При мощности выше 1 кВт он будет инерционным и не сможет в полной мере раскручиваться, когда меняется ветер. Инерция в плоскости вращения приводит к перегрузкам от бокового ветра, приводящим к его выходу из строя.

С появлением маломощных потребителей энергии имеет смысл применять небольшие самодельные ветрогенераторы не более чем на 12 вольт, чтобы освещать дачу светодиодными светильниками или заряжать телефонные аккумуляторы при отсутствии в доме электричества. Когда в этом нет необходимости, электрогенератор можно применять для нагрева воды.

Тип ветрогенератора

Для безветренной области подходит только парусный ветрогенератор. Чтобы электроснабжение было постоянным, понадобится аккумуляторная батарея не менее чем на 12В, зарядное устройство, инвертор, стабилизатор и выпрямитель.

Для слабоветренных районов можно самостоятельно изготовить вертикальный ветрогенератор, мощностью не более 2-3 кВт. Вариантов есть много и они почти не уступают промышленным образцам. Покупать целесообразно ветряки с парусным ротором. Надёжные модели мощностью от 1 до 100 киловатт выпускаются в Таганроге.

В ветреных регионах можно сделать генератор для дома своими руками вертикальный, если требуемая мощность составляет 0,5-1,5 киловатт. Лопасти можно изготовить из подручных средств, например, из бочки. Более производительные устройства целесообразно купить. Самыми дешёвыми являются «парусники». Вертикальный ветряк стоит дороже, но он надёжней работает при сильных ветрах.

Маломощный ветряк своими руками

В домашних условиях небольшой самодельный ветрогенератор изготовить несложно. Для начала работы в области создания альтернативных источников энергии и накопления в этом ценного опыта как собрать генератор, можно изготовить самостоятельно простое устройство, приспособив мотор от компьютера или принтера.

Ветряной генератор на 12 В с горизонтальной осью

Чтобы сделать своими руками маломощный ветряк, необходимо сначала подготовить чертежи или эскизы.

На скорости вращения 200-300 об./мин. напряжение можно поднять до 12 вольт, а вырабатываемая мощность составит около 3 Вт. С его помощью можно зарядить небольшой аккумулятор. Для других генераторов мощность необходимо увеличивать до 1000 об./мин. Лишь в этом случае они будут эффективны. Но здесь понадобится редуктор, создающий значительное сопротивление и к тому же имеющий высокую стоимость.

Электрическая часть

Чтобы собрать электрогенератор, необходимы комплектующие:

  1. небольшой мотор от старого принтера, дисковода или сканера;
  2. 8 диодов типа 1N4007 для двух выпрямительных мостов;
  3. конденсатор ёмкостью 1000 мкф;
  4. труба ПВХ и пластиковые детали;
  5. алюминиевые пластины.

На рисунке ниже изображена схема генератора.

Шаговый мотор: схема подключения к выпрямителю и стабилизатору

Диодные мосты подключаются к каждой обмотке двигателя, которых две. После мостов подключается стабилизатор LM7805. В результате на выходе получается напряжение, которое обычно подаётся на 12-вольтную батарею.

Большую популярность получили электрогенераторы на неодимовых магнитах с чрезвычайно высокой силой сцепления. Их следует аккуратно использовать. При сильном ударе или нагреве до температуры 80-250 0 С (в зависимости от вида) у неодимовых магнитов происходит размагничивание.

За основу генератора, изготавливаемого своими руками, можно взять ступицу автомобиля.

Ротор на неодимовых магнитах

На ступицу производится наклейка суперклеем неодимовых магнитов диаметром около 25 мм примерно в количестве 20 шт. Однофазные электрогенераторы делаются с равенством количества полюсов и магнитов.

Магниты, расположенные напротив друг друга, должны притягиваться, т. е. повёрнуты противоположными полюсами. После приклеивания неодимовых магнитов производится их заливка эпоксидной смолой.

Катушки мотают круглыми, а общее количество витков составляет 1000-1200. Мощность генератора на неодимовых магнитах подбирается такой, чтобы его можно было использовать как источник постоянного тока, порядка 6А для зарядки АКБ на 12 В.

Механическая часть

Лопасти делают из пластиковой трубы. На ней рисуют заготовки шириной 10 см и длиной 50 см, а затем вырезают. Изготавливается втулка на вал двигателя с фланцем, к которому винтами крепятся лопасти. Их количество может быть от двух до четырёх. Пластик долго не прослужит, но на первое время его хватит. Сейчас появились достаточно износостойкие материалы, например, карбон и полипропилен. Затем можно изготовить более прочные лопасти из алюминиевого сплава.

Балансировку лопастей производят путём отрезания лишних частей на концах, а угол наклона создают путём их нагрева с изгибом.

Генератор крепится болтами к куску пластиковой трубы с приваренной к нему вертикальной осью. На трубу также соосно устанавливается флюгер из алюминиевого сплава. Ось вставляется в вертикальную трубу мачты. Между ними устанавливается упорный подшипник. Вся конструкция может свободно вращаться в горизонтальной плоскости.

Электрическую плату можно разместить на вращающейся части, а напряжение потребителю передавать через два токосъёмных кольца со щётками. Если плату с выпрямителем установить отдельно, тогда количество колец будет равно шести, сколько выводов имеет шаговый мотор.

Ветряк крепят на высоте 5-8 м.

Если устройство будет эффективно вырабатывать энергию, его можно усовершенствовать, сделав вертикально-осевым, например, из бочки. Конструкция меньше подвержена боковым перегрузкам, чем горизонтальная. На рисунке ниже изображён ротор с лопастями из фрагментов бочки, установлен на оси внутри рамы и на него не действует опрокидывающее усилие.

Ветряк с вертикальной осью и ротором из бочки

Профилированная поверхность бочки создаёт дополнительную жёсткость, за счёт чего можно применять жесть меньшей толщины.

Ветрогенератор мощностью более 1 киловатта

Устройство должно приносить ощутимую пользу и выдавать напряжение 220 В, чтобы можно было включить некоторые электроприборы. Для этого оно должно самостоятельно запускаться и вырабатывать электроэнергию в широком диапазоне.

Чтобы сделать ветрогенератор своими руками , прежде следует определить конструкцию. Она зависит от того, какая сила ветра. Если она слабая, то единственным вариантом может быть парусный вариант ротора. Больше 2-3 киловатт энергии здесь не получить. Кроме того, для него понадобятся редуктор и мощный аккумулятор с зарядным устройством.

Цена всего оборудования высокая, поэтому следует выяснить, будет ли это выгодно для дома.

В районах с сильными ветрами, самодельным ветрогенератором можно получить 1,5-5 киловатт мощности. Тогда его можно подключать в домашнюю сеть на 220В. Аппарат с большей мощностью самостоятельно сделать сложно.

Электрогенератор из двигателя постоянного тока

В качестве генератора можно использовать малооборотный мотор, генерирующий электрический ток при 400-500 об/мин: PIK8-6/2,5 36V 0,3Nm 1600min-1. Длина корпуса 143 мм, диаметр – 80 мм, диаметр вала – 12 мм.

Как выглядит двигатель постоянного тока

Для него нужен мультипликатор с передаточным отношением 1:12. При одном обороте лопастей ветряка электрогенератор сделает 12 оборотов. На рисунке ниже изображена схема устройства.

Схема устройства ветряка

Редуктор создаёт дополнительную нагрузку, но всё же это меньше, чем для автомобильного генератора или стартера, где требуется передаточное отношение как минимум 1:25.

Лопасти целесообразно изготавливать из алюминиевого листа размером 60х12х2. Если на мотор их установить 6 штук, устройство будет не таким быстрым и не пойдёт вразнос при больших порывах ветра. Следует предусмотреть возможность балансировки. Для этого лопасти припаиваются к втулкам с возможностью накручивания на ротор, чтобы можно было их смещать дальше или ближе от его центра.

Мощность генератора на постоянных магнитах из феррита или стали не превышает 0,5-0,7 киловатт. Увеличить её можно только на специальных неодимовых магнитах.

Генератор с не намагниченным статором для работы не годится. При небольшом ветре он останавливается, а после не сможет самостоятельно запуститься.

Для постоянного отопления в холодное время года требуется много энергии, и протопить большой дом – это проблема. Для дачи в этом плане он может пригодиться, когда туда приходится ездить не чаще 1 раза в неделю. Если всё правильно взвесить, система отопления на даче работает всего несколько часов. Остальное время хозяева находятся на природе. Используя ветряк как источник постоянного тока для зарядки АКБ, за 1-2 недели можно накопить электроэнергии для отопления помещений на такой промежуток времени, и таким образом, создать себе достаточный комфорт.

Чтобы сделать генератор из двигателя переменного тока или автомобильного стартера, требуется их переделка. Мотор можно модернизировать под генератор, если ротор изготовить на неодимовых магнитах, проточив на их толщину. Его делают с количеством полюсов, как и у статора, чередуя друг с другом. Ротор на неодимовых магнитах, приклеенных к его поверхности, при вращении не должен залипать.

Типы роторов

Конструкции роторов отличаются разнообразием. Распространённые варианты изображены на рисунке ниже, где указаны значения коэффициента использования энергии ветра (КИЭВ).

Виды и конструкции роторов ветряков

Для вращения ветряки делают с вертикальной или горизонтальной осью. Вертикальный вариант обладает преимуществом в удобстве обслуживания, когда основные узлы расположены внизу. Опорный подшипник выполнен самоустанавливающимся и долго служит.

Две лопасти ротора «Савониуса» создают рывки, что не очень удобно. По этой причине его делают из двух пар лопастей, разнесённых на 2 уровня с поворотом одной относительно другой на 90 0 . В качестве заготовок можно использовать бочки, вёдра, кастрюли.

Ротор «Дарье», лопасти которого делают из упругой ленты, отличается простотой изготовления. Для облегчения раскрутки их количество должно быть нечётным. Движение происходит рывками, из-за чего механическая часть быстро разбивается. Кроме того, лента при вращении вибрирует, издавая рёв. Для постоянного применения подобная конструкция не очень подходит, хотя лопасти иногда делают из звукопоглощающих материалов.
В ортогональном роторе крылья выполняются профилированными. Оптимальное количество лопастей равно трём. Устройство быстроходное, но его необходимо раскручивать при пуске.

Геликоидный ротор имеет высокий КПД за счёт сложной кривизны лопастей, снижающей потери. Его применяют реже других ветряков из-за высокой стоимости.

Горизонтальный лопастный ротор исполнения является наиболее эффективным. Но он требует наличия стабильного среднего ветра, а также для него необходима ураганная защита. Лопасти можно изготовить из пропилена, когда их диаметр меньше 1 м.

Если вырезать лопасти из толстостенной пластиковой трубы или бочки, достичь мощности выше 200 Вт не удастся. Профиль в виде сегмента для сжимаемой газообразной среды не подходит. Здесь нужен сложный профиль.

Диаметр ротора зависит от того, какую мощность требуется получить, а также от количества лопастей. Двухлопастнику на 10 Вт нужен ротор диаметром 1,16 м, а на 100 Вт – 6,34 м. Для четырёх-, и шестилопастника диаметр составит соответственно 4,5 м и 3,68 м.

Если насадить ротор непосредственно на вал генератора, его подшипник долго не протянет, поскольку нагрузка на все лопасти неравномерная. Опорный подшипник для вала ветряка должен быть самоустанавливающимся, с двумя или тремя ярусами. Тогда для вала ротора будут не страшны изгибы и смещения в процессе вращения.

Вам будет интересно  Ветрогенераторы для дома

Большую роль в работе ветряка играет токосъёмник, который требуется регулярно обслуживать: смазывать, чистить, регулировать. Возможность его профилактики должна быть предусмотрена, хотя это сложно сделать.

Безопасность

Ветряки, мощность которых превышает 100 Вт, являются шумными устройствами. Во дворе частного дома можно установить промышленный ветродвигатель, если он сертифицирован. Его высота должна быть выше ближайших домов. На крыше нельзя устанавливать даже маломощный ветряк. Механические колебания от его работы могут создать резонанс и привести к разрушению строения.

Высокие скорости вращения ветрогенератора требуют качественного изготовления. Иначе, при разрушении устройства существует опасность, что его детали могут отлететь на большие расстояния и нанести травму человеку или домашним животным. Особенно это следует учитывать при изготовлении ветряка своими руками из подручных материалов.

Видео. Ветрогенератор своими руками.

Применение ветрогенераторов целесообразно не во всех регионах, поскольку зависит от климатических особенностей. Кроме того, изготавливать их своими руками не имеет смысла без определённого опыта и знаний. Для начала можно взяться за создание простой конструкции мощностью несколько ватт и напряжением до 12 вольт с помощью, которой можно зарядить телефон или зажечь энергосберегающую лампу. Применение неодимовых магнитов в генераторе позволяет значительно увеличить его мощность.

Мощные ветровые установки, берущие на себя значительную часть электроснабжения дома, лучше приобретать промышленные, на создание напряжения 220В, тщательно взвесив при этом все за и против. Если совместить их с другими видами альтернативных источников энергии, электричества может хватить на все хозяйственные нужды, включая систему отопления дома.

В данной статье подробно рассматривается такой вид оборудования, как ветрогенератор для частного дома: особенности конструкций, его назначение и сфера применения, внутреннее устройство и классификация. В тексте можно найти полезную информацию, которая поможет определиться с выбором качественного ветряка, средние расценки на популярные виды оборудования, а также подробное описание технологии изготовления.

Ветряные электростанции для частного дома широко используются в качестве альтернативных источников электрической энергии, позволяющих добиться экономии. Нередко подобные устройства устанавливаются на дачных участках.

Чаще всего они применяются в удаленных от основных электросетей зонах. Однако это далеко не единственная причина, свидетельствующая в пользу того, чтобы купить ветрогенератор для частного дома. Большинство владельцев земельных участков используют эти конструкции, чтобы добиться автономности и экономии.

Не каждый участок подходит для установки таких устройств, поскольку не везде условия соответствуют требованиям данного оборудования. В первую очередь это касается скорости ветра. Чтобы ветряная электростанция смогла нормально функционировать, средняя скорость ветра должна составлять не менее 4-4,5 м/с. Только в этом случае монтаж конструкции будет экономически оправдан.

Чтобы узнать среднегодовую скорость ветра, можно использовать карту ветров. Она отражает приблизительные данные по регионам. Более точные показатели можно получить, используя специальный прибор – анемометр, а также устройство для считывания его сигналов.

Обратите внимание! Устройство для измерения данных необходимо устанавливать очень высоко, иначе деревья и постройки будут искажать результат.

Принцип действия и строение ветряного генератора

Ветрогенератор – особый вид оборудования, преобразующий кинетическую энергию ветра в механическую. Она приводит в движение лопасти ротора, установленного на генераторе. В результате этого в его обмотках создается переменный ток. Сгенерированная электрическая энергия накапливается в аккумуляторных батареях, откуда подается на бытовые приборы.

Описанная схема работы упрощена. Разумеется, устройство ветрогенератора гораздо сложнее. В энергетической цепочке также присутствует контроллер. Его функция заключается в преобразовании трехфазного переменного тока в постоянный. После чего он поступает на зарядку батарей.

Большая часть бытовой техники не способна питаться от постоянного тока. Поэтому в цепочке за аккумулятором устанавливается инвертор. Он преобразует постоянный ток в переменный, напряжение которого составляет 220В. Все эти операции отбирают часть исходной энергии – примерно 15-20%.

Подпитка здания может осуществляться не только от ветряной электростанции, но и от солнечных батарей, а также от бензинового или дизельного генератора. Если эти элементы присутствуют в цепочке, то схема дополняется еще одним компонентом – автоматическим выключателем. Когда отключается основной источник тока, он запускает резервные.

Ветряная электростанция состоит из следующих компонентов:

  • ротора с лопастями (в зависимости от особенностей модели, лопастей для ветрогенератора может быть несколько, как правило, их 2 или 3, хотя существуют и многолопастные варианты);
  • коробки передач или редуктора, осуществляющего контроль скорости между генератором и ротором;
  • защитного кожуха, ограждающего детали конструкции от негативного влияния внешних факторов;
  • «хвоста», обеспечивающего поворот конструкции вслед за направлением ветра;
  • накопительной батареи, сохраняющей определенный запас энергии;
  • инверторной установки, преобразующей один вид тока в другой.

Какую можно купить ветряную электростанцию: классификация оборудования

Существует несколько классификаций, согласно которым осуществляется разделение ветряных электростанций на группы:

  1. По направлению вращательного движения лопастей – горизонтальные и вертикальные ветряки.
  2. По количеству лопастей – двух-, трех- и многолопастные устройства.
  3. По типу материала, используемого для производства лопастей – конструкции с парусными и жесткими лопастями.
  4. По способу управления – ветряки с фиксированным или регулируемым шагом лопастей.

Полезный совет! В большинстве случаев специалисты рекомендуют владельцам загородного жилья купить ветряк с фиксированным шагом лопасти, поскольку регулируемые устройства слишком сложны в эксплуатации.

Ветряная электростанция с горизонтальной осью размещается перпендикулярно по отношению к потоку воздуха. Конструкция имеет схожее строение и функционирует по тому же принципу, что и обычный флюгер. Ветряки с роторным генератором имеют высокий КПД, при этом они доступны в цене. В основе работы этих устройств лежит сопротивление воздушного потока.

Ветряки с вертикальной осью, или ортогональные ветрогенераторы, имеют компактную конструкцию, однако их цена значительно выше. Благодаря особому строению этот тип оборудования абсолютно независим от направления ветра. Лопасти имеют вид турбин, благодаря чему значительно снижается нагрузка на осевую часть. Купить вертикальный ветрогенератор будет целесообразно в тех случаях, если ветер на участке постоянно меняет свое направление.

Преимущества и недостатки ветряных электростанций для дома

  1. Отсутствие дополнительных затрат, поскольку для работы устройства не требуется топливо.
  2. Нет необходимости в постоянном контроле. Конструкция вырабатывает электроэнергию самостоятельно каждый раз, когда дует ветер.
  3. Относительно бесшумный и полностью экологичный способ добычи электроэнергии.
  4. Устройство может использоваться практически в любых климатических условиях.
  5. Износ деталей минимален.
  • затраты на приобретение оборудования окупаются через 5-6 лет;
  • относительно небольшой показатель КПД, что отражается на мощности;
  • высокая цена ветрогенераторов;
  • чтобы компенсировать бездействие устройства в безветренные дни, требуется дополнительное оборудование: генератор и накопительная батарея (стоимость этих элементов очень высокая);
  • в некоторых режимах ветряки для дома издают инфразвуки (то же самое происходит, если установка оборудования выполнена с ошибками);
  • требуется регулярное проведение профилактических работ;
  • ураган может серьезно повредить оборудование.

Целесообразность покупки: цены ветрогенераторов для частного дома

Стоимость ветряков для частных домов довольно высокая. Затраты на приобретение оборудования окупятся лишь в том случае, если местность располагает подходящими условиями.

Установка ветряной электростанции оправдана в следующих случаях:

  • местность соответствует требованиям оборудования;
  • для региона, в котором находится участок, характерны сильные ветры;
  • отсутствует возможность в использовании других альтернативных источников электрической энергии.

В других случаях затраты на покупку ветрогенератора для дома не окупятся. Если же количество ветреных дней в году невелико, эти устройства можно дополнить солнечными батареями или же генераторами, работающими на дизеле или бензине.

Как повысить рентабельность ветряка для частного дома

Приморские районы, а также открытые площадки в горной местности идеально подходят для установки ветряного оборудования. В этих регионах скорость ветра составляет более 60-70 м/с. Жители этих районов могут полностью отказаться от центральных систем электроснабжения и перейти на ветряные станции. На равнинных территориях потоки ветра более равномерны, однако их силы недостаточно для того, чтобы полноценно обеспечить дом электричеством.

Крайне нежелательно устанавливать оборудование неподалеку от лесов и посадок. Деревья будут задерживать часть энергии, что снизит рентабельность ветряков. Мощность воздушного потока возрастает по мере удаления от земли. Значит, чем выше мачта ветряной станции, тем больший импульс устройство сможет захватить. С другой стороны, излишне высокая конструкция нуждается в дополнительном усилении. Сильным порывам ветра будет проще повалить ее, чем ветряки с мачтой, которая достигает отметки 5-7 м.

  1. Путем бетонирования основы.
  2. Используя металлические растяжки.

Чтобы забетонировать основу ветряка, потребуется выкопать четыре глубоких скважины с небольшим диаметром. В них погружаются растяжки мачты, после чего они заливаются цементным раствором. Этот процесс довольно трудоемкий и затратный, однако он отличается высокой надежностью. Даже при сильных порывах ветра мачта будет оставаться неподвижной. Единственный риск заключается в поломке лопастей.

Фиксация мачты с помощью растяжек предполагает использование металлического троса. Он натягивается до тех пор, пока ветряк не будет располагаться строго перпендикулярно по отношению к поверхности земли. После этого растяжки троса надежно закрепляются в грунте.

Важно! Ветряки с высокими мачтами нуждаются в заземлении.

Какой лучше купить ветрогенератор для дома: производители и стоимость

К выбору ветряной электростанции необходимо подходить основательно. Основными критериями выступают мощность оборудования, тип оси (горизонтальная или вертикальная), а также производитель. Перед покупкой необходимо тщательно изучить технические характеристики и сравнить продукцию разных производителей.

Цены ветрогенераторов российского производства:

ПроизводительЦена, тыс. руб.
Ветроэнергетическая компания30-300
Rkraft65-908
Ветроэнергетика78-130
Сапсан-Энергия149-319
ГРЦ-Вертикаль204-600

Многие из этих организаций занимаются производством оборудования по индивидуальным заказам, а также оказывают помощь в проектировании и выполнении расчетов.

Цены ветряков для дома зарубежного производства значительно выше. Минимальная стоимость установок составляет 120 тыс. руб. Продукция зарубежных компаний отличается высоким уровнем качества благодаря использованию на производстве высокотехнологичного оборудования. Однако ремонт таких установок будет дорогостоящим, а покупка запчастей может сопровождаться сложностями.

Преимущества ветряков заводского производства:

  • возможность приобрести устройство в полной комплектации и даже заказать его профессиональную установку;
  • обширный выбор производителей и модификаций с различными характеристиками;
  • гарантия качества;
  • возможность вызова квалифицированного специалиста для осуществления ремонтных работ.

С учетом высокой стоимости заводского оборудования многие владельцы загородных участков отдают предпочтение конструкциям, изготовленным своими руками. На изготовление самодельного ветрогенератора уходит около 3000-5000 руб. Большая часть этой суммы тратится на покупку качественной аккумуляторной батареи, которая способна на протяжении длительного времени удерживать заряд.

Преимущества изготовленных своими руками ветряных электростанций:

  • существенная экономия денежных средств;
  • при создании самодельного ветряка конструктор будет знать все особенности его строения;
  • возможность изготовить основные детали и лопасти для ветрогенератора своими руками из подручных материалов.

Самодельные конструкции, в отличие от заводских ветряных электростанций, выходят из строя гораздо чаще.

Обратите внимание! Для монтажа заводской конструкции лучше вызвать специалиста. В противном случае любая ошибка, допущенная в процессе установки, станет причиной потери гарантии.

Как изготовить ветряк своими руками: технология и рекомендации

Эксплуатация самодельного устройства на участке может вызвать негодование со стороны соседей. Поэтому перед тем как сделать ветрогенератор своими руками, нужно позаботиться о соблюдении нескольких правил.

На все индивидуальные постройки налагаются ограничения по высоте. Установка ветряка с высотой мачты более 15 м запрещена, если поблизости от него находятся следующие объекты:

  • туннели;
  • мосты;
  • аэропорты.

Ветряная установка не должна создавать эфирных помех. Чтобы предотвратить их появление, рекомендуется использовать специальную защиту. Кроме этого следует контролировать уровень издаваемого лопастями шума и держать его в пределах нормы.

Материалы, необходимые для изготовления вертикального ветрогенератора своими руками

Ветряную электростанцию с вертикальной осью можно использовать для того, чтобы обеспечить электрической энергией различные постройки хозяйственного назначения или небольшой садовый домик. Ее мощности хватит, чтобы подсветить придомовую территорию в темное время суток.

Для создания ветрогенератора своими руками из автомобильного генератора потребуются следующие материалы:

  • аккумуляторная батарея на 12V (кислотная или гелиевая);
  • вместительная емкость цилиндрической формы из алюминия или нержавейки (кастрюля, ведро);
  • генератор автомобильный (12V);
  • вольтметр;
  • полугерметичная кнопка-выключатель (12V);
  • автомобильное реле зарядки аккумуляторной батареи или контрольной лампы заряда;
  • преобразователи (12-220V и 700-1500W);
  • провода с размером сечения 2,5 и 4 мм;
  • хомут для фиксации генератора на мачте (2 шт.).

Для выполнения работы потребуются такие инструменты и приспособления, как:

  • болгарка (можно использовать ножницы по металлу);
  • маркер или строительный карандаш;
  • кусачки и рулетка;
  • дрель с набором сверл;
  • отвертка и набор ключей.

Технология изготовления ветрогенератора из автомобильного генератора

В качестве основы будет использоваться цилиндрическая емкость, например, ведро, старая выварка или кастрюля. Используя карандаш и рулетку, необходимо нанести на нее разметку, чтобы получилось разделение на 4 равные части. Согласно меткам делаются надрезы с помощью болгарки так, чтобы получились вертикальные пластины-лопасти. При этом очень важно не дорезать металл до конца.

Обратите внимание! Если емкость изготовлена из окрашенной жести или стали с оцинковкой, нельзя использовать болгарку для нарезки, иначе металл перегреется. В этом случае желательно использовать ножницы.

В шкиве, а также днище емкости следует выполнить отверстия для болтов. На этом этапе создания ветрогенератора для частного дома своими руками необходимо крайне внимательно и аккуратно отнестись к симметрии. Любые неточности в размещении отверстий приведут к дисбалансу конструкции во время вращения.

Лопасти следует отогнуть, при этом они не должны слишком торчать наружу. Выполняя эту работу, необходимо учитывать направление вращательного движения генератора. Чаще всего ветряк ориентируют по часовой стрелке. От выбранного угла изгиба лопастей будет зависеть вращательная скорость и площадь контакта воздушных потоков с конструкцией.

Далее на шкиве закрепляется емкость с лопастями. Генератор устанавливается на мачту, после чего он фиксируется с помощью хомутов. Останется только соединить все провода и выполнить сборку цепи. Все кабели фиксируются на мачте ветряка. Для подключения накопительной батареи следует использовать провода с размером сечения 4 мм. Для этого достаточно будет отрезка длиной 100 см. Подключение в сеть бытовых и осветительных приборов осуществляется с помощью проводов с размером сечения 2,5 мм. Для инвертора или преобразователя требуется провод с сечением 4 мм.

Как сделать ветрогенератор из стиральной машины

Для создания своими руками ветрогенератора из стиральной машины потребуется список определенных деталей. Часть из них можно снять со старых бытовых приборов, а остальное придется купить.

Конструкция ветряка будет состоять из следующих элементов:

  • редуктора для корректирования вращательной скорости;
  • ротора с лопастями;
  • защитного кожуха;
  • накопительной батареи;
  • хвостовой части;
  • инвертора;
  • мачты для фиксации генератора.

Генератор конструкции изготавливается из электрического двигателя от стиральной машины. Его мощность должна составлять не менее 1,5 кВт.

Кроме этого потребуется:

  • наждачная бумага и клеевой состав;
  • неодимовые магниты по 5 и 12 мм (32 шт.);
  • эпоксидная смола или холодная сварка.

Неодимовые магниты будут устанавливаться на ротор. Их можно приобрести во многих стационарных или интернет-магазинах. С ротора асинхронного мотора необходимо снять сердечники. После этого данные детали частично срезаются. Глубина реза не должна превышать 2 мм. Для этого можно использовать токарный станок. Далее в сердечниках необходимо выполнить пазы, глубина которых равна 5 мм.

На следующем этапе изготовления ветрогенератора для дома своими руками выполняется установка магнитов. Для начала на сердечник монтируется жесткое покрытие. После этого на соответствующие места на равном расстоянии ставятся магниты. Очень важно при этом соблюдать дистанцию, иначе в будущем магниты слипнутся, что негативным образом скажется на мощности ветряной электростанции. Для фиксации этих деталей лучше использовать суперклей. Во время работы желательно надеть защитные очки, поскольку магниты в процессе приклеивания могут отскакивать.

Когда шаблон с магнитами полностью готов, он укладывается на ротор. Образовавшиеся пробелы необходимо заполнить с помощью эпоксидной смолы или холодной сварки. По окончании работы ротор аккуратно зажимается в тисках, а его поверхность обрабатывается наждачной бумагой. Перед запуском ветряка следует проверить все подшипники и болтовые соединения на прочность. Не стоит использовать для сборки конструкции даже частично изношенные детали, лучше купить новые.

Для создания крыльчатки лучше выбрать легкий материал с высоким запасом прочности. Для этих целей подойдет стеклопластик. В результате лопасти получаются легкими и стойкими на износ. Мачту лучше изготавливать из стальных труб. Оптимальный размер диаметра составляет 32 мм.

Со сборкой ветряка может справиться любой человек, имеющий представление о том, как работают электрические цепи. Главное при этом – внимательно относиться ко всем деталям и тщательно проверять все свои действия. Чтобы исключить вероятность ошибок, можно воспользоваться наглядными видеоматериалами, где подробно описывается весь процесс изготовления деталей и их дальнейшей сборки.

Как изготовить ветрогенератор своими руками на 220В (4 кВт): видео

Ни для кого не секрет, что стоимость коммунальных услуг в нашем государстве беспрерывно растет, хотя и предпосылок к этому вроде бы и не наблюдается. Ну а вместе с этим увеличивается число потребителей, кто пытается хоть как то уменьшить эту графу расходов. Кто-то экономит воду, кто-то — газ, но все же наибольшим интересом пользуются альтернативные источники света, такие как солнечная батарея или электрогенератор, использующий для работы ветер.

Конечно, экономия в таких случаях ощущается, но основная проблема заключена в том, что подобные установки стоят недешево, и для того, чтобы ощутить реальную экономию, должен пройти не один год. Ведь сначала установка должна себя окупить.

Именно по причине высокой стоимости начали возникать вопросы о том, как сделать ветрогенератор своими руками. Ведь подобные установки придумал и создал человек, а значит и в домашних условиях появляется возможность его воссоздать. А потому попробуем понять, насколько реально изготовить генератор для ветряка своими руками из подручных средств, нужно ли какое-то дополнительное оборудование для его бесперебойной работы и насколько возможна экономия электроэнергии при использовании подобного прибора для дома, квартиры или дачи.

Возможные ограничения

Главное при установке ветрогенератора — это, естественно, попытки нашего государства даже в этой области получить какую-либо прибыль. Для того, чтобы не сертифицировать изготовленную своими руками установку, т.е. не платить отдельных налогов, стоит собирать маломощный ветрогенератор, который вырабатывает не более 5 кВт. Хотя в домашних условиях самодельное устройство большей мощности изготовить довольно проблематично.

Также следует уточнить наличие нормативных актов и документов по высоте построек в районе установки, чтобы не превысить ее для лучшего ветра.

Стоит также помнить и о соседях — им может помешать шум, который издают лопасти, и редуктор, которыми оснащены самодельные ветрогенераторы. Конечно, шумят подобные установки незначительно, но и зависть никто пока не отменял, а при жалобах возможны штрафы, а также и постановление о демонтаже. Преимущество здесь имеет вариант в заводском исполнении, т.к. он малошумный, но ввиду его высокой стоимости подобное устройство сейчас не рассматривается.

Также не стоит забывать о защите от радиопомех — при самостоятельном изготовлении ветряка необходимо предусмотреть установку фильтра. Ну а при приобретении подобного прибора — уточнить его наличие в схеме.

Устройство ветрогенератора

Вне зависимости от типа подобного устройства, изготовленного своими руками на 220 вольт, составляющие его части будут одни и те же. Любые ветровые генераторы состоят из непосредственно самого вырабатывающего электричество устройства, лопастей, батареи, мачты и электронного блока — инвертора.

В любом случае, первое, с чего начинается изготовление подобного устройства — это выбор типа, электрическая схема и проект внешнего вида. По типу ветрогенераторы разделяются на парусные и лопастные, или горизонтальные и вертикальные. Для средних широт, где нет резких порывов ветра, а так же в установках, мощностью до 5 кВт, наилучшим вариантом станет такой ветряной генератор, как «парусник», а потому в нем и попробуем разобраться подробнее.

Сама суть работы подобных устройств такова: лопасти, вращаясь при помощи силы ветра, передают крутящий момент напрямую или через редуктор на ротор генератора, в результате чего вырабатывается электроэнергия, которая через электронный блок поступает в батарею. В аккумуляторе энергия накапливается и в последующем может быть использована для бытовых нужд.

Попробуем разобраться, какие виды ветрогенераторов возможно изготовить в домашних условиях и что для этого понадобится.

Роторная установка

Подобный ветряной генератор, сделанный своими руками, способен вырабатывать количество электроэнергии, достаточной для освещения небольшого садового домика, хозяйственных построек, а также нескольких фонарей на дворовой территории. Изготавливаются такие ветряки из автомобильного генератора или стартера, а потому, чтобы не приобретать дорогостоящее оборудование для его изготовления, рассмотрим устройство, которое будет вырабатывать до полутора киловатт. Для этого будет необходимо наличие следующих материалов:

  • автомобильного генератора на 12 вольт;
  • гелиевого или кислотного аккумулятора (нужен также 12-вольтовый);
  • герметичного выключателя;
  • преобразователя напряжения с 12 на 220 В и 700–1500 ватт;
  • большой емкости из нержавейки или алюминия для изготовления лопастей. Также может подойти и пластиковая труба диаметром в 20–25 см;
  • реле зарядки аккумулятора с вольтметром;
  • крепежной фурнитуры, т.е. болтов и гаек;
  • проводов, имеющих сечение 4 и 2,5 кв. мм;
  • двух хомутов для крепления на мачте устройства;
  • металлической трубы достаточной длины для использования ее в качестве мачты;
  • ну и, естественно, различного инструмента: ножниц по металлу, болгарки, ключей, отверток и дрели с набором сверел.

Алгоритм работы по изготовлению

Первым делом необходимо сделать лопасти вентилятора будущего ветрогенератора для частного дома своими руками. Для этого хорошо подойдет старая большая алюминиевая кастрюля, но тут возможны варианты. Карандашом необходимо разметить, а после разрезать емкость по размеченным линиям при помощи болгарки или ножниц по металлу, оставляя непрорезанными небольшие отрезки сверху и снизу, т.е. так, как показано на рисунке. Лопасти должны получиться одинаковыми, а их количество зависит только от предпочтений мастера.

Вырезанные лопасти выгибаются в нужную сторону. Нужно помнить о том, что от того, в какую сторону вывернуты лопасти, зависит направление вращения, а от угла их поворота и размера — скорость, с которой винт будет вращать генератор. Вырезать их удобнее болгаркой, но если металл тонкий, вполне подойдут и ножницы по металлу.

Немного сложнее обстоит дело с пластиковой трубой. Ее необходимо разделить вдоль на четыре части, после чего на каждую из полукруглых отрезков изготовить «заглушки сверху и снизу, а после скомпоновать в один винт, чтобы получилось подобие первого варианта.

Далее при помощи дрели делаются крепежные отверстия в валу генератора и готовом пропеллере, после чего лопасти при помощи болтов фиксируются на вал ротора. Можно произвести подобную работу и при помощи редуктора, увеличив скорость вращения генератора, — это уже на усмотрение самого мастера.

После произведенной работы остается только закрепить ветрогенератор при помощи хомутов на мачту и протянуть вдоль нее провода.

Сборка оборудования на земле

Т.к. оптимальная длина мачты ветроэлектростанции составляет 5–13 метров, основание ее необходимо залить бетоном для хорошей устойчивости. Также имеет смысл продумать и варианты, как опустить вниз ветряной генератор для дома или добраться до него в случае поломки.

Провода, идущие от самого ветрогенератора, подключаются через реле зарядки на аккумулятор. Далее в схеме идет преобразователь, от которого напряжение в 220 вольт уже будет поступать в распределительный щит.

Все оборудование должно быть защищено от попадания атмосферных осадков и прямого доступа детей. Выключатель устанавливается на мачте, на доступной высоте, и разрывает плюсовой провод от ветрогенератора на реле зарядки. Тем самым, при ненужности либо слабом ветре можно снять нагрузку, позволив лопастям вращаться «вхолостую».

Очень важно отключать нагрузку при слишком сильном ветре, который может вывести из строя как сам генератор, так и реле зарядки аккумулятора.

Но существует и более мощный вариант изготовления ветрогенератора своими руками в домашних условиях. Конечно, он немного сложнее, но, все же, соблюдая правила и порядок работы, сделать подобное устройство вполне реально.

Аксиальный ветрогенератор

Подобное устройство (можно даже сказать — ветряная электростанция своими руками) изготавливается на основе не так давно появившихся на нашем рынке неодимовых магнитов. Именно за их счет и достигается более высокая мощность генератора. Если брать подобную установку на обычных, ферритовых магнитах, то больше полутора киловатт из нее получить не удастся. Некоторое время назад, когда неодимовые элементы только появились на прилавках, цена на них была довольно высока, но сейчас уже наблюдается снижение стоимости, а потому подобные магниты стали более доступными.

Итак, для того, чтобы изготовить аксиальный ветровой генератор для дома своими руками, понадобится наличие ступицы с тормозным диском от автомобиля. Причем износ ее тут не важен, а потому подобную деталь можно всегда найти в любом автосервисе. Ее будет нужно тщательно почистить, промазать подшипники, в общем, привести в хорошее рабочее стояние. Оптимальным количеством магнитов будет 20 шт., с размерами 25 х 8 мм. Приклеены они будут к внутренней части тормозного диска.

Разметив диск на секторы, следует клеить магниты, чередуя их полюсы — это очень важно. Для более крепкого соединения рекомендуется использование эпоксидного клея. Ну а после того, как клей высох, той же эпоксидной смолой все магниты заливаются, а чтобы клей не стекал, можно сделать небольшой бортик по кругу диска из пластилина.

Намотка катушек

Общеизвестно, что перед тем, как приступить к намотке, нужно рассчитать необходимое количество витков катушки. Исходя из того, что ветрогенератор должен работать на небольшой скорости, необходима зарядка аккумулятора уже на 100–150 оборотах в минуту. Следовательно, общее количество витков во всех катушках обмотки должно быть 1200–1500, большее количество ни к чему. Ну а рассчитать количество витков одной катушки очень просто. При 20 катушках и общем количестве витков в 1400, одна должна содержать 70 витков.

Чем больше количество катушек, тем большей мощности можно добиться на малых оборотах. При этом, чем больше сечение провода при намотке, тем меньше сопротивление, а значит и больше сила тока.

Конечно, наилучшим вариантом будет использование специального станка для намотки катушек, но если его нет, вполне возможно выполнение подобной работы и вручную.

Для проверки выдаваемой мощности вполне хватит одной обмотки. При прокрутке в генераторе уже можно будет замерить параметры будущего устройства.

Сам статор можно изготовить из фанеры, укрепив ее, для надежности, стеклотканью и эпоксидной смолой. А вот соединение катушек производится по одной из двух схем, на выбор мастера. Это может быть либо «треугольник», либо «звезда». Далее катушки фиксируются, а провода выводятся наружу. Для проверки работоспособности ветрогенератор для частного дома прокручивают вручную при стабильных оборотах и снимают с выведенных проводов показания напряжения.

Мачта и винт пропеллера

Что касается мачты — здесь нет никаких отличий от изготовления роторного ветрогенератора. Требования к ней предъявляются те же самые. А вот лопасти винта для подобной установки изготавливаются по-другому. Для этого используется поливинилхлоридная труба на 16 мм. Форма же лопастей является экспериментальной, т.е. каждый сам определяет оптимальную, как говорится, методом проб и ошибок.

При этом длина лопасти на ветряк своими руками должна быть не менее метра, для возможности прокрутки генератора, причем необходимо так же и сбалансировать готовый винт для устранения шума, биения и порчи подшипников в процессе эксплуатации.

Немного поразмыслив, можно сконструировать лопасти ветрогенератора так, чтобы при очень сильном ветре их можно было сложить, а после разложить. Это спасет от выхода из строя устройства в случае штормовых предупреждений и резких порывов.

Монтаж оборудования на земле производится аналогично предыдущему варианту роторного ветрогенератора.

Обслуживание

Конечно, воздушный генератор, как и любое другое оборудование, требует внимания, периодических ревизий и, естественно, иногда ремонта. Основное, что необходимо постоянно проверять, чистить и промазывать специальной графитовой смазкой — это щетки генератора, т.к. они имеют обыкновение стираться в процессе эксплуатации.

При малейшем подозрении на разбалансировку, вибрацию, ослабление винтовых креплений и соединений генератор необходимо опустить на землю и отрегулировать или отремонтировать.

Примерно раз в 2–3 года необходимо красить устройство. И лучше, если краска будет специальной, т.е. антикоррозийной. Также необходима и регулярная проверка натяжения и крепления удерживающих тросов.

Вывод

Некоторые могут сказать, что не настолько высока цена электроэнергии, чтобы проделывать такую работу, изготавливая самодельные ветряки. К тому же, еще и на инвертор и т.п. придется потратиться. Но если вдуматься, то при качественно выполненной работе электроэнергии хватит не только на отопление дома, но и на постройки, отопление сарая с животными зимой. В общем, при правильном подходе к изготовлению такой самоделки, т.е. ветрогенератора, и расходу электроэнергии можно полностью отказаться от платного электричества, а это неплохая экономия.

Мастерим своими руками: домашний электрогенератор. Самодельный генератор

Cамодельный генератор для ветряка | Сам Себе Строитель

самодельный генератор

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно. Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

схема генератора для ветряка

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Вам будет интересно  Вертикальный ветрогенератор своими руками. Самодельный вертикальный ветрогенератор: схема

Cамодельный генератор для ветряка

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

схема однофазного и трёхфазного генератора аксиального типа

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

генератор для ветряка

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Самодельный генератор: изготовление ротора

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.

Генератор для ветряка видео.

Самодельный генератор для ветряка на 2,5 кВт видео.

Популярные самоделки из этой рубрики

Самодельный ветрогенератор из генератора от тракто.

Мачта для ветрогенератора

Как сделать лопасти для ветрогенератора.

Как сделать ветрогенератор: фото, видео.

Как сделать вертикальный ветрогенератор.

Бензогенератор своими руками.

Солнечный коллектор из бутылок.

Солнечный коллектор из банок: чертежи, фото.

Как самому сделать солнечную батарею.

Тепловая мини электростанция: генератор на элемент.

Схема подключения ветрогенератора.

трехфазный генератор переменного тока своими руками

Не все существующие электросети (в особенности действующие в удалённых от городов регионах) могут обеспечить потребителя полноценным питанием, подходящим для работы современного бытового оборудования. В связи с низким качеством поступающего с подстанций напряжения и его частыми отключениями многие пользователи вынуждены задумываться о том, чтобы изготовить самодельный генератор электроэнергии. С тем, как выглядит такой асинхронный генератор внешне, можно ознакомиться на рис. ниже.

Общий вид самодельного генераторного устройства

Общий вид самодельного генераторного устройства

Указанный подход к решению проблемы электропитания за городом позволяет существенно сэкономить в сравнении с ситуацией, когда генераторное оборудование приобретается через торговую сеть в готовом виде.

Эффект обратимости

Известно, что принцип работы любого генерирующего электрический ток устройства основан на преобразовании одной формы энергии (тепла, например) в необходимый для электропитания оборудования вид. Можно воспользоваться так называемыми альтернативными (их ещё называют возобновляемыми) источниками энергоснабжения, однако указанный способ связан с ещё большими материальными и производственными издержками.

Гораздо проще и экономнее сделать самодельный генератор тока, воспользовавшись потенциальными возможностями имеющегося в распоряжении пользователя старого асинхронного электродвигателя.

Основанием для такого изготовления является известный в электротехнике принцип обратимости процессов взаимодействия электромагнитных полей, что объясняется спецификой происходящих при этом электрических процессов. Если в двигателе трёхфазную энергию тока используют для превращения её в механическое вращение вала, то в генераторе всё происходит строго наоборот. В этих агрегатах принудительное вращение якоря трансформируется в текущий по фазным обмоткам электрический ток, мощность которого расходуется на обслуживание потребителя (смотрите рисунок ниже).

Принцип работы генератора

Принцип работы генератора

Таким образом, перед тем, как сделать образец самодельного электрогенератора из бывшего в употреблении асинхронного двигателя в самом общем случае необходимо проделать следующие манипуляции:

  • Клеммы, на которые подаётся трёхфазное (или однофазное – для коллекторных образцов изделий) напряжение нужно превратить в выходные контакты генератора;
  • К подвижной части генератора, от которой работал тот или иной механизм (станок, например) следует приспособить привод от внешнего источника механического вращательного импульса;

Дополнительная информация. В качестве такого источника может применяться любой подходящий для конкретных условий движитель, вращающийся под воздействием энергии сгорающего топлива (бензина, газа или солярки). При наличии в частном хозяйстве ветряка или самодельной водяной мельницы решение вопроса с приводом существенно упрощается.

  • Из-за дороговизны бензина в условиях загородного хозяйства единственно приемлемым вариантом является изготовление небольшой электростанции, работающей от дизельного движка или на газу.

В этом случае работающий на сравнительно дешёвом топливе двигатель через специальную приводную муфту подсоединяется к валу сооружаемой конструкции, которая после небольшой доработки превращается в генератор переменного тока.

Выбор конструкции

Изготовить генератор из асинхронного двигателя можно вполне успешно, если внимательно изучить конструкцию и устройство каждого из указанных механизмов. Рассмотрим сначала типовой асинхронный двигатель, работающий по принципу скольжения ротора в отстающем по фазе электромагнитном поле статора. Неподвижная часть этого агрегата (статор) оборудуется, как известно, тремя катушками, смещёнными относительно друг друга в пространстве на 120 геометрических градусов.

За счёт взаимодействия подвижного и неподвижного поля в статорных катушках наводится переменное напряжение, представленное последовательностью трёх рабочих фаз (А, В и С).

Более простой вариант изготовления синхронной машины (генератора) предполагает применение б/у коллекторного однофазного двигателя, имеющего в своём составе устройство смещения фазы на конденсаторе фиксированной ёмкости.

Изготовление однофазной системы существенно упрощает конструкцию будущего генератора, но мощность такого изделия сравнительно невелика. Это обстоятельство не позволяет использовать его для питания некоторых образцов однофазных силовых агрегатов (скважинного насоса, например).

Обратите внимание! Однофазного устройства, собранного на базе коллекторного движка, по мощности может хватить разве что на энергоснабжение домашней осветительной сети.

В случаях, когда возникает необходимость в подключении к питающей линии более мощного силового оборудования, единственно правильное решение – изготовить генератор из асинхронного механизма (рисунок ниже).

Асинхронный двигатель

Рассмотрим, как можно переделать этот механизм в трехфазный генератор, более подробно.

Порядок доработки обмоток

Прежде чем сделать генератор из асинхронного двигателя, следует разобраться с его статорными катушками, соединёнными между собой и включаемыми в питающую линию по определённой схеме.

Дополнительная информация. Для классического подключения асинхронных механизмов используются два типа включения статорных обмоток: по так называемой схеме «звезда» или «в треугольник».

В первом случае все три линейных катушки (А, В и С) с одной стороны объединяются в общий нулевой провод, в то время как вторые их концы подключаются к трём фазным линиям. При включении «треугольником» конец одной катушки соединяется с началом второй, а её конец, в свою очередь, – с началом третьей обмотки и так далее вплоть до замыкания цепочки.

В результате такого подключения образуется правильная геометрическая фигура, вершины которой соответствуют трём фазным проводам, а нулевой провод вообще отсутствует.

Из соображений простоты монтажа и безопасности эксплуатации в бытовых схемах обычно выбирается подключение типа «звезда», обеспечивающее возможность организации местного (повторного) защитного заземления.

При доработке двигателя следует снять крышку распределительной коробки и получить доступ к клеммам, на которые в нормальных условиях поступает трёхфазное питающее напряжение. В генераторном режиме к этим контактам следует подсоединить питающую линию с подключёнными к ней бытовыми трёхфазными потребителями.

Для организации однофазного питания (розеточных линий и цепей освещения, в частности) их нужно будет подключить одним концом к выбранному фазному контакту А, В или С, а другим – к общему нулевому проводу. Порядок подсоединения проводов к асинхронному двигателю приводится на следующем рисунке.

Схема разводки на распредкоробке

Схема разводки на распредкоробке

Важно! В случае нескольких линейных (однофазных) нагрузок необходимо распределить их по фазам таким образом, чтобы те были загружены более-менее равномерно.

Таким образом, генератор своими руками, собранный из трёхфазного двигателя, будет нагружен на все питающие цепи, а конечные потребители получат полагающиеся им нормативные мощности.

Организация приводной части

В бытовых условиях в качестве механического привода, как правило, используются типовые бензогенераторы, с которых момент вращения передаётся непосредственно на рабочий вал. Основная проблема при таком подключении – организация надёжного муфтового сцепления, полностью передающего крутящий момент на ось якоря генератора (в данной ситуации его функцию выполняет ротор двигателя).

При её обустройстве самый оптимальный вариант – это обратиться за помощью к профессиональным механикам, которые помогут организовать муфтовое соединение требуемого качества и надёжности.

Обратите внимание! Ротор переделываемого механизма напоминает по своей конструкции обмотку статора с тремя сдвинутыми на 120 градусов обмотками (он называется в этом случае фазным).

Ротор фазного типа

Ротор фазного типа

Линейные выводы каждой из обмоток соединяются со съёмными контактными кольцами, посредством которых на механизм двигателя через графитовые щётки подавалось запускающее напряжение. Если оставить всё как было, получается очень непростая в изготовлении и обслуживании конструкция, использовать которую в составе будущего генератора не имеет смысла.

Для удобства переделки лучше всего воспользоваться схемой короткозамкнутой подвижной части, которая может быть получена путём закорачивания рабочих выводов каждой из катушек фазного ротора.

Генератор на постоянных магнитах

Известен ещё один способ обустройства бытовых генераторов, состоящий в использовании при изготовлении мощных постоянных магнитов и ряда дополнительных приспособлений (в некоторых средствах массовой информации их ещё называют «вечными»).

Принцип работы такого источника энергии на магнитах состоит во взаимодействии эм полей, создаваемых постоянными магнитными заготовками, жёстко закреплёнными на статорной и роторной части устройства (смотрите рисунок ниже).

Генератор на магнитах

Генератор на магнитах

Основное преимущество таких двигателей, выполняющих функцию генератора, – отсутствие потребности в источнике внешней энергии или в топливе. Однако и в данном случае не обходится без недостатков, проявляющихся, в первую очередь, в том, что сильные магнитные поля могут негативно сказываться на здоровье обслуживающего персонала.

С учётом этого недостатка во всех остальных ситуациях такой электромотор широко применяется в различных приводных узлах, нередко устанавливаемых на промышленном оборудовании. В качестве примера может быть приведён известный среди специалистов генератор, под обозначением «г 303».

В заключение обзора самодельных генераторов следует заметить, что для переделки их из асинхронных двигателей может потребоваться целый комплект специального съёмного инструмента, по своему составу напоминающий автомобильное оборудование.

Видео

Самодельный генератор на неодимовых магнитах

Неодимовые магниты позволяют создавать мощные источники энергии с высоким КПД, которые можно приводить в действие мускульной силой, ветром, водой и другими средствами. В этой статье рассмотрим трехфазный самодельный генератор на неодимовых магнитах. Приобрести их можно в китайском интернет-магазине. Этим устройством можно заряжать АКБ автомобиля, переносные телевизоры, ноутбуки и другие энергетически «прожорливые» устройства. Если нет желания или времени делать генератор вручную, то можно взять и готовый электрогенератор в интернет-магазине.

Генератор на неодимовых магнитах

Генератор на неодимовых магнитах

Генератор имеет ручной привод, но можно поменять его на другой, например на привод от ветроустановки. Ручной привод имеет повышающую передачу один к восьми. При использовании его нужно жестко крепить с столу, это позволит интенсивно его вращать и извлечь до 100 ватт электроэнергии. По сравнению с генератором на моторе, аппарат имеет значительно более высокий КПД преобразования механической энергии в электрическую и заряжать с его помощью можно не только мобильники, но и ноутбуки. Напряжение, которое он выдает при ручном вращении 12 вольт, ток 2 ампера.Устройство генератора. Примерно с 16-й минуты на ролике показано устройство генератора на неодимовых магнитах.

Механизм привода использован от настольного точильного аппарата. Для соединения его с генератором сделана переходная втулка. Важно, чтобы при соединении этих частей была соблюдена соосность.Собственно генератор собран на основе мощных неодимовых магнитов, размером 15 мм в диаметре, 5 мм толщиной. Рабочая часть находится на стойках, которые устанавливаются на основание и крепятся на болты. Для уменьшения трения внутри отверстий стоек встроены маленькие подшипники.

Ротор

Ротор состоит из оси, на которую установлены 2 диска с магнитами. Магниты стоят на диске поочередно, они крепятся без использования клея, а держатся на железном диске силой магнитного притяжения. На каждом диске стоят по 12 магнитиков.Для обеспечения точности установки магнитов, сделана пластиковая обойма с высверленными выемками для магнитов.Статор состоит из 9 катушек, по 3 катушки на каждую фазу. В приведенной модели медный провод 0,4 -0,5 мм. Автор данного устройства (Игорь Белецкий рекомендует оптимальную толщину 0,5 мм). Тонкий провод повысит напряжение, но снизит ток. Толстый провод повысит ток, понизит напряжение.

Статор

Количество витков от 100 до 200. От количества витков также зависит напряжение и ток. Чем больше витков, тем больше напряжение, но тем меньше ток. Схема соединения катушек использована стандартная, в интернете ее можно найти. В данной конструкции классическое соединение «звезда». На выходе диодный мостик для выпрямления тока.При сборке генератора очень важно, чтобы магниты попадали строго в центры катушек.Такое устройство можно использовать в генераторах на основе мотора Стирлинга.

видео + инструкция » SanDizain.ru

электрогенератор своими рукамиВ загородных домах и на дачных участках зачастую отсутствует стационарное электричество, поэтому немалой популярностью пользуются электрогенераторы. Поскольку электрогенератор – далеко недешевое удовольствие, многие умельцы пытаются своими руками смастерить это устройство. Но для того чтобы оно полноценно справлялось с возложенной на него задачей – обеспечением дома электроэнергией, необходимо четко понимать схему устройства прибора. Вашему вниманию инструкция по созданию электрогенератора своими руками в домашних условиях (прилагается видео инструкция).

Электрогенератор: сферы применения, принцип действия

Сегодня речь пойдет об асинхронном электрогенераторе, поскольку он обладает рядом достоинств, отличающих его от классического синхронного. Самым главным из них является низкий клирфактор. Дело в том, что синхронные генераторы отличаются довольно высоким клирфактором, который характеризуется большим количеством высоких гармоник в выходном напряжении. Это, в свою очередь, приводит к ненужному нагреву устройства и неравномерному вращению мотора.

Асинхронный электрогенератор, сделанный своими руками, вполне подходит для использования в дачном хозяйстве, но, если говорить о промышленном применении подобных устройств, то их используют для добычи энергии на ветровых станциях, в качестве сварочных агрегатов или автономного средства поддержки электричества в доме наряду со стационарной ТЭС.

электрогенератор своими руками

Принцип действия устройства достаточно прост, если не рассматривать каждый происходящий внутри него процесс отдельно. Работа генератора происходит за счет явления магнитной индукции. Проводник проходит через электрополе (созданное искусственно) и создает при этом импульс, преобразующийся в постоянный ток.

Внутри генератора расположен мотор, который вырабатывает электричество по следующей схеме: в камерах сжигания двигателя сжигается топливо, при этом выделяется газ, приводящий в движение коленчатый вал. Тот, в свою очередь, передает импульс ведомому валу, на выходе дающему определенное количество энергии.

Процесс сборки генератора своими руками

Собрать асинхронный электрогенератор, в принципе, не составляет труда, если подойти к процессу со всей ответственностью. Для начала необходимо собрать все конструктивные элементы, которые понадобятся для сборки устройства:

  • Двигатель. Этот генераторный элемент можно изготовить самостоятельно, но процесс настолько длителен и кропотлив, что легче использовать бывший в употреблении мотор из какого-нибудь старого бытового прибора (оптимально подойдет стиральная машина или дренажный насос).
  • Статор. Лучше купить полностью собранный статор (уже с обмоткой).
  • Электропровода, в дополнении к которым также понадобится изолента.
  • Трансформатор. Необязательный элемент, который необходим лишь в том случае, когда энергия на выходе имеет разную мощность.

Бывший в употреблении мотор

Перед тем как осуществлять сборку, вычисляем мощность будущего генератора. Для этого необходимо лишь подключить двигатель к сети и тахометром определить скорость его вращения. К полученной величине прибавляем 10% (компенсаторная величина, которая предотвратит перегрев устройства).

Совет. Так как генератор непосредственно связан с производством электричества, необходимо обязательно заземлить его. Отсутствие такового может привести не только к быстрому износу устройства, но и к его превращению в устройство опасное для жизни.

Вычислив мощность, подбираем подходящие конденсаторы и подключаем их в определенной последовательности по одной из схем, которые можно найти в свободном доступе в интернете.

Создавая электрогенератор в домашних условиях, будьте готовы к тому, что он (в большинстве случаев) не сможет конкурировать с заводскими моделями по производительности. Пытаться воплощать идею в жизнь стоит лишь в тех случаях, когда:

  • имеются соответствующие навыки и знания в области электроники и механики;
  • уже были успешные попытки создания подобных устройств;
  • на руках имеется все необходимое оборудование и приборы для точных вычислений;
  • есть опыт в чтении электросхем, а также умение осуществлять расчеты при конструировании электроприборов.

Достоинства и недостатки самодельных генераторов, советы по эксплуатации

Самодельные генераторы, безусловно, обладают определенными достоинствами, среди которых можно отметить экономию средств и возможность создания устройства, полностью отвечающего предъявляемым требованиям.

электрогенератор своими руками

Самодельный генератор не будет таким мощным как покупной

Но есть у подобных устройств и свои недостатки:

  • большая вероятность частых поломок ввиду отсутствия герметичных креплений между конструктивными элементами устройства;
  • возможная неточность в вычислениях мощности прибора, что приведет в процессе эксплуатации устройства к его невысокой продуктивности;
  • для создания эффективного и надежного устройства нужны определенные знания и навыки.

Совет. Для повышения защиты устройства от воздействия внешних факторов (что, в свою очередь, позволит сохранить его продуктивность на протяжении длительного периода) желательно соорудить для него специальный защитный кожух.

И напоследок несколько полезных советов относительно грамотной эксплуатации асинхронного генератора. Во-первых, лучше оборудовать генераторное устройство кнопкой «вкл./выкл.» (по возможности). Во-вторых, периодически следует контролировать температуру прибора для предотвращения его перегрева. В-третьих, поскольку создаваемое устройство не имеет автоматических элементов, во время его эксплуатации необходимо будет периодически использовать тахометр, вольтметр и амперметр.

Как вы могли убедиться, в принципе, создать генератор в домашних условиях не так уж и сложно, особенно, если в наличии есть его основные конструктивные элементы. Вопрос в целесообразности таких устройств. С финансовой точки зрения это может быть выгодно лишь в одном случае: если у вас есть под рукой бывший в употреблении рабочий двигатель. В любом случае попробовать стоит. Удачи!

Генератор своими руками: видео

САМОДЕЛЬНЫЙ ВЫСОКОВОЛЬТНЫЙ ГЕНЕРАТОР

В интернете есть немало схем для получения высокого напряжения в домашних условиях — на строчниках, на MOTах с микроволновки, катушки Тесла и прочее. Однако самым простейший способ — на основе трансформатора строчной развертки телевизора и транзистора. Трансформатор можно выдрать со старого лампового ч/б телевизора.

САМОДЕЛЬНЫЙ ВЫСОВОЛЬТНЫЙ ГЕНЕРАТОР - схема

Была найдена простейшая схема — строчник, мощный биполярный транзистор, 2 резистора. Это блокинг-генератор собранный на транзисторе. Он практически не нуждается в наладке — должно все сразу заработать.

САМОДЕЛЬНЫЙ ВЫСОВОЛЬТНЫЙ ГЕНЕРАТОР

Приступаем к созданию самодельного генератора высокого напряжения. Аккуратно разобрав строчник — удаляю панель кенотрона, первичные обмотки, откусив кусачками от контактной группы:

САМОДЕЛЬНЫЙ ВЫСОВОЛЬТНЫЙ ГЕНЕРАТОР - разбираем строчный трансформатор

Оставляю вторичную высоковольтную обмотку, состоящую из множества витков тонкой проволоки, ферритовый сердечник, корпус, контактную группу. Наматываю свои обмотки эмалированной медной проволокой на корпус контактной группы: Первая: 7 витков примерно 1 мм диаметром. Вторая: 3 витка примерно 1.5 мм.

САМОДЕЛЬНЫЙ ВЫСОВОЛЬТНЫЙ ГЕНЕРАТОР - строчник

Обмотки мотал в одну сторону — концы припаял к контактной группе. Сверху зафиксировал и заизолировал изолентой. Собираю строчник в обратном порядке. Вообще, толщина и количество витков можно варьироваться. Что было под рукой — то и сделал. Длина разряда, в общей сложности, около 3 сантиметров.

ионизируется аргон, которым лампочка заполнена

Провел множество экспериментов и обнаружил много интересных вещей: Один провод заземлен на батарею, второй подключен к обычной лампочке. Внутри ионизируется аргон, которым она заполнена, создавая красивые эффекты. Также ее можно брать руками — ионизация еще сильнее.

источник высокого напряжения своими рками

Разряд можно поймать на металлический предмет, держа его в руке. Т.к. частота генератора высокая — возникает скин-эффект, т.е. ток проходит по поверхности кожи, не задевая нервных окончаний, соответственно не должно возникать болевых ощущений. Напрямую ловить разряд на кожу нельзя — можно получить ожог. Недолго думая, взял пинцет в руку и сунул его к свободному электроду генератора. Второй заземлен на батарею. Появился разряд и сильная боль в руке: получил довольно мощный удар током. Эксперимент повторять не стал — очень неприятно. Замерил потребляемый «ток холостого хода» — без разряда, около 2 А при напряжении 12 В. Это около 25 Ватт потребляемой мощности. При наличии разряда — потребление изменяется незначительно.

Поделитесь полезными схемами

МЯГКИЙ ПУСК Схема устройства так называемого «мягкого старта» — токоограничение потребителя при первых секундах включения в сеть 220В.

Самодельный генератор для небольшого ветряка

Постоянные магниты, а в особенности неодимовые, таят в себе огромное количество энергии. Это, конечно, не вечный двигатель, так как со временем любой магнит размагничивается, но срок его работы может составлять десятки лет. К примеру, одного килограмма таких «инструментов» хватит для того, чтобы пожизненно обеспечить электропитанием ваш компьютер. Далее в статье рассмотрено, как можно сделать самодельный генератор с помощью таких магнитов. Готовая модель будет выдавать ток силой в 1 ампер на аккумулятор 12 В.

Детали и материалы, которые будут нужны для сборки:

  1. Неодимовые магниты (2*5 мм) – 24 шт.
  2. Ступица от колеса мотоблока.
  3. Стальной диск (диаметр 105 мм, толщина 5 мм) – 2 шт.
  4. Распорная втулка (15 мм).
  5. Вал.
  6. Эпоксидная смола.
  7. Эмальпроволока для катушек (0,5 мм).
  8. Фанера 8 и 4 мм.
  9. Подшипники – 2 шт.

Очень хорошо подойдет такой самодельный генератор для ветряка не слишком больших размеров. Ветряк – достаточно полезное на даче или в личном доме устройство. С его помощью можно экономить на электроэнергии.

самодельный генераторНа диски наклеиваются магниты с чередованием полярности. На каждый диск по 12 шт. Затем они примерно до половины заливаются эпоксидкой. Таким образом изготавливаются части ротора, которые затем будут надеты на вал.

Для того чтоб сделать статор, на самодельный генератор необходимо сначала намотать 12 катушек из эмальпроволоки. Ее можно взять, к примеру, из кинескопа старого сломанного телевизора. На каждую катушку должно приходиться по 60 витков проволоки. Затем катушки нужно распаять друг с другом последовательно (начало с началом, конец с концом). В результате получится одна фаза.

самодельный генератор на постоянных магнитахТеперь из фанеры изготавливается форма для заливки. В листе фанеры 8 мм выпиливается круглое отверстие. Затем проделывают два «бублика» разных диаметров. Больший по диаметру (8 мм) должен совпадать с отверстием в первом листе (8 мм). Он вставляется в это отверстие, а меньший «бублик» (4 мм) накладывается на него. По периметру большего располагаются катушки. Затем все это заливается эпоксидной смолой. На следующий день нижний толстый фанерный лист и меньший «бублик» убирают. В результате получается красивый прозрачный статор на самодельный генератор из застывшей эпоксидки и 12-ти катушек внутри нее.

Затем нужно вставить подшипники в ступицу, а в них — вал со шпонкой. Далее на вал надевается первый диск ротора, а затем распорная втулка (15 мм). Затем к ступице 3 болтами крепится статор, а после второй диск ротора, который должен упираться в распорную втулку. Второй диск крепится таким образом, чтобы его магниты, противоположные магнитам первого, имели разную полярность.

самодельный генератор для ветрякаЗазоры между ними и статором можно отрегулировать медными болтами с гайками, расположив их по обе стороны ступицы. Заканчивают собирать самодельный генератор на постоянных магнитах установкой на выступающую часть вала пропеллера ветряка. Он прижимается гайкой к ротору. Для этого нужно использовать гровер. Ротор и статор можно прикрыть сверху крышкой-козырьком. Самый простой способ его сделать – отпилить дно кастрюльки с частью стенок.

Рассмотренный генератор не слишком мощный. Используя эту достаточно простую технологию, можно сделать самодельный генератор, который отлично подойдет для очень небольшого ветряка. Для более серьезных сооружений нужен более мощный генератор.

Самодельный генератор, самодельный генератор для ветряка

Ветряк своими руками, генератор для ветряка своими руками

Данная статья является вольным переводом информации взятой из двух источников, со странички «Mini-Gen» и pdf-файла инструкции оттуда же. Внешний вид получившегося генератора показан на рисунке ниже.

Самодельный генератор для ветряка

Он представляет собой однофазный генератор с магнитной системой с «когтеобразными» полюсами, типа таких, которые применяются в автомобильных генераторах. Но в отличие от последних «когти» располагаются не радиально, а аксиально.

Ветрогенератор,ветряк своими руками,Самодельный генератор для ветряка,энергия ветра, ветрогенератор своими руками,генератор для ветряка своими руками,экоток.ветрогенератор,ветряк своими руками,Самодельный генератор для ветряка,энергия ветра, ветрогенератор своими руками,генератор для ветряка своими руками

Магнитное поле создаётся с помощью восьми постоянных неодимовых магнитов размера N42, закреплённых на вращающемся роторе. При вращении ротора, благодаря «когтям» происходит изменение магнитного поля в катушке, и на её выходе появляется переменное напряжение.

Генератор легко зажигает дюжину белых мощных светодиодов даже при вращении рукой. Он может быть соединён с ветряками как роторного типа, так и с пропеллером. Выходное напряжение может быть более 12В при вращении рукой, при токе около 0.2. 0.3А. Конструкция генератора очень проста. Все его детали показаны на рисунке ниже.

Самодельный генератор для ветряка

Самодельный генератор для ветряка

Ниже дана инструкция как собирать данный генератор из набора, который автор отсылает покупателям. В России далеко не каждый может купить данный комплект для сборки, но это не повод отказываться от повторения этой модели, т.к. детали достаточно простые и их можно легко изготовить в домашних условиях.

Начинают сборку с катушки, подсоединяя выходной провод к обмотке. Количество витков в катушке не указано, но она имеет простую конструкцию, поэтому домотать необходимое количество не представляет труда. Думаю, начинать следует примерно с 200…300 витков провода 0.4…0.5 мм.

Самодельный генератор для ветряка

Самодельный генератор для ветряка

При соединении проводов не забудьте зачистить обмоточный провод от изоляции. Например, с помощью острого ножа или зажигалки.

Самодельный генератор для ветряка

Соединения следует надёжно заизолировать…

Самодельный генератор для ветряка

и прикрутить к катушке, чтобы исключить их перемещение и обламывание.

Самодельный генератор для ветряка

Затем приступим к сборке механической части генератора. Детали генератора показаны ниже. Все они изготовлены из стали. Для кольца использована лента из трансформаторной стали, но можно обойтись и стальной втулкой.

Самодельный генератор для ветряка

Пропустим провод от катушки в отверстие основания.

Самодельный генератор для ветряка

Закрепив гайку на оси, стянем пакет из уголка, круглой платы основания, катушки и крестообразного магнитопровода другой гайкой. См.рисунки ниже.

Самодельный генератор для ветряка

Самодельный генератор для ветряка

Установим стальной магнитопровод в виде кольца поверх катушки и вставим 4 болта. Болты диаметром 6мм длиной 20мм.

Самодельный генератор для ветряка

Установим верхнюю пластину, притянув её болтами. Стягивайте болты без усилий, чтобы не повредить резьбу на пластине.

Самодельный генератор для ветряка

Подтягивая центральную гайку прижмём крестообразный магнитопровод к катушке таким образом, чтобы он не выступал за плоскость верхней пластины.

Самодельный генератор для ветряка

На этом сборку статора можно считать законченной. Приступаем к сборке ротора. Находим в комплекте сборку ротора с подшипниками и 8 шт постоянных магнитов.

Самодельный генератор для ветряка

Далее, необходимо разметить места для присоединения магнитов. Для этого рисуем шаблон.

Самодельный генератор для ветряка

И наложив его на ротор.

Самодельный генератор для ветряка

маркером размечаем места крепления магнитов.

Самодельный генератор для ветряка

Магниты на роторе должны чередоваться по расположению полюсов. Поэтому перед их наклейкой нужно пометить одноименные полюса, например, маркером. Проще всего это сделать, собрав все магниты в столбик. В этом случае все одноименные полюса будут ориентированы в одну сторону.

Самодельный генератор для ветрякаСамодельный генератор для ветряка

Расположите магниты на роторе, чередуя полюса.

Самодельный генератор для ветрякаСамодельный генератор для ветряка

Такое расположение магнитов также позволяет снизить силы тяжения при вращении ротора. Т.е. магниты при переключении полюсов будут компенсировать своё притяжение и отталкивание.

После установки магнитов, Вы можете промазать вокруг них клеем для окончательной фиксации. Однако, магниты даже без клея, держатся неплохо.

Насадите ротор на ось и закрепите её. При насадке будьте осторожны, т.к. ротор притягивается к статору, в конце пути он может удариться, поэтому лучше иметь там небольшую прокладку, которую потом удалите.

Собственно, с механикой, закончили. Сейчас, вращая ротор рукой, Вы можете получить 3..4В переменного выходного напряжения. После выпрямителя получите 7…9В.

Соберём выпрямитель и умножитель напряжения в два раза. Его схема показана на рисунке ниже. В качестве диодов можно взять любой диод на ток 1 А и выше и напряжение не менее 50В. Конденсаторы электролитические 47.0мкФ х 50В, или любые большей ёмкости.

Самодельный генератор для ветряка

Если умножения не нужно, то конденсатор соединяем между плюсом и минусом выхода и убираем их от диодов.

В отсутствие паяльника, выпрямитель можно собрать так, как показано на рисунках ниже.

Самодельный генератор для ветрякаСамодельный генератор для ветрякаСамодельный генератор для ветряка

Подключим генератор к выпрямителю в точках АС.

Самодельный генератор для ветряка

А к выходу подключите мультиметр.

Самодельный генератор для ветряка

При быстром вращении на выходе можно получить почти 40 В без нагрузки.

В дальнейшем этот генератор можно подключить к различным турбинам.

Например, с вертикальной осью.

Самодельный генератор для ветряка

Либо, изготовив лопасти из тонкого алюминия, собрать вертушку с горизонтальной осью вращения.

Самодельный генератор для ветрякаСамодельный генератор для ветряка

Чертёж лопасти приведён на рисунке ниже. Все размеры даны в дюймах, 1 дюйм = 25.4мм.

Самодельный генератор для ветряка

Собственно, всё. Дальше Вы можете использовать данный ветряк и генератор как Вам заблагорассудится.

Альтернативная энергетика, ветрогенератор,ветряк своими руками,Самодельный генератор для ветряка,энергия ветра, ветрогенератор своими руками,сила ветра,генератор для ветряка своими руками,электрогенератор своими руками.

Источник http://mobi-up.ru/flowers/kak-sdelat-vetryak-iz-kulera-ot-kompyutera-svoimi-rukami-vetrogenerator-iz/

Источник http://designgid.ru/their-hands/kak-sdelat-vetryanoi-generator-svoimi-rukami-kak-sdelat-vetryanuyu/

Источник http://xn—-7sbeb3bupph.xn--p1ai/raznoe/samodelnyj-generator.html