Как сделать ветряной генератор своими руками. Из чего можно собрать электрогенератор своими руками Как сделать генератор ручной

Содержание

Как сделать ветряной генератор своими руками. Из чего можно собрать электрогенератор своими руками Как сделать генератор ручной

Карманный фонарик стал предметом снаряжения каждого туриста. Да вот беда — энергию батареек приходится экономить. Но ведь можно взять с собой электростанцию. Весит она почти столько же, сколько запасная батарейка напряжением 4,5 В, да и места в рюкзаке займет ненамного больше. Подскажем: электрогенератор нашей самодельной походной электростанции — практически любой микроэлектродвигатель постоянного тока с возбуждением от постоянных магнитов, а источник энергии — ветер.

Походная электростанция

Принцип действия самодельной походной электростанции — мини-генератора показан на рисунке 1. Генератор тока с пропеллером укреплен на шесте. От генератора идут провода к лампочке. Пропеллер автоматически «следит» за ветром с помощью флюгера — «хвоста». Задача в том, как сделать электростанцию максимально простой и легкой. Нужно также, чтобы она легко разбиралась на части, а основные узлы можно было бы отремонтировать или сделать заново из подручных средств прямо в походе.

Начнем с генератора. Проще всего достать микроэлектродвигатели московского завода «Юный техник» типа ДП-1 или МДП-1. Приобретая их в магазине, постарайтесь выбрать те, ротор которых легче вращается. Самая миниатюрная электростанция получится, если использовать микроэлектродвигатели типа КМ УШ-а-38, которые выпускаются в Германии и продаются у нас в качестве запчастей к моделям железных дорог. А если у вас есть возможность применить микроэлектродвигатели типа ПД-3 (любой серии), электростанция получится наиболее мощной. Правда, эти двигатели самые тяжелые из всех названных. Основные размеры всех перечисленных двигателей приведены на рисунке 2.

Для вращения генератора нужен пропеллер. Вариантов его конструкции множество. Однако для походных условий предпочтителен пропеллер, который можно легко снимать с вала генератора, или со складывающимися лопастями. Снимающийся пропеллер изображен на рисунке 3.

Он изготавливается из донышка консервной банки. В центр впаивается бобышка, выточенная на токарном станке. В бобышке сверлится отверстие и нарезается резьба под винт МЗ. Угол наклона лопастей — около 30°. Число лопастей — от 8 до 12.

Наиболее простая конструкция со складными лопастями представлена на рисунке 4. Лопасти изготовлены из проволоки, например пружинной, марки ОВС, диаметром 1-1,5 мм и обернуты фольгой. Заостренные концы проволоки воткнуты в заранее проколотые в резиновой пробке-бобышке отверстия. Угол наклона лопасти такой же, как и в первой конструкции. Центральное отверстие в бобышке лучше всего высверлить дрелью или на токарном станке. На вал электродвигателя следует припаять трубочку подходящего диаметра длиной 20-25 мм. Отверстие в бобышке высверлите сверлом диаметром на 0,5-1 мм, меньшим наружного диаметра трубочки. Таких лопастей нужно сделать с запасом, штук пять, что позволит менять характеристику пропеллера в зависимости от силы ветра. Если вы забудете лопасти дома, не отчаивайтесь. Их можно выстругать из подходящего куска дерева (рис. 4а) или даже использовать вместо них перья крупных птиц.

Ветер, как правило, капризен и частенько меняет направление. Поэтому дополните комплект деталей еще одной — флюгером. Его конструкции изображены на рисунках 1 и 5.

В дощечке (рис. 5) длиной 200-300 мм сделайте паз по размерам электродвигателя. Двигатель крепится в нем проволокой, бечевкой или резинками от аптечных склянок. Как можно ближе к двигателю в центре дощечки просверлите отверстие. Здесь на штыре из проволоки с заостренным концом флюгер будет укреплен на шесте. Для улучшения его вращения вставьте в отверстие трубочку длиной 30-50 мм. На конец дощечки вбейте гвоздь. К нему прикрепите «хвост»: носовой платок, длинную ленточку или мочало, как у воздушного змея.

Электростанция готова. При необходимости электростанцию можно заставить работать и на ходу. Правда, в таком случае лучше пользоваться лампочкой на 1,5 В. Она будет гореть достаточно ярко даже в безветренную погоду, если идти быстрым шагом.

Найдется карманной электростанции дело и дома. Заменив лампочку амперметром постоянного тока на 1-1,5 А или вольтметром на 3-5 В, вы получите устройство для измерения скорости ветра. Правда, для этого вам придется отградуировать шкалу показаний.

Все материалы раздела «Идеи мастеру»

Главная → Электричество → Самодельные небольшие ветрогенераторы →

вторая часть установка ветряка, показания и электроника

Мини ветрогенератор из мтора на постоянных магнитах

На построение этого ветрогенератора меня подтолкнула одна из попавшихся публикаций о самодельных ветрогенераторах.

Из этой статьи я понял, что в построении небольшого ветряка нет ничего особо сложного, главное желание. Идея обеспечить себя автономным источником энергии витала в моей голове уже давно, а посмотрев на опыты других я принял решение о постройке собственного ветрячка.

Подобные ветрогенераторы часто мастерили на основе небольших моторов постоянного тока, от всяких сканеров, приводов, и я решил повторить эти довольно удачные опыты.

По цене подобный ветрогенератор обойдтся не более чем в 2-5т.рублей, основная цена это электромотор, который будет использоваться в качестве генератора. При экономном расходе вы сможете генерировать 50…250 Вт, что значительно дешевле, чем панели солнечных батарей аналогичной мощности.

Вот, для тех, кому это интересно, мой рассказ о том, как я построил генератор.

Для постройки подобных ветряков не нужно специальных инструментов, а достаточно того, что есть практически у каждого в гараже или кладовке. Для изготовления своей конструкции мне понадобились только дрель, и лобзик, которым я вырезал лопасти, ну и другая мелочь (ключики, болтики,линейка, рулетка, карандаш и т.п) в общем то, что обычно есть в наличие или преобретается в магазине за небольшие деньги.

Сам я распологаю очень скромным бюджетом, поэтому решил сделать как можно более дешовый ветрогенератор, поэтому искал самые простые и доступные пути при построении своего ветрячка.

Для постройки по максимуму использовал материалы имевшиеся в наличие и волявшиеся без дела на моём участке.

П й П ф В изготовлении лопастей ничего сложного нет.

Как сделать мини ветрогенератор своими руками?

Обычно труба делится на три равные части вдоль, и распиливается. Такой материал достаточно хорошо пилится и его можно распилить даже ножовкой по дереву, но у меня в наличие имелся электролобзик, что облегчило задачу, хотя так-же часто пилят и полотнами по металлу.

Чтобы закрепить его на валу я использовал переходник, это специальная насадка для крепления дисков на вал.

В диске предварительно разметив просверлил отверстия для болтиков крепления лопастей и собрал всё в единую конструкцию, ниже вы видите что у меня получилось. Я считаю что получилось удачно, надёжно, просто и аккуратно.

Далее надо было генератор на чём-то закрепить и для этого я использовал отрезок квадрата. С креплением ни стал замарчиваться, а просто притянул генератор к балке хамутами, дополнительно обернув его кожухом из отрезка ПВХ трубы.

>

>

>

>

Хвост вырезал из алюминиевого листа, а для крепления в балке прорезал вдоль две линии, в которые вставляется хвост и через просверленые отверстия закрепляется на болтики.В качестве поворотной оси использовал отрезок трубы и флянец, который прикрутил к балке предварительно просверлив отверстия.

Ниже фотография почти готового ветрогенератора, осталось соорудить мачту и поднять на ветер.

>

>

>

По ходу сборки все части сразу окрашивал автомобильной краской в боллончиках.

Мачту собрал из водопроводных труб используя готовые переходники, это позволило существенно облегчить процесс сборки не прибегая к сварке или сверлению на болты.В процессе сборки работал как слесарь арудуя разводными ключами, будто собирая водопроводный узел.

В итоге получилась вот такая довольно прочная и надёжная мачта.

Ветрогенераторы из автомобильных генераторов

>

Ветряк из авто-генератора с двойным статором

Ветрогенератор от «Мото26», сделан из автомобильного генератора с двойным статором. Ветряк сделан для работы на акб 24 вольт, мощность в итоге 300ватт при ветре 9м/с. Подробности и фото в статье.

>

Ветрогенератор своими руками

Практически полностью самодельный ветрогенератор, генератор которого изначально должен был быть из автомобильного генератора, но после того как корпус был сломан от генератора остался только статор, а корпус пришлось делать новый. >

Ветрогенератор из авто-генератора от Бычка

Генератор этого ветряка сделан из автомобильного генератора от гзузовика Бычек.

Статор перемотан проводом 0,6 мм. Ротор полностью новый, был выточен у токоря по нужным размерам под купленные магниты 30*10*5мм. >

Простая передлка автомобильного генератора

Самая простая переделка автомобильного генератора на постоянные магниты.

Генератор для этого ветряка делался из автогенератора, статор которого не подвергался изменениям, а вот ротор был оснащен неодимовыми магнитами. >

Генератор для ветряка из авто-генератора

Как просто и без особых усилий переделать автогенератор для самодельного ветрогенератора. Для переделки не-надо ни перематывать статор, не точить роторе под магниты.

Вся переделка сводится к переключению фаз генератора, и оснащению ротора маленькими магнитиками для самовозбуждения ротора. >

Однолопастной винт для ветрогенератора

В продолжении усовершенствования ветрогенератора на этот раз было решено попробовать изготовить однолопастной винт и посмотреть какие приимущества он дает и какие недостатки присущи однолопастным винтам.

Лопасть с противовесом имеет не жесткое крепление и может откланяться от оси вращения до 15 градусов. >

Ветрогенератор из тракторного генератора Г700

В этом ветрогенераторе в качестве генератора использован тракторный генератор с электровозбуждением.

Изготовим электрогенератор своими руками

Генератор подвергся существенным изменениям, был перемотан статор более тонким проводом, а так-же домотала катушка ротора. Для этого ветряка винт был сделан из дюралюминия. Винт двухлопастной размахом 1,3м. >

Самодельный ветрогенератор для яхты

Самодельный ветрогенератор, генератор которого сделан из генератора мотоцикла ИЖ юпитер, Этот ветрогенератор специально создавался для эксплуатации на небольшой яхте, где должен был обеспечивать питанием навигационные приборы и мелкую электронику.

>

Новый-второй ветрогенератор для яхты

В новом ветрогенераторе использовался статор от автомобильного генератора . Мощность нового ветряка теперь больше, диаметр винта также увеличился.

Теперь ветрогенератор имеет новую защиту от сильного ветра, теперь винт не уходит в сторону, а опрокидывается, и хвост теперь не складывается, в общем подробности в статье.

>

Ветряки цветы из велосипедных динамок

Иньтересные и красивые ветряки, генераторы которых это велосипедные динамо втулки. Сделаны они в виде всяких цветов, подсолнухов, ромашек, и окрашены в соответствующие цвета, красиво смотрятся как элемент дизайна.

E-VETEROK.RU энергия ветра и солнца — 2013г. Почта: [email protected] Google+

Расчет и производство лезвий

Этот раздел содержит информацию о расчете и производстве ветряной турбины или винта ветровой турбины. Расчет лопастей для ветротурбин ПВХ, изготовление профилированных лопастей. Совместное вычисление мощности и скорости винта, принципы ветрового колеса и преобразование энергии ветра в механическую, а затем в электрическую. Сравнение и расчет различных типов ветрогенераторов.

>

O, винты, многослойные, вертикальные

Часто начинающие от ветрогенераторов не могут решить, какой винт им нужен, какую мощность может дать особый ветер. Какой диаметр мне нужно завинтить и сколько лопастей >

Пример расчета лезвий из труб ПВХ в таблице Excel

Программа для расчета винтов ветрогенераторов из труб из ПВХ.

Много вопросов о том, как использовать таблицу и как рассчитать лезвия. Для этого я привел примеры в статье расчета лезвий и как использовать таблицу. >

Программа для расчета лезвий

Программа для расчета пластин ПВХ. Сама программа представляет собой электронную таблицу Excel, которая отображает всю необходимую информацию для винта.

Вам нужно ввести данные в желтые поля, чтобы получить координаты лезвия, а также данные о трафике, мощности и т. Д. >

Многовинтовой пропеллер или небольшой лезвие

Я решил описать основные различия между многооборотными ветряными турбинами с небольшими лопастями.

Многие считают, что многоступенчатые пропеллеры замедленного действия имеют преимущество при низких ветрах и высокоскоростных не туманных сильных ветрах, но это не так. >

Расчет углов лезвия, скручивание

Еще раз при независимом вычислении лопастей, на этот раз мы вычисляем точный угол лопастей от ветра и требуемую скорость.

Мини-генератор с собственными руками

Рассчитайте бурение лопастей для конкретного генератора. В этой статье есть несколько факторов, влияющих на расчеты. >

Создайте ветряную мельницу и вычислите ее простыми словами

Как создать ветрогенератор, с чего начать и что начать, думая о будущем ветрогенераторе.

В этой статье я описал основные положения принципов ветрогенераторов, вертикальных и горизонтальных, без формул. >

Как сделать лезвия для ветрогенератора

Очень часто лезвия изготовлены из канализационных труб, и в то же время они делают все своими глазами, поэтому такие ломтики имеют небольшой КИЕВ. В статье представлены примеры расчета лезвий из трубки специальной программой в виде пластинки высокого давления и размеров резания для лезвия.

>

Расчет ветрового колеса, мощность ветрогенератора

Как рассчитать мощность ветрогенератора? — на самом деле, это все проще, как кажется, быть главным для понимания. Формула для расчета силы ветра, действующего на винт, плюс винт KIEV, эффективность генератора, потери в проводах, контроллер, аккумулятор.

>

Расчет труб из ПВХ

В продукте имеется много готовых, рассчитанных винтов для выбора ветровой турбины. А также расчетные таблицы. Вычисленные винты имеют все необходимые данные, включая координаты образца режущего лезвия из трубы. >

Расчет складного хвоста

Защитите ветрогенератор от сильного ветра, двигая ветровое стекло в направлении оси вращения и складывая хвост.

Таблицы вычисляют excel, а также формулы и описание принципа работы этой защиты ветровой турбины от урагана. >

Принцип работы горизонтальный и вертикальный

Принципы работы вертикальных ветрогенераторов типа Савония и горизонтальных ветровых ветров. Описание влияния ветра, а также характеристики и характеристики процессов, которые позволяют вращению ветра. >

Расчет вертикальных ветрогенераторов

Пример расчета вертикальных ветрогенераторов типа Бочка для новичков, чтобы понять, где он начинается.

В статье приведен пример общего расчета мощности и скорости ветрового колеса с 2 * 3 м >

Как сделать аэродинамическую трубу от генератора автомобиля

В статье подробно описывается процесс изготовления вентилятора из генератора автомобиля.

С тех пор, как генератор был обработан для производства винта и контроллера. Как правило, она отвечает на все основные вопросы о создании ветряных турбин своими руками.

E-VETEROK.RU Энергия ветра и солнца — 2013г. Mail: [email protected] Google+

Вертикальный ветрогенератор своими руками

Это подробное описание конструкции роторного типа ветряной турбины Savonius, я обнаружил это замечательное место здесь http://mirodolie.ru/node/2372 После прочтения материала я решил написать об этих проектах и ​​о том, как это было сделано.

Как все началось

Идея строительства ветряной турбины родилась в 2005 году, когда место было приобретено в семейном поместье Мирейоли.

Нет электричества, и все решили эту проблему по-своему, главным образом за счет солнечных коллекторов и генераторов бензина. Когда дом был построен, это было первое, что нужно было рассмотреть, и была получена солнечная панель мощностью 120 ватт. Летом он работал хорошо, но зимой его эффективность значительно снизилась, и в пасмурные дни он в настоящее время составляет 0,3-0,5 А / ч, это не подходит, как и свет, едва хватает, но Нужно было кормить ноутбук и другую небольшую электронику.

Поэтому было принято решение о строительстве ветрогенератора, который также будет использовать энергию ветра. Во-первых, возникло желание построить генератор планерного ветра. Этот тип ветра очень велик, и через некоторое время он провел в Интернете в голове и собрал много материала на компьютере на компьютере. На генераторном генераторе парусный ветер довольно дорогой, поэтому как эти небольшие ветряные турбины не построены и должны диаметр винта для ветряных турбин этого типа должен составлять не менее пяти метров.

Большой генератор ветра не мог тянуть, но он все еще хотел попытаться создать ветрогенератор, по крайней мере, немного энергии для зарядки батареи.

Горизонтальный винт турбины сразу же упал так, что они громкие, у них проблемы с изготовлением токосемных колец и защита ветряной турбины от сильного ветра, а также трудно сделать правое лезвие.

Я хотел что-то простое и медленное, я смотрел несколько видеороликов в Интернете и любил вертикальные ветрогенераторы, такие как Savonius.

Фактически, они являются аналогами режущей трубки, половина из которых выталкивается с противоположных сторон. При поиске информации была найдена более совершенная форма этих ветрогенераторов — ротора Угринского. У обычного Savonius очень мало WEUC (эксплуатация энергии ветра), как правило, всего 10-20%, а Ургинского ротора имеет более высокий WEUC, отражающий использование лопастей энергии ветра.

Ниже приведены изображения для понимания принципа робота этого ротора

>

Схема маркировки координат лезвий

>

Ротор КИЕВ Угрынский сообщил о 46% и, следовательно, не хуже горизонтальных ветрогенераторов.

Ну, упражнение показывает, что и как.

Изготовление клинков.

Перед запуском ротора первые модели были изготовлены из двух роторных банок.

Одна из классических моделей Савония и других Угринских. На моделях было замечено, что ротор Угрынский заметно работает на более высоких скоростях по сравнению с Савониусом, и решение было принято в пользу Угрынского. Было решено создать двойной ротор, один на другом с поворотом на 90 ° для достижения более четного крутящего момента и лучшего запуска.

Материалы для ротора выбраны самыми простыми и дешевыми. Лезвия изготовлены из алюминиевой фольги толщиной 0,5 мм. Три гранулы вырезаны из толщины фанеры 10 мм. Шарики были буксированы в соответствии с приведенным выше рисунком, а желобы с глубиной 3 мм были сделаны для вставки лопастей. Сборка лезвий, сделанных на небольших углах и затянутых на винтах. Кроме того, склеивающие пластины для прочности всего узла прикреплены к штифтам по краям и посередине, он оказался очень жестким и твердым.

>

>

Размер ротора составлял 75 * 160 см, а на роторных материалах — около 3600 рублей.

Производство генераторов.

До генерации генератора было много поисков окончательного генератора, но продажи на них практически не производились, и то, что вы можете заказать в Интернете, стоило больших денег. Вертикальные ветрогенераторы имеют низкие скорости и в среднем около 150-200 об / мин для этой конструкции.

Трудно найти что-то готовое для таких поворотов и не требовать множителя.

В поисках информации на форумах выяснилось, что многие генерируют генераторы и что в этом нет ничего сложного. Решение было принято в пользу собственного генератора постоянных магнитов. Основой была классическая конструкция осевого генератора на постоянных магнитах в автомобильном хабе.

Первый заказ был заказан неодимовыми магнитными шайбами ​​для этого генератора в количестве 32 штук размером 10 * 30 мм.

Пока магниты работали, были сделаны другие части генератора. Мы вычисляем все размеры статора под ротором, который состоит из двух тормозных дисков от автомобиля ВАЗ на ступице заднего колеса, обмотки намотаны.

Простой ручной инструмент предназначен для обмотки катушек. Количество катушек от 12 до 3 на фазу, поэтому генератор трехфазный.

Мини-турбина (генератор) своими руками

На дисковых роторах будет 16 магнитов, а это соотношение составляет 4/3 вместо 2/3, поэтому генератор будет медленнее и сильнее.

Простые машины изготовлены для обмоток катушек.

>

Расположение катушек статора отмечено на бумаге.

>

Заполнение статора смолой производится из фанеры. Перед поливом все катушки паяли в звезду, а провода были разрезаны по разрезанным каналам.

>

Катушки статора перед переливом.

>

Свежий статорный чулок, прежде чем заливать нижний слой, представляет собой круг из стекловолокна, а после укладки катушек и заливки эпоксидной смолы сверху, размещенной во втором круге, она предназначена для дополнительной мощности. Погружение добавляется к смоле для прочности, из которой она белая.

>

Таким образом, ту же смолу заливают водой и магниты на дисках.

>

Но уже собранный генератор, база также из фанеры.

>

После изготовления генератор немедленно промывался руками на предмет текущего напряжения. Это было связано с 12-вольтовой аккумуляторной батареей. Ручка была прикреплена к генератору и посмотрела на другую руку и повернула генератор, некоторые данные были получены. На батарее при 120 оборотах в минуту получается, что 15 вольт 3,5 А, быстрее растягивать руку, не позволяет сильного сопротивления генератора.

Максимальная погрешность — со скоростью 240 оборотов в минуту 43 вольт.

электроника

>

Диодный мост состоял из генератора, упакованного в корпус, и на корпусе были установлены два прибора: вольтметр и амперметр. Та же самая известная электроника была взята с помощью простого контроллера для него. Принцип управления прост, когда батареи полностью заряжены, контроллер подключает дополнительную нагрузку, которая потребляет всю избыточную энергию, чтобы батареи не перезаряжались.

Первый контроллер, который сливается с друзьями, недостаточно подходит, поэтому более надежный программный контроллер был объединен.

Установка ветровой турбины.

Для ветрогенератора была сильная рама из деревянных стержней 10 * 5 см.

Для надежности опорные штанги были раскопаны в земле на 50 см, и вся конструкция была дополнительно усилена расширениями, которые были прикреплены к углам, которые были вбиты в землю. Эта конструкция очень практична и быстро устанавливается, а также упрощается, чем приваривается. Поэтому было решено построить дерево, но металл дорогой, и нет необходимости включать сварку в любом месте.

>

Имеется подготовленный ветрогенератор. На этой фотографии привод генератора является прямым, а затем создается множитель, который увеличивает вращение генератора.

>

>

Привод генератора, передаточное отношение можно заменить заменой шкивов.

>

>

>

Позже генератор мультипликатора соединен с ротором.

Общая ветровая турбина производит на 50 Вт на ветре 7-8 м / с, зарядка начинается со скоростью 5 м / с, хотя она начинает вращаться на ветру 2-3 м / с, но скорость слишком мала, чтобы заряжать аккумулятор.

В будущем планируется поднять ветротурбин, как описано выше, и обработать некоторые узлы устройства, в то время как можно построить новый более крупный ротор.

Мой второй генератор ветра (от генератора автомобиля)

Для строительства второй ветровой турбины я подтолкнул к перспективам будущей жизни в стране. В коттедже я планировал построить дом, который хотел бы жить (хотя, что случилось), но не было электричества, поэтому нужно было подумать о том, как добраться и путешествовать по Интернету. Я нашел два приемлемых варианта для солнечных коллекторов или ветровых турбин Генераторы, или лучше оба, но это стоит больших денег, поэтому я решил сделать все сам.

Конечно, они не являются даже солнечными батареями, поэтому элементы для монтажных плат стоят дорого и сами создают ветряную станцию.

Моя ветряная мельница

Фото домашнего вентилятора Подготовка к строительству ветровой турбины началась с поиска подходящего генератора, который может доставлять энергию на низких скоростях.

Первое, что нужно помнить, — это генератор автомобилей, поскольку его можно найти в любом гараже. Я взял у автолюбителя аналогичный автогенератор и начал искать информацию о том, как его адаптировать к ветрогенератору. Оказалось, что не все так просто. Без перемотки и имплантации магнитов этот генератор не подходит, поскольку он работает на высоких скоростях в автомобиле, но без восстановления его можно использовать только с множителем.

Я решил не идти вперед, потому что это сложно и будет иметь большой вес головы и размер винта и заказать неодимовые магниты и сам статор. В то же время, когда я представил тему на один из форумов по ветрогенераторам, я начал составлять генератор.

Чтобы обработать ротор под магнитами, я заказал онлайн-магазин магнитов размером 20 * 5 * 5 со скоростью 48шт, а в то время как они были магнитами по почте, я начал создавать новый ротор для этой цели, решив удалить автохтонный роторный генератор, но попытаюсь выбить его из подшипников я сломал сиденье заднего подшипника, а затем изогнутый ротор пытается удалить краб из области обмотки, в общем, все сломанные, целые просто статоры.

Статор от «классического» с 36 зубцами, ширина зуба 5 мм, толщина статора 25 мм и внутренний диаметр 89 мм.

Домашний генератор

Детали для генератора для ветряной электростанции Я не искал другого генератора, но я решил сварить новый корпус статора.

Пример был сварен из стального листа толщиной 2 мм. Во-первых, поднимитесь на 2 см от основной массы статора, легче разрезать восемь углов на мельницу, чем на шарик.

Затем он разрешил две полосы шириной 1,5 см и прижал их к статорной проволоке, приваренной к восьмиугольнику, чтобы удалить прорези для установки статора, чтобы ни одна ДСП и не закрепилась в корпусе.

Затем он сделал два фланца одинаковой стали 2 мм. под 201. Подшипники и с помощью сверла, где отверстия необходимы для крепления этих фланцев с подшипниками.

Фланцы специально разработаны для центрирования ротора, поэтому можно просто сварить кольца под подшипником, но они должны быть центрированы. На фотографии для подшипников, а не на фланцах, но на кольцах, их пришлось отрезать, потому что невозможно было «точно сосредоточиться» на коленях, и я сделал фланцы.

Домашний ротор

Фото Ротор для ротора отечественного генератора Я сделал слишком много, нашел металлический стержень толщиной 12 мм, чуть ниже 201-го подшипника подшипника подшипника к крепежному винту. Под магнитами мне понадобилась металлическая втулка толщиной 76 мм, точно так же, как внутренний диаметр 89 мм ротора минус толщина магнита = 5 мм на 10 мм и щели между статором и ротором 1,5 мм = 3 мм.

Но под рукавом я нашел только часть 72-й трубки, поэтому мне пришлось изготовить стальное кольцо толщиной 2 мм, слить его и сварить, чтобы построить толщину до 76 мм.

Цилиндр на парикмахерской решил налить эпоксидную смолу, поэтому сварка не испугалась. На лесах он не позволяет Богу обернуть сварные доски. Из олова я срезал два круга ножницами по внешнему диаметру корпуса картриджа и в центре кругов под пальто. Штифт был вставлен в эти отверстия и заполнен эпоксидной смолой. Оказалось, что самовращающийся ротор I полируется при полировке на шлифовальном круге.

Да, ротор занял много времени, и это оказалось неправильным и не сосредоточенным, но я сделал это без токарных станков и сэкономил деньги.

генератор

Таким образом, генератор выглядит как слияние. Когда корпус был готов и даже окрашен, я взял статор, снял старые обмотки, и старая краска соскоблила из желобов. Прочитав форум, я пришел к выводу, что нужно сделать только трехфазный генератор, а это значит, что три фазы должны быть обернуты. Я хотел купить 200 нитей эмалированной проволоки на 0,56 мм от местных, которые двигают двигатели, но он дал мне это, потому что это грамм двести мотоциклов.

И я рад, что вернулся домой, чтобы пойти к статору.

Статор встряхивает каждую катушку прямо на зуб, так же как и случайная обмотка обмотки для меня затруднена, необходимо подготовить катушку в толкающих пазах, а если ветер прямо к зубам, он окажется хорошим и вагинальным и станет более продолжительным. В качестве изоляции используется в обычных картонных ноутбуках. Каждый зуб, включенный на 33_39, показывает провод 0,56 мм, встряхивая каждую фазу, фаза ускоряет передачу одного-двух зубов, а затем проверяет, что фаза не наматывает Koroto-li на статор и катушку вместо грязного эпоксидного лака.

Ротор с неодимовыми магнитами

Конечный ротор с герметизированным магнитом эпоксидной смолы представляет собой три фазы сопротивления 12katushek фазы 3.3 Ом. Поэтому я магнит к ротору 24polyus, так что отношение магнитов на катушках в трехфазной системе 2/3, где два магнита на трех катушках, например, если катушки имеют 18 полюсов. Сначала прикреплены к магниту ротора 24 с тем же расстоянием и заполнены эпоксидной смолой.

Собранный генератор, подключенный к фазе звезды и скрученный, вращающий скорость подсчета рук в секунду, превратился в 200об / м в генератор 13 вольт и 2A koe при 300об / м 20 вольт и 1А для батарей. Результат был приятным, но генератор прилипал магниты к зубцам статора, что предотвращает запуск винта от слабого ветра, и я решил, что наклон магнитов будет на роторе.

Преобразование ротора в магниты с конусом

Отковырять магниты и теперь будем делать с наклоном отковырять магниты, а наклон на воображаемом магните заправляется и закатывается, склеивание падает в два раза и едва заметно, но генератор потерял около 35% мощности.

Я думал, что он все уходит, и он думал о винте, но у меня все еще есть магниты, и я хочу, чтобы они делали слишком много, и мне посоветовали поставить на форум два магнита пополам, и я снова поцарапал ротор и попытался с эпоксидной смолой.

С помощью супер клея я зафиксировал магниты на полюсах и искривился.

Ротор полностью заряжен магнитами, увеличился в два раза по мощности, а адгезия была не слишком сильной, я измерил и показал 0,3 Нм. Теперь генератор начал зарядку на 120 мб / м, при 200 мб / м, напряжение холостого хода около 20В. Я снова заполнил эпоксидные магниты, и на этом генератор был закончен, я был доволен, особенно потому, что лучше, если я не сделаю этого в моем случае.

Теоретически выход генератора составляет около 100 Вт / ч при 12 м / с.

Генератор дома для ветряной мельницы

После восстановления ротора я снова тестирую генератор на напряжение и ток. Затем я начал собирать ветрогенератор, сначала я сделал поворотную ось.

Он был сделан из одного подшипника и из трубы 15-й трубки с резьбой и гайкой. Труба была заполнена эпоксидной вставкой внутри подшипника, и подшипник вылили на кусок пластиковой трубки диаметром 50 мм, чтобы ось вращения была отпущена.

Из профиля 50 * 25 мм длиной 60 см.

Внутренняя тропа. Как создать мини-генератор

Я сделал луч, на котором я отремонтировал генератор, хвост, и вырезал отверстие для фиксации поворотной оси. Дома я нашел пять метров 50-го трубопровода для наркотиков. Лопаты с первых мини-позвонков. Лезвия были сделаны из олова без расчетов, а диаметр лопастей с тремя лопастями составлял 1,6 м. Готовое лобовое стекло было прикреплено к мачте и подняло его до ветра, подключил небольшую батарею и мультиметр. Маленький ветер дул на улицу, текущий прыжок на 1А, часы, я пошел на заряд, подумал я.

На следующий день ветер был сильнее, ток достиг 3А, и разрезы лезвий не выдержали и опирались на наркотик.

Внутренний ветрогенератор

Турбины после обработки и новые лезвия из труб из ПВХ. Затем я думал о новых ножах, ищущих старые форумы и веб-сайты, есть все лезвия из труб из ПВХ, и я нашел кусок 110. Трубы вырезали три лопасти на длинные 75 см длиной расположенный на ветряной мельнице, все было круто, но усиление ветровой энергии не сильно увеличилось и достигало максимума при 5А при 12-15 м / с, затем начиналось иметь дело с ножами и подрывать мощность ветряной турбины.

Форум нашел расчеты болтов из ПВХ, посмотрел, как были сделаны углы ветра и разрезаны новые лезвия. Результат был лучше, но не очень, со слабым ветром, также около 2А, но с сильным до 7А.

Вообще говоря, ветряная мельница оказалась слабой, чего я ожидал, но она работала, и это был первый заряд на небольшой батарее 9А / ч, после чего я положил аккумулятор на 60А / ч. Генератор ветров начинается с ветра около 4 м / с и дает заряд около 1 А, при небольшом усилии 2-3 А и сильном ветре до 8А, то есть 100 Вт / ч и в среднем 20-30 Вт / ч, немного, но неплохо для меня.

Позже я сделал ему новый трехрежущий винт диаметром 1,7 м от 160-й трубки, с помощью которого он дал до 11А на 12-вольтовой батарее, то есть до 140 Вт / ч. Вот почему я попытался установить 24-вольтовую батарею, ток в сильном ветре достиг 12А, то есть до 280 Вт / час и в среднем равен 20-30 Вт / ч.

Так и появился мой другой, сильнее, чем первый генератор ветра. Этот ветрогенератор более двух месяцев обеспечил меня светодиодным освещением и портативным телевизором с нетбуком и другими меньшинствами, заряжающими телефон и тому подобное. Но у нас низкие ветры, средний годовой уровень составляет всего 2,4 м / с, и часто в заданные времена Земли батарею нужно высаживать, поэтому мне пришлось построить еще один ветрогенератор, но об этом в следующей статье.

Многих электриков новичков интересует один очень популярный вопрос – как сделать электричество бесплатным и в то же время автономным. Очень часто, к примеру, при выезде на природу, катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примером!

Кратко о принципе действия

Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных термопар, находящихся между керамических пластин, как показано на картинке ниже.

Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, если действовать в обратном порядке: одну сторону пластины нагреть, а второю охладить, соответственно можно сгенерировать электроэнергию небольшого напряжения и силы тока. Надеемся, что на данном этапе все понятно, поэтому переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.

Мастер-класс по сборке

Итак, мы нашли в интернете очень подробную и в то же время простую инструкцию по сборке самодельного генератора электроэнергии на базе печи и элемента Пельтье. Для начала Вам необходимо подготовить следующие материалы:

  • Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
  • Старый блок питания от компьютера (с него нужен только корпус).
  • Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит процесс подзарядки современного телефона либо планшета.
  • Радиатор. Можно взять от процессора сразу с куллером, как показано на фото.
  • Термопаста.

Подготовив все материалы можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:

Работает термоэлектрический генератор следующим образом: внутри печи засыпаете дрова, поджигаете их и ждете несколько минут, пока одна из сторон пластины не нагреется. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100 о С. Если охлаждающая часть (радиатор) будет нагреваться, его нужно остужать всеми возможными методами – аккуратно поливать водой, поставить на него кружку со льдом и т.д.

А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:

Генерация электричества из огня

Также можно установить на холодную сторону вентилятор от компьютера, как показывается на втором варианте самодельного термоэлектрического генератора с элементом Пельтье:

В этом случае куллер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для светодиодов, что не менее полезный вариант применения генератора. Кстати, второй вариант самодельного термоэлектрического генератора с виду и по конструкции немного похож. Единственная модернизация, помимо системы охлаждения, это способность регулировать высоту так называемой горелки. Для этого автор элемента использует «тело» CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).

Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому чтобы заряжать телефон, не забудьте подключить преобразователь, который на выходе оставит только 5 В.

Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент – два алюминиевых «кирпичика», медная труба (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий сделать бесплатное электричество в домашних условиях!

В наше время добыча собственной электроэнергии не такая уж необычная вещь. Электросети работают с перебоями, особенно вне крупных городов. И чтобы избежать с этим проблем многие прибегают к использованию электрогенераторов. Для того, чтобы приобрести или сделать такой нужно узнать о лучших электрогенераторах, которые можно сделать своими руками.

Что это такое

Электрогенератор — это специальное устройство, которое предназначено для преобразования и накапления электричества. А добывается оно обычно из необычных источников — от бензина и газа до экологичных, вроде ветра, солнца и воды. Такой генератор может стоить дорого. Даже самые маломощные могут стоить от 15000 рублей.

Поэтому чтобы сэкономить несколько десятков тысяч многие создают их сами. Хорошо, что идей, как сделать электрогенератор своими руками, сейчас уже достаточно много.

Принцип работы

Электромагнитная индукция лежит в основе принципа работы электрогенератора.

Создаётся искусственное магнитное поле. Через него проходит проводник, создающий импульс. Импульс тем временем становится постоянным током.

В самом генераторе есть двигатель, который способен к выработке электричества через сжигание топлива определённого вида. Это может быть дизельное топливо, бензин, газ.

В это время топливо, попадающее в место сжигания, производит газ в процессе горения. А газ заставляет вращаться коленчатый вал. Он в свою очередь даёт импульс ведомому валу. Последний предоставляет энергию на выходе в определённых количествах.

Электрогенераторы в своей основе имеют два обязательных механизма — ротор и статор. Их наличие от топлива и мощности не зависит.

Ротор нужен, чтобы создать то самое электромагнитное поле. В его основе лежат магниты, которые находятся на одинаковом расстоянии от сердечника.

Статор не двигается. Это позволяет заставлять ротор двигаться, пока статор регулирует электромагнитное поле. Достигается из-за стальных блоков в его устройстве.

Асинхронные

Типы устройств электрогенераторов не заканчиваются на разделении по использованию топлива. Так же, по типу вращения ротора, генераторы могут быть:

  • Синхронными — сложнее в своей конструкции. Перепады напряжения приводят к неисправностям. Это сказывается на работе и продуктивности.
  • Асинхронными — с лёгким принципом работы, другими техническими характеристиками.

Магнитные катушки на роторе синхронного генератора затрудняют движение ротора. Ротор в асинхронном генераторе больше походит на маховик.

Особенности конструкции оказывают большое влияние на КПД. Синхронные имеют потерю до 11%. У асинхронного потеря максимально достигает 5%. Такие показатели делают асинхронные устройства популярными не только в быту, но и на производстве.

У асинхронных генераторов есть и ещё преимущества:

  • Частая починка не нужна, потому что простой корпус надёжно защищает двигатель от отработанного топлива и лишней влаги.
  • Выпрямитель на выходе защитит электроприборы, питающиеся от генератора.
  • Устойчивость к перепадам напряжения.
  • Всё детали в конструкции достаточно надежны и долговечны, поэтому эксплуатация без починок может длиться более 15 лет.
  • Благодаря устойчивости к перепадам и способности питать приборы с омической нагрузкой, количество различных приборов для подключения растёт — от компьютеров до сварочных аппаратов и ламп.
  • Высокий КПД.

Какие материалы нужны

Чтобы собрать небольшой асинхронный генератор, пригодятся такие детали, как:

  • Двигатель. Легче всего взять из вышедших из строя электроприборов, потому что делать его своими руками сложно и долго. Особенно хорошо сгодятся двигатели из стиральных машин.
  • Статор. Нужно брать готовый, с обмоткой.
  • Трансформатор или выпрямитель. Пригодится, если электроэнергия на выходе имеет разную мощность.
  • Электрические провода.
  • Изолента.

Конечно, чтобы сделать ветряные и солнечные электрогенераторы своими руками потребуются более сложные схемы и большее количество материалов, но при желании и их, и инструкции к ним можно найти.

Обратите внимание!

Сборка

Процесс сборки может быть усложнён по разным причинам. Например, нет определённого навыка для работы. Нет опыта в создании таких устройств. Нет нужных деталей и запчастей. Однако если всё это и большое желание в наличии, то попробовать можно.

Но перед началом работы обязательно нужно выполнить несколько условий — добыть материалы и инструкции для изготовления электрогенератора. И прочесть их. А также позаботиться о технике безопасности.

Перед началом работы имеет смысл позаботиться о схемах сборки и чертежах. Это значительно облегчит и ускорит процесс.

Газовые и бензиновые электрогенераторы собираются своими руками чаще всего. Но как при их сборке, так и при сборке других, нужно произвести подготовку и некоторые расчёты. Например, важно знать мощность нужного генератора.

Чтобы определить скорость вращения, двигатель должен быть подключён в сеть. Для определения потребуется тахометр. Величину, полученную при измерениях, нужно прибавить к компенсаторной величине, составляющей 10%. Эта величина позволяет не дать двигателю перегреться.

Обратите внимание!

Учитывая мощность нужно подобрать конденсаторы.

Важно помнить о заземлении, ведь дело идёт о работе с электричеством. И это не только вопрос износа устройства, но и вопрос безопасности.

Сама сборка проста — Конденсаторы подсоединяются к двигателю по очереди по схеме (её можно найти в интернете). Это всё, что нужно для создания генератора малой мощности.

Этот вариант самый удобный и лёгкий. Однако стоит обратить внимание на следующие моменты:

  • Нужно следить за температурой двигателя, чтобы он не перегрелся.
  • Иногда генератору нужно будет давать остыть до 40 градусов.
  • КПД, возможно, будет снижаться в зависимости от времени работы. Это нормально.
  • Пользователю нужно будет самостоятельно следить за состоянием генератора, подключать к нему измерительные приборы.

После сборки механической части следует заняться электрической стороной. Начинать стоит после установки шкивов, соединяющихся ремнем.

  • Обмотки на электрическом моторе соединяются согласно схеме звезда.
  • Конденсаторы, подключаемые к обмотке, должны образовать собой треугольник.
  • Напряжение будет сниматься между концом обмотки и средней точкой. Тогда получается ток с напряжением 220 вольт, а между обмотками — 380 вольт.

Обратите внимание!

Специалисты дают ещё несколько полезных советов, которые помогут при сборке генератора:

  • Электрический двигатель может сильно нагреваться. Чтобы этого не было — нужно заменить конденсаторы на те, у которых меньше ёмкость.
  • Самодельные электрогенераторы обычно предполагают конденсаторы с напряжением от 400 вольт. Для правильной работы хватит и одного.
  • В сети нужен трехфазный трансформатор, если для питания дома нужны все фазы двигателя.

Скорее всего, даже сделанный, как на красивых фото, самодельный электрогенератор, не сможет конкурировать с покупными моделями.

Однако, если воспринимать его как дополнительный, запасной источник электроэнергии, то его вполне можно сделать и использовать. Тем более что как показывает практика, сделать генератор самостоятельно не так уж и сложно. Нужно просто приложить старания и всё получиться.

Фото электрогенераторов своими руками

В загородных домах и на дачных участках зачастую отсутствует стационарное электричество, поэтому немалой популярностью пользуются электрогенераторы. Поскольку – далеко недешевое удовольствие, многие умельцы пытаются своими руками смастерить это устройство. Но для того чтобы оно полноценно справлялось с возложенной на него задачей – обеспечением дома электроэнергией, необходимо четко понимать схему устройства прибора. Вашему вниманию инструкция по созданию электрогенератора своими руками в домашних условиях (прилагается видео инструкция).

Электрогенератор: сферы применения, принцип действия

Сегодня речь пойдет об асинхронном электрогенераторе, поскольку он обладает рядом достоинств, отличающих его от классического синхронного. Самым главным из них является низкий клирфактор. Дело в том, что синхронные генераторы отличаются довольно высоким клирфактором, который характеризуется большим количеством высоких гармоник в выходном напряжении. Это, в свою очередь, приводит к ненужному нагреву устройства и неравномерному вращению мотора.

Асинхронный электрогенератор, сделанный своими руками, вполне подходит для использования в дачном хозяйстве, но, если говорить о промышленном применении подобных устройств, то их используют для добычи энергии на ветровых станциях, в качестве сварочных агрегатов или автономного средства поддержки электричества в доме наряду со стационарной ТЭС.

Принцип действия устройства достаточно прост, если не рассматривать каждый происходящий внутри него процесс отдельно. Работа генератора происходит за счет явления магнитной индукции. Проводник проходит через электрополе (созданное искусственно) и создает при этом импульс, преобразующийся в постоянный ток.

Внутри генератора расположен мотор, который вырабатывает электричество по следующей схеме: в камерах сжигания двигателя сжигается топливо, при этом выделяется газ, приводящий в движение коленчатый вал. Тот, в свою очередь, передает импульс ведомому валу, на выходе дающему определенное количество энергии.

Процесс сборки генератора своими руками

Собрать асинхронный электрогенератор, в принципе, не составляет труда, если подойти к процессу со всей ответственностью. Для начала необходимо собрать все конструктивные элементы, которые понадобятся для сборки устройства:

  • Двигатель. Этот генераторный элемент можно изготовить самостоятельно, но процесс настолько длителен и кропотлив, что легче использовать бывший в употреблении мотор из какого-нибудь старого бытового прибора (оптимально подойдет или ).
  • Статор. Лучше купить полностью собранный статор (уже с обмоткой).
  • Электропровода, в дополнении к которым также понадобится изолента.
  • Трансформатор. Необязательный элемент, который необходим лишь в том случае, когда энергия на выходе имеет разную мощность.

Бывший в употреблении мотор

Перед тем как осуществлять сборку, вычисляем мощность будущего генератора. Для этого необходимо лишь подключить двигатель к сети и тахометром определить скорость его вращения. К полученной величине прибавляем 10% (компенсаторная величина, которая предотвратит перегрев устройства).

Совет. Так как генератор непосредственно связан с производством электричества, необходимо обязательно заземлить его. Отсутствие такового может привести не только к быстрому износу устройства, но и к его превращению в устройство опасное для жизни.

Вычислив мощность, подбираем подходящие конденсаторы и подключаем их в определенной последовательности по одной из схем, которые можно найти в свободном доступе в интернете.

Создавая электрогенератор в домашних условиях, будьте готовы к тому, что он (в большинстве случаев) не сможет конкурировать с заводскими моделями по производительности. Пытаться воплощать идею в жизнь стоит лишь в тех случаях, когда:

  • имеются соответствующие навыки и знания в области электроники и механики;
  • уже были успешные попытки создания подобных устройств;
  • на руках имеется все необходимое оборудование и приборы для точных вычислений;
  • есть опыт в чтении электросхем, а также умение осуществлять расчеты при конструировании электроприборов.

Самодельные генераторы, безусловно, обладают определенными достоинствами, среди которых можно отметить экономию средств и возможность создания устройства, полностью отвечающего предъявляемым требованиям.

Самодельный генератор не будет таким мощным как покупной

Но есть у подобных устройств и свои недостатки:

  • большая вероятность частых поломок ввиду отсутствия герметичных креплений между конструктивными элементами устройства;
  • возможная неточность в вычислениях мощности прибора, что приведет в процессе эксплуатации устройства к его невысокой продуктивности;
  • для создания эффективного и надежного устройства нужны определенные знания и навыки.

Совет. Для повышения защиты устройства от воздействия внешних факторов (что, в свою очередь, позволит сохранить его продуктивность на протяжении длительного периода) желательно соорудить для него специальный защитный кожух.

И напоследок несколько полезных советов относительно грамотной эксплуатации асинхронного генератора. Во-первых, лучше оборудовать генераторное устройство кнопкой «вкл./выкл.» (по возможности). Во-вторых, периодически следует контролировать температуру прибора для предотвращения его перегрева. В-третьих, поскольку создаваемое устройство не имеет автоматических элементов, во время его эксплуатации необходимо будет периодически использовать тахометр, вольтметр и амперметр.

Как вы могли убедиться, в принципе, создать генератор в домашних условиях не так уж и сложно, особенно, если в наличии есть его основные конструктивные элементы. Вопрос в целесообразности таких устройств. С финансовой точки зрения это может быть выгодно лишь в одном случае: если у вас есть под рукой бывший в употреблении рабочий двигатель. В любом случае попробовать стоит. Удачи!

К сожалению, отечественные электроснабжающие организации не держат своего слова. Их контракты, подписанные с потребителями, ничего не стоят. Подача электроэнергии за пределами больших городов непостоянная, качество подаваемого тока низкое (имеется в виду напряжение), поэтому жители небольших городов и поселков в запасе всегда имеют свечи, керосиновые лампы, а самые продвинутые устанавливают бензиновые генераторы тока. В этой статье будет предложен другой вариант, который будет обозначен вопросом, как сделать электрогенератор своими руками? Давайте рассмотрим один вариант этого прибора.

Электрический генератор из мотоблока

Жители загородных поселков давно пользуются мотоблоками. Ведь это на сегодняшний день, если так можно выразиться, самый надежный помощник, без которого работы в огороде или саду не проводятся. Правда, как и все этого типа инструменты, мотоблок выходит из строя. Восстановить его можно, но как показывает практика, лучше купить новый.

Владельцы инструмента распрощаться с ним не спешат, поэтому у каждого хозяина загородного дома в кладовке найдется один старый экземпляр. Его-то и можно будет использовать в конструкции электрогенератора напряжением 220/380 вольт. Он будет создавать крутящий момент генератору тока, в качестве которого можно приспособить обычный асинхронный двигатель. При этом необходим будет мощный электродвигатель (не меньше 15 кВт, с частотой оборотов вала 800-1600 об/мин). Почему такая большая мощность электродвигателя?

Делать самодельный генератор для парочки лампочек нет смысла, ведь решается вопрос полного обеспечения загородного дома электроэнергией. А с электродвигателем небольшой мощности получить достаточно электроэнергии не получиться. Хотя все зависит от суммарной мощности бытовых приборов и освещения дома. Ведь в небольших дачах кроме холодильника с телевизором ничего-то и нет. Поэтому совет – сначала рассчитайте мощность дома, затем выбирайте электрический мотор-генератор.

Сборка электрогенератора

Итак, чтобы собрать бензиновый генератор своими руками напряжением 220 вольт, необходимо установить на одной станине мотоблок и электродвигатель так, чтобы их валы располагались параллельно. Все дело в том, что вращение от мотоблока к электрическому мотору будет передаваться при помощи двух шкивов. Один будет установлен на валу бензинового двигателя, второй на валу электрического. При этом необходимо правильно выбрать диаметры шкивов. Именно этими размерами подбирается частота вращения электрического мотора. Этот показатель должен быть равен номинальному, который указан на бирке оборудования. Небольшое отклонение в большую сторону в пределах 10-15% приветствуется.

Когда механическая часть сборки будет закончена, будут установлены шкивы, соединяемые ремнем, можно переходить к электрической части.

  • Во-первых, обмотки электрического мотора соединяются по схеме звезда.
  • Во-вторых, подключаемые к каждой обмотке конденсаторы должны образовать треугольник.
  • В-третьих, напряжение в такой схеме снимается между концом обмотки и средней точкой. Именно здесь получается ток напряжением 220 вольт, а между обмотками 380 вольт.

Внимание! Устанавливаемые в электрическую схему конденсаторы должны иметь одинаковую емкость. При этом величину емкости подбирают в зависимости от мощности электродвигателя. Именно данное соотношение будет поддерживать правильно саму работу генератора тока, но особенно его пуск.

Для информации даем соотношение мощности мотора с емкостью конденсаторов:

  • 2 кВт – 60 мкФ.
  • 5 кВт – 140 мкФ.
  • 10 кВт – 250 мкФ.
  • 15 кВт – 350 мкФ.

Обратите внимание на некоторые полезные советы, которые дают специалисты.

  • Если электрический двигатель будет греться, то необходимо поменять конденсаторы на элементы с пониженной емкостью.
  • Обычно для самодельных электрогенераторов используют конденсаторы напряжением не меньше 400 вольт.
  • Обычно одного конденсатора хватает для активной нагрузки.
  • Если есть необходимость использовать для питания дома все три фазы электродвигателя, то необходимо установить в сеть трехфазный трансформатор.

И еще один момент. Если перед вами стоит проблема, как организовать отопление с помощью самодельного электрогенератора, то двигатель от мотоблока здесь будет мал (имеется в виду мощность прибора). Оптимальный вариант – это двигатель от автомобиля, к примеру, от Оки или Жигулей. Многие могут сказать, что такое оборудование обойдется в копеечку. Ничего подобного. Купить сегодня подержанный автомобиль можно именно за копейки, так что расходы будут мизерными.

Достоинства и недостатки

Итак, в чем достоинства этого прибора:

  • Вы тешите себя мыслью, что сделали его сами. То есть, вы горды собой.
  • Финансовые затраты снижены до минимума. Самодельный агрегат будет стоить гораздо меньше, чем заводской его собрат.
  • Если все этапы сборки провести грамотно, то собранное вашими руками электрическое оборудование можно считать надежным и достаточно продуктивным.

Несколько отрицательных моментов этого рода приборов.

  • Если вы в электрике новичок или пытаетесь, не вникая во все тонкости и нюансы сборки, изготовить генератор тока, то потерпите фиаско. Затраченное вами время и деньги будут считаться выброшенными на ветер.

В принципе, это и есть единственный недостаток, что и вселяет оптимизм.

Другие конструкции электрогенератора

Бензиновый вариант не является единственным. Заставить вращаться вал электродвигателя можно разными способами. К примеру, с помощью ветряка или водяного насоса. Не самые простые конструкции, но именно они позволяют отойти от потребления энергоносителя в виде бензина.

К примеру, собрать гидрогенератор своими руками тоже несложно. Если возле дома протекает речка, ее воду можно использовать в качестве силы для вращения вала. Для этого в ее русло устанавливается колесо со множеством емкостей. С помощью этой конструкции можно создать поток воды, который будет вращать турбину, прикрепленную к валу электродвигателя. И чем больше объем каждой емкости, чем чаще они установлены (увеличивается количество), тем большей мощности водяной поток. По сути, это своеобразный регулятор напряжения генератора.

С ветровыми генераторами все немного по-другому, потому что ветровые нагрузки не являются величинами постоянными. Вращение ветряка, которое передается валу электрического мотора, необходимо регулировать, подстраивая под необходимую величину частоты вращения вала электродвигателя. Поэтому в этой конструкции регулятор напряжения – это обычный механический редуктор. Но здесь, как говорится, палка о двух концах. Если ветер снижает порывы, необходим повышающий редуктор, если, наоборот, увеличивает, нужен снижающий. В этом и заключается сложность сооружения ветрового электрогенератора тока.

Заключение по теме

Подводя итог, нужно понять, что самодельные электрогенераторы не панацея. Лучше добиться того, чтобы в поселок постоянно подавался электрический ток. Добиться этого сложно, а вот получить компенсацию за неудобства можно через суд. А уже полученные деньги направить на приобретение заводского бензинового генератора. Правда, придется учитывать расход недешевого топлива (бензина). Но если есть желание собрать электрогенератор своими руками, тогда вникайте в тему и пытайтесь.

Из чего сделать ветряк. Вертикальный ветряк своими руками: процесс сборки. Видео: простейший ветрогенератор для освещения дачи

Ветряные электростанции – это наиболее альтернативный вариант экономии электрической энергии на сегодняшний день.

Очень часто, такие установки можно встретить на дачных участках.

Люди используют их в тех местах, где загородные участки удалены от основных электрических сетей. Но это не единственная причина. Большинство людей используют ветроэлектростанции в целях экономии и автономности.

Ветряные электростанции имеют свои особенности, которые необходимо знать потенциальным покупателям, иак как от их компетентности зависит продуктивность работы .

Главный стимул приобретения ветряного генератора – это, несомненно, его целесообразность. Одним из главных критериев при достижении данной цели являются требования к ветру. Известно, что среднегодовая скорость ветра около 4.0-4.5 м/с., этого показателя более чем достаточно для того, чтобы домашняя ветряная электростанция была выгодна в использовании, то есть давала возможность экономить электроэнергию.

Для того, чтобы оценить скорость ветра в вашем регионе, вы можете воспользоваться картой ветров. Если у вас возникло желание измерить скорость ветра с максимальной точностью, вам стоит приобрести специальный прибор, который вам в этом поможет.

В состав этого изобретения входит деталь, которая носит название анемометр. С помощью неё к вам поступает сигнал равносильный скорости ветра. Также, вам пригодится прибор, который считывает сигналы, которые подаёт анемометр. Существуют и другие приспособления этого типа.

Для того, чтобы данные получились как можно точными, такие приборы нужно устанавливать высоко, чтобы внешние факторы, такие как деревья, различные постройки и прочее, не искажали результаты прибора.

Компоненты устройства

Очень важно при покупке домашних ветроэлектростанций знать её компоненты, это вам даст возможность быть более компетентными в этом вопросе и подобрать наилучшую модель для своего дома.

В состав ветряной электростанции входит:

  1. Ротор с лопастями (в зависимости от модели, ветрогенераторы делятся на двухлопастные, трёхлопастные и многолопастные).
  2. Редуктор, проще говоря, коробка передач. Его задача заключается в регулировании скорости между ротором и генератором.
  3. Защитный кожух — его название говорит само за себя, он предназначен для защиты всех составляющих деталей ветряной электростанции от внешнего воздействия.
  4. «Хвост» ветряной установки — нужен для поворота конструкции по направлению ветра.
  5. Аккумуляторная батарея – её основной целью является накопление электроэнергии. Связано с тем, что погодные условия не всегда благоприятны для ветряной электростанции, а с помощью этой составляющей сохраняется определённый запас энергии.
  6. Инверторная установка – предназначена для преобразования постоянного тока в переменный. Это нужно для обеспечения работы домашних электроприборов.

Типы и принцип работы

Ветряные электростанции делят на типы по следующим четырём критериям:

  1. По направлению оси вращения лопастей (делят на горизонтальные и вертикальные. Вертикальные более устойчивы к внешним условиям, но у них меньшая выработка электроэнергии) .
  2. По количеству лопастей (в этом случае ветрогенераторы бывают двух-, трёх- и многолопастные).
  3. По использованному материалу (выделяют с жёсткими и парусными лопастями. Основное отличие в том, что парусные стоят дешевле, но они менее прочны);
  4. По способу управления лопастями (существуют с фиксированным и изменяемым шагом лопастей. Специалисты рекомендуют фиксированный шаг лопастей, так как изменяемый вызывает затруднения в использовании).

При выборе электростанци,й целесообразно было бы знать, в чём заключается принцип работы ветрогенератора. Принцип действия установки предельно прост. Конструкция состоит из хвостовика с лопастями, закреплёнными на металлической мачте, которые вращаются при помощи ветра и крутят ротор генератора.

Перед подачей тока в аккумуляторный отсек, он проходит через преобразователь, где происходит преобразование переменного тока в постоянный до напряжения в 220 Вольт с частотой в 50 герц и снабжает дом электричеством в безветренную погоду.

Современному ветрогенератору нет необходимости в сильном ветре. Его конструкция столько продумана, что для частного дома достаточно скорости ветра до 4 – 5 м/c.

Преимущества и недостатки

Основные преимущества ветрогенераторов:

  1. Затраты уходят на установку и профилактику прибора. Больше расходов не требуется, так как конструкция не нуждается в топливе для работы.
  2. Вам не нужно контролировать и вмешиваться в работу ветряка , так как выработка энергии происходит всегда, когда есть ветер.
  3. В зависимости от типа генератора, он не будет производить лишний шум.
  4. Приспособлению подходит большинству климатических условий.
  5. Износ деталей незначителен.

Основные недостатки ветряной электростанции:

  1. В определенных режимах или при неправильной установке мачты , ветрогенератор может издавать инфразвук.
  2. Высокая мачта обязательно требует заземления.
  3. Необходимость регулярной профилактики.
  4. Вероятность повреждения приспособления при ураганах и т.д.

Выбор размера и места для размещения

Размер ветряной электростанции является очень важным вопросом для потенциальных покупателей. Для того, чтобы определиться с размерами, вам нужно внимательно изучить – сколько энергии вы потребляете в течение одного месяца? Полученную цифру необходимо умножить на 12 месяцев.

Затем, вам нужно воспользоваться формулой: AEO = 1.64 * D*D * V*V*V.

Обозначения, которые необходимо знать при использовании формулы:

  1. AEO — электроэнергия, которую вы используете за год.
  2. D – диаметр ротора, который обозначается в метрах.
  3. V – среднегодовая скорость ветра, обозначается в м/сек.

Таким образом, эти подсчёты помогут определить, какой размер генератора вам нужен, в зависимости от вашего расхода электроэнергии.

Задумываясь о приобретении ветряной электростанции для дома, нужно максимально точно изучить все детали связанные с конструкцией, так как от этого зависит то, насколько ваша цель будет удовлетворена.

При размещении ветрогенератора, вам стоит учитывать следующие факторы:

  1. Вблизи вашей установки не должно быть деревьев , разнообразных построек и прочего, что могло бы помешать максимальной продуктивности работы вашего генератора.
  2. Лучше всего установить ветрогенератор на специально сооружённую конструкцию , которая должна быть на пару метров выше, чем преграды расположенные на расстоянии как минимум 200 метров.
  3. Рекомендуется размещать ветроэлектростанции на расстоянии около 30-40 метров от жилых домов , так как они создают определённый шум, который приносит дискомфорт.

Также, вы должны учитывать, что вы не сможете постоянно получать одинаковый результат от вашей ветряной электростанции, так как природные условия меняются, в одном и том же месте могут быть разные порывы ветра, соответственно, и количество получаемой вами энергии будет динамично.

Обзор цен

В большинстве случаев, цена на ветряные электростанции зависит от их мощности. В бытовых условиях вполне достаточно генераторов с мощностью от 5 до 50 кВт.

Более детально о соотношении цен и видах генераторов:

  1. Ветрогенераторы с мощностью 3 кВт /48V – примерная стоимость 93 000,00р. Подобные могут быть использованы не только в качестве дополнительного источника электроснабжения, но и основного. Такие модели в состоянии обеспечить электроэнергией коттедж.
  2. Ветрогенераторы с мощностью 5 кВт /120V – приблизительно 220 100,00 р. Такая конструкция сможет обеспечить энергией целый дом. Вы сможете одновременно включать достаточно большое количество бытовых электрических приборов.
  3. Ветрогенераторы с мощностью 10 кВт/240V – цены в пределах 414 000,00 р. Его достаточно для обеспечения энергией фермерского хозяйства или нескольких домов. Помимо бытовых приборов вы без проблем сможете использовать, к примеру, электрические строительные инструменты весь день. Такие электрогенераторы часто используются для супермаркетов, чтобы обеспечить постоянную работу отделов и видеонаблюдения.
  4. Ветрогенераторы с мощностью 20 кВт/240V – цена такого устройства 743 700,00р. Электростанции такого типа являются очень мощными. Они в состоянии обеспечить электроэнергией целую водонапорную систему. В бытовых условиях он сможет более чем полностью обеспечить энергией огромный дом.
  5. Ветрогенераторы с мощностью 30 кВт/240V – стоимость в пределах 961 800,00 р. Эта модель является настолько мощной, что сможет обеспечить электрической энергией пятиэтажный дом.
  6. Ветрогенераторы с мощностью 50 кВт/380V – приблизительная цена около 3 107 000,00р. Эта модель не рациональна для использования в бытовых условиях, так как она настолько мощна, что сможет с лихвой обеспечить энергией несколько многоэтажных домов.

При покупке домашней электростанции, стоит знать о том, что в большинстве случаев цены указаны за полную комплектацию, но вы можете самостоятельно добавить или исключить определённые составляющие. Это подлежит вашему личному усмотрению.

Эффективность и окупаемость

Ветряные электростанции для дома являются альтернативным решением при экономии электроэнергии. Они получили достаточно широкое распространение.

Для того, чтобы обеспечить энергией целый дом, достаточно использовать один ветрогенератор и при этом не ограничивать себя, экономя на электроэнергии.

Выгодно и то, что для получения такого эффекта достаточно минимальной скорости ветра от 1,8 до 4,5 метра в секунду.

Но погодные условия не всегда подходят для ветрогенератора, поэтому вам нужно приобрести резервный генератор, который обеспечит запас энергии. Это даст возможность повысить продуктивность вашей домашней ветряной электростанции.

Среди положительных сторон установки стоит отметить следующие:

  1. Потратив большую сумму на электрогенератор , вам больше не потребуется тратить денежные средства, так как топливо для работы прибора не нужно. То есть уже за несколько лет ваше приобретение сможет окупиться.
  2. Производительность ветрогенератора не зависит от времени года или других погодных условий, его работа не прекращается даже зимой, что несомненно является плюсом, так как в зимнее время года расход энергии больше чем в другие. Этот факт несомненно свидетельствует о его эффективности и окупаемости.
  3. Износ деталей генератора незначительный , учитывая регулярную профилактику ветрогенератора, которая является необходимой. При правильной и грамотной установке, а также эксплуатации ветряной электростанции для дома, она сможет прослужить вам более тридцати лет, что несомненно является значительным плюсом.

Срок полной окупаемости ветряных электростанций составляет приблизительно 5-7 лет, а далее вы сможете использовать электроэнергии абсолютно бесплатно.

Из этой статьи Вы узнаете, как изготовить несложный ветрогенератор своими руками в домашних условиях. Такая ветряная электростанция всегда пригодится в удалённых местах, где нет доступа к бытовой электрической сети, например, на удалённом дачном участке. Конечно, можно использовать бензиновый генератор, но рокот и дым от двигателя внутреннего сгорания вряд ли кому-то придётся по душе, и уж точно это не располагает к отдыху на природе. Кроме того, расходы на бензин будут весьма немаленькими.

Ветряная электростанция сможет заряжать аккумуляторные батареи для автономной работы не сильно мощной бытовой техники и освещения. Впрочем, куда именно тратить полученную энергию, решать Вам.

Эта статья рассчитана на любителей в области конструирования ветрогенераторов своими руками, и поэтому в качестве конструкции выбрана максимально простая схема ветряной электростанции. Это будет относительно тихоходный самодельный ветряк (показатель быстроходности Z=3). Такая конструкция является надёжной и безопасной при работе.

Выбор мощности ветряной электростанции

Наверняка многим, кто читает эту статью, не захочется ограничиваться постройкой ветрогенератора для питания холодильника и освещения на даче, а сразу построить такую электростанцию, чтобы запитать ею не только аккумуляторные батареи, но и батареи отопления или бойлер для горячей воды. Но такая мощная электростанция будет чрезвычайно сложна в изготовлении, ведь усложнение конструкции с ростом мощности возрастает даже не в квадрате, а чуть ли не в кубе!

Как пример ветряной электростанции мощностью всего 2 кВт можно привести промышленный ветрогенератор W-HR2 международной компании AVIC (изображен на фото). Этот ветрогенератор номинальной мощностью 2 кВт имеет ротор диаметром 3,2 м с аэродинамически металлическими лопастями, прочную стальную башню высотой 8 м на массивном железобетонном фундаменте. Монтаж узлов производится при помощи автокрана. Очевидно, что расчет и изготовление подобного ветрогенератора сложно даже для отдельных специализированных фирм, и практически нереально силами одного человека непрофессионала для сооружения такого ветряка своими руками.

Таблица 1. Зависимость мощности ветрогенератора от количества лопастей и диаметра ветроколеса при скорости ветра 4 мс

Диаметр ветроколеса при числе лопастей, м

В табл. 1 показано зависимость мощности ветроколеса крыльчатого типа от его диаметра и количества лопастей. Или другими словами, какой длинны нужно взять лопасти определённого ветроколеса, чтобы получить нужную мощность. Данные в этой таблице основаны на практических испытаниях эксплуатируемых ветрогенераторов, у которых КИЭВ (коэффициент использования энергии ветра) ветроколеса равен 0,35 (профиль среднего качества), КПД генератора имеет значение 0,8 и КПД редуктора — 0,9.

Для кого-то эти данные могут на первый взгляд показаться слишком завышенными. Так, для примера, из табл. 1 видно, что для постройки ветряной электростанции мощностью 500 Вт с тремя лопастями, диаметр ветроколеса должен быть равным 11,48 м. Но не стоит пугаться этой цифры, поскольку данные приведены для слабого ветра 4 м/с. Это обычный ветер для равнинной местности вдали от моря.

При этом с ростом скорости ветра мощность ветряной электростанции увеличивается. На рис. показано такую зависимость для электростанции номинальной мощностью 240 Вт. Из графика видно, что при минимальном ветре 4 м/с (при котором электростанция начинает работать), мощность составляет всего 30 Вт. Но мощность ветроэлектростанции пропорциональна скорости ветра в кубе. То есть при увеличении скорости ветра в два раза до максимальной рабочей скорости 8 м/с, мощность ветряной электростанции увеличивается в 2 3 =8 раз или с 30 Вт до полной мощности 240 Вт. При более высокой скорости ветра работа ветровой станции должна будет ограничиваться.

В целом, основываясь на практическом опыте можно заключить, что относительно несложный самодельный ветрогенератор будет иметь мощность в пределах 200-500 Вт. Это своего рода «золотая середина». Редко индивидуальным конструкторам удаётся собрать более мощный ветрогенератор своими руками, который реально будет работать.

Выбор конструкции ветроколеса

Ветряное колесо — самая важная часть ветрогенератора. Именно оно преобразует энергию ветра в механическую. И от его конструкции зависит выбор всех остальных узлов, например, генератора электрического тока.

Наверняка, всем хорошо знакома форма ветряных колёс старинных ветряных мельниц. Это как раз тот случай исключение, когда всё забытое старое не всегда хорошо. Такие ветроколёса ветряной мельницы имеют очень низкий КИЭВ порядка 0,10-0,15, что намного меньше КИЭВ современных быстроходных крыльчатых колёс, которое достигает 0,46. Всё потому, что низкие познания в аэродинамике старинных мастеров не позволяли им сконструировать более совершенную конструкцию.

На рисунке изображена работа двух типов лопастей: парусной (1) и крыльчатой (2). Для того чтобы сделать парусную лопасть (1), достаточно просто прикрепить листовой материал к оси, расположив под углом к ветру, то есть по аналогии с ветряными мельницами древности. Но при вращении такой лопасти она будет иметь значительное аэродинамическое сопротивление, которое возрастает с увеличением угла атаки. Также на её концах образуются завихрения, и за лопастью возникает зона пониженного давления. Всё это делает парусные лопасти неэффективными ветровыми движителями.


Гораздо более эффективной является лопасть крыльчатого типа (2). При такой форме лопасти, которая похожа на крыло самолёта, потери от трения и разрежения сведены к минимуму. Что касается угла атаки лопасти, то на практике установлено, что наиболее оптимальный угол составляет 10-12º. При более высоком угле атаки прирост мощности в результате более высокого давления ветра на лопасть не покрывается ростом аэродинамических потерь.

Конечно, есть много других интересных типов ветровых двигателей, например, вертикально-осевые роторы Савониуса или роторы Дарье. Но все они имеют более низкие коэффициенты использования энергии ветра при более высокой материалоёмкости (в сравнении с крыльчатыми колёсами). Например, установка с ротором Савониуса диаметром 2 метра и высотой 2 метра при тихом ветре 4 м/с будет иметь полезную мощность 20 Вт. Такую же мощность выработает шестнадцатилопастный крыльчатый винт диаметром всего 1 метр.

Поэтому мы не будем «изобретать велосипед» и сразу за основу возьмём конструкцию, где используются лопасти крыльчатого типа с горизонтальной осью вращения. Именно этот тип ветряного двигателя имеет максимальный КИЭВ при минимальном расходе материалов. Неудивительно, что такая конструкция используется почти в 99% всех действующих промышленных ветровых электростанциях.

Прежде всего, нужно выбрать число лопастей. Наиболее дешевыми являются двух- и трёхлопастные ветроколёса, но они являются быстроходными и обладают следующими недостатками:

— высокие рабочие обороты приводят к возникновении больших центробежных и гироскопических сил. Гироскопические силы нагружают ось генератора, крепления и мачту, а центробежные стремятся разорвать лопасти на части. Так, окружная скорость концов лопастей быстроходных двухлопастных ветроколёс нередко достигает 200 м/с и более. Для сравнения скорость пули, выпущенной из винтовки Бейкера 1808 г., равнялась 150 м/с. Таким образом, осколки разлетающегося сломанного винта могут ранить или даже убить человека. По этой причине никому не рекомендуется изготавливать лопасти высокоскоростных ветроколёс из пластиковой трубы. Для этих целей лучше подходит более прочная на растяжение древесина. Изготовление же лопастей из дерева весьма трудоёмкий процесс.

— известно, что чем быстрее вращаются лопасти, тем больше сила трения о воздух. Поэтому лопасти быстроходных ветроколёс гораздо более требовательны к аэродинамическому качеству изготовления. Даже небольшие погрешности сильно снижают КИЭВ быстроходных лопастей. Крайне нежелательно делать быстроходные лопасти вогнутыми, они должны иметь форму крыла самолёта. Изготовить же лопасти тихоходного винта гораздо проще для любителя. Нужно сильно «постараться», чтобы сделать лопасть для тихоходного винта из разрезанной трубы с КИЭВ хуже 0,3.

— быстроходные ветродвигатели издают сильный шум при вращении, ведь даже аэродинамически высококачественные лопасти при быстром вращении создают значительные зоны сжатий и разряджений воздуха, а кустарно изготовленные лопасти и подавно. Соответственно, чем больше окружная скорость и размеры лопасти, тем больше шум. Поэтому мощный быстроходный ветряк нельзя просто установить на крыше дома или в огороде при плотной застройке, иначе Вы рискуете просыпаться ночью от шума взлетающего вертолёта и испортить отношения с соседями в придачу.

— чем меньше лопастей у ветроколеса, тем больше вибрации. Поэтому ветроколёса с малым числом лопастей (2-3) будет труднее сбалансировать.

Учитывая все эти недостатки быстроходных ветроколёс, для более-менее мощного «ветряка» лучше выбрать число лопастей не менее 5-6.

Теперь основываясь на данных табл. 1, давайте прикинем, какой максимальной длинны лопасти подойдут для изготовления несложной электростанции. Очевидно, шестилопастный винт диаметром 2,5-3 м будет сложен в изготовлении. Представьте себе хотя бы процесс балансировки такого винта и его установку на мачту, которая в свою очередь должна быть довольно прочной, чтобы выдержать вес такого винта и аэродинамические нагрузки. А вот шестилопастный винт диаметром 2 метра или около того будет по силам энтузиасту для изготовления своими руками.

Возможно у кого-то возникнет соблазн, не посчитаться с затратой материалов и ещё больше увеличить количества лопастей для увеличения полезной мощности ветроустановки. Так, при числе лопастей двухметрового винта равным 12 мощность при «свежем» ветре (8 м/с) достигнет почти 500 Вт. Но такое дорогое ветряное колесо получиться слишком тихоходным, а значит, неизбежно потребует применения отдельного редуктора, что сильно усложнит конструкцию ветровой электростанции.

Таким образом, наиболее оптимальной является конструкция винта ветрогенератора диаметром 2 м и количеством лопастей равным 6.

Электрический генератор для ветряной электростанции

При подборе генератора электрического тока для ветроэлектростанции прежде всего нужно определить частоту вращения ветроколеса. Рассчитать частоту вращения ветроколеса W (при нагрузке) можно по формуле:

где V — скорость ветра, м/с; L — длинна окружности, м; D — диаметр ветроколеса; Z — показатель быстроходности ветроколеса (см. табл. 2).

Таблица 2. Показатель быстроходности ветроколеса

Показатель быстроходности Z

Если в эту формулу подставить данные для выбранного ветроколеса диаметром 2 м и 6 лопастями, то получим частоту вращения. Зависимость частоты от скорости ветра показано в табл. 3.

Таблица 3. Обороты ветроколеса диаметром 2 м с шестью лопастями в зависимости от скорости ветра

Скорость ветра, м/с

Число оборотов, об/мин

Примем максимальную рабочую скорость ветра равной 7-8 м/с. При более сильном ветре работа ветрогенератора будет небезопасной и должна будет ограничиваться. Как мы уже определили, при скорости ветра 8 м/с максимальная мощность выбранной конструкции ветроэлектростанции будет равна 240 Вт, что соответствует частоте вращения ветроколеса 229 об/мин. Значит, нужно подобрать генератор с соответствующими характеристиками.


К счастью, времена тотального дефицита «канули в Лету», и нам не придётся по традиции приспосабливать автомобильный генератор от ВАЗ-2106 к ветряной электростанции. Проблема в том, что такой автомобильный генератор, например, Г-221 является высокооборотным с номинальной частотой вращения от 1100 до 6000 об/мин. Получается, без редуктора наше тихоходное ветроколесо ни как не сможет раскрутить генератор до рабочих оборотов.

Делать редуктор к нашему «ветряку» мы не будем, и поэтому подберём другой тихоходный генератор, чтобы закрепить ветроколесо просто на валу генератора. Наиболее подходящим для этого является веломотор, специально разработанный для мотор-колеса велосипедов. Такие веломоторы имеет низкие рабочие обороты, и могут легко работать в режиме генератора. Наличие постоянных магнитов в этом типе двигателя будет означать отсутствии проблем с возбуждением генератора как в случае, например, с асинхронными двигателями переменного тока, у которых, обычно, используются электромагниты (обмотка возбуждения). Без подпитки током обмотки возбуждения такой двигатель не будет вырабатывать ток при вращении.

К тому же весьма приятная особенность веломоторов заключается в том, что они относятся к бесколлекторным двигателям, а значит, не требуют замены щёток. В табл. 4 представлен пример технических характеристик веломотора мощностью 250 Вт. Как видим из таблицы, этот веломотор отлично подойдёт в качестве генератора для «ветряка» мощностью 240 Вт и с максимальными оборотами ветроколеса 229 об/мин.

Таблица 4. Технические характеристики веломотора мощностью 250 Вт

Номинальное напряжение питания

Тип питания статора

Изготовление ветрогенератора своими руками

После того как приобретён генератор, можно приступать к сборке ветрогенератора своими руками. На рисунке изображено устройство ветроэлектростанции. Способ крепления и расположения узлов может быть иным и зависит от индивидуальных возможностей конструктора, но нужно придёрживаться размеров основных узлов на рис. 1. Эти размеры подобранны под данную ветряную электростанцию с учетом конструкции и размеров ветроколеса.

На рис. 1 изображены размеры боковой лопаты (1), хвоста с оперением (2), а также рычага (3), через который передаётся усилие от пружины. Хвост с оперением для поворота ветроколеса по ветру нужно изготовить по размерам на рис. 1 из профильной трубы 20х40х2,5 мм и кровельного железа в качестве оперения.

Крепить генератор следует на таком расстоянии, чтобы минимальное расстояние между лопастями и мачтой было не менее 250 мм. В противном случае нет гарантий, что лопасти, прогнувшись под действием ветра и гироскопических сил, не разобьются об мачту.

Изготовление лопастей

Ветряк своими руками обычно начинается из лопастей. Наиболее подходящим материалом для изготовления лопастей тихоходного ветряка является пластик, точнее пластиковая труба. Изготовить лопасти из пластиковой трубы проще всего — небольшая трудоёмкость и трудно ошибиться новичку. Также пластиковые лопасти в отличии от деревянных гарантированно не покорежатся от влаги.

Труба должна быть из ПВХ диаметром 160 мм для напорного трубопровода или канализации, например, SDR PN 6,3. У таких труб толщина стенки не менее 4 мм. Трубы для безнапорной канализации не подойдут! Эти трубы слишком тонкие и непрочные.


На фото изображено ветроколесо с разбившимися лопастями. Эти лопасти были изготовлены из тонкой ПВХ трубы (для безнапорной канализации). Они прогнулись от давления ветра и разбились об мачту.

Расчет оптимальной формы лопасти довольно сложный и нет необходимости его тут приводить, пусть им занимаются профессионалы своего дела. Нам же достаточно изготовить лопасти, используя уже рассчитанный шаблон по рис. 2, на котором изображено размеры шаблона в миллиметрах. Нужно просто вырезать такой шаблон из бумаги (), далее приложить к трубе 160 мм, нарисовать контур шаблона на трубе маркером и вырезать лопасти с помощью электролобзика или вручную. Красными точками на рис. 2 изображено ориентировочное расположение креплений лопастей.

В итоге у Вас должно будет получиться шесть лопастей, формой как на фотографии. Чтобы полученные лопасти имели более высокий КИЭВ и меньше издавали шума при вращении, нужно сточить острые углы и края, а также отшлифовать все шершавые поверхности.


Для крепления лопастей к корпусу веломотора нужно использовать головку ветродвигателя, которая представляет собой диск из мягкой стали толщиной 6-10 мм. К нему приварены шесть стальных полос толщиной 12 мм и монтажной длинной 30 см с отверстиями для крепления лопастей. Диск крепится к корпусу веломотора с помощью болтов с контргайками за отверстия под крепление спиц.

После изготовления ветроколеса, его нужно обязательно отбалансировать. Для этого ветроколесо закрепляется на высоте в строго горизонтальном положении. Желательно, это сделать в закрытом помещении, где нет ветра. При сбалансированном ветроколесе лопасти не должны самопроизвольно поворачиваться. Если же какая-то лопасть тяжелее, её нужно сточить с конца до уравновешивания в любом положении ветроколеса.

Также нужно проверить вращаются ли все лопасти в одной плоскости. Для этого замеряется расстояние от конца нижней лопасти до какого-нибудь ближайшего предмета. Затем ветроколесо поворачивается и замеряется расстояние от выбранного предмета до других лопастей. Расстояние от всех лопастей должно быть в пределах +/- 2 мм. Если разница больше, то перекос нужно устранить, подогнув стальную полосу к которой крепится лопасть.

Крепление генератора (веломотора) к раме

Поскольку генератор испытывает большие нагрузки, в том числе и от гироскопических сил, его следует надёжно закрепить. Сам веломотор имеет прочную ось, поскольку используется при больших нагрузках. Так, его ось должна выдерживать вес взрослого человека при динамических нагрузках, возникающих при ездё на велосипеде.

Но на раме велосипеда веломотор крепится с двух сторон, а не с одной, как будет при работе в качестве генератора тока для ветряной электростанции. Поэтому вал нужно крепить к станине, которая представляет собой металлическую деталь с резьбовым отверстием для накручивания на вал веломотора соответствующего диаметра (D) и четырьмя монтажными отверстиями для крепления стальными болтами М8 к раме.

Желательно, использовать максимально большую длину свободного конца вала для крепления. Чтобы вал не прокручивался в станине, его нужно закрепить гайкой с контршайбой. Станину лучше всего изготовить из дюралюминия.

Для изготовления рамы ветрогенератора, то есть основы, на которой будут располагаться все другие детали, нужно использовать стальную пластину толщиной 6-10 мм или отрезок швеллера подходящей ширины (зависит от наружного диаметра поворотного узла).

Изготовление токоприёмника и поворотного узла

Если к генератору просто привязать провода, то рано или поздно провода перекрутятся при вращении ветряка вокруг оси и оборвутся. Чтобы этого не произошло, нужно применить подвижный контакт — токоприёмник, который состоит из втулки, изготовленной из изоляционного материала (1), контактов (2) и щёток (3). Для защиты от осадков контакты токоприёмника должны быть закрыты.

Для изготовления токоприёмника ветрогенератора удобно использовать такой способ: сначала на готовом поворотном узле размещаются контакты, например, из толстой латунной или медной проволоки прямоугольного сечения (используется для трансформаторов), контакты должны быть уже с припаянными проводами (10), в качестве которых нужно использовать одно- или многожильный медный провод сечением не менее 4 мм 2 . Контакты накрываются пластиковым стаканчиком или другой ёмкостью, закрывается отверстие в опорной втулке (8) и заливается эпоксидной смолой. На фото использована эпоксидная смола с добавкой двуокиси титана. После затвердевания эпоксидной смолы деталь стачивается на токарном станке до появления контактов.

В качестве подвижного контакта лучше всего использовать медно-графитовые щетки от автомобильного стартёра с плоскими пружинами.


Для того чтобы ветряное колесо ветрогенератора могло поворачиваться по ветру, необходимо обеспечить подвижное соединения рамы ветродвигателя с неподвижной мачтой. Подшипники располагаются между опорной втулкой (8), которая через фланец соединяется с трубой мачты с помощью болтов и муфтой (6), которая приваривается дуговой сваркой (5) к раме (4). Чтобы облегчить поворот, нужен поворотный узел с использованием подшипников (7) с внутренним диаметром не менее 60 мм. Лучше всего подойдут роликоподшипники, которые лучше воспринимают осевые нагрузки.

Защита ветряной электростанции от ураганного ветра

Максимальная скорость ветра, при которой может эксплуатироваться данная ветряная электростанция, составляет 8-9 м/с. Если скорость ветра больше, работа ветряной электростанции должна ограничиваться.

Конечно, этот предлагаемый тип ветряка для изготовления своими руками тихоходный. Вряд ли лопасти раскрутятся до чрезвычайно высоких оборотов, при которых они разрушаться. Но при слишком сильном ветре давление на хвост оперения становится очень значительным, и при резком изменении направления ветра ветрогенератор будет резко поворачиваться.

Учитывая же, что лопасти при сильном ветре быстро вращаются, то ветроколесо превращается в большой тяжелый гироскоп, который противится любым поворотам. Именно поэтому между рамой и ветроколесом возникают значительные нагрузки, которые сосредотачиваются на валу генератора. Известно много случаев, когда любители строили ветрогенераторы своими руками без какой-либо защиты от ураганно ветра, и у них из-за значительных гироскопических сил ломались прочные оси автомобильных генераторов.

Кроме того, шестилопасное ветроколесо диаметром 2 м обладает значительным аэродинамическим сопротивлением, и при сильном ветре будет значительно нагружать мачту.

Поэтому, чтобы самодельный ветрогенератор служил долго и надёжно, а ветроколесо не свалилось на голову прохожим, необходимо защищать его от ураганных ветров. Проще всего защитить ветряк с помощью боковой лопаты. Это довольно простое устройство, которое хорошо зарекомендовало себя на практике.

Работа боковой лопаты заключается в следующем: при рабочем ветре (до 8 м/с) давление ветра на боковую лопату (1) меньше жесткости пружины (3), и ветряк устанавливается приблизительно по ветру с помощью оперения. Для того чтобы пружина не складывала ветряк при рабочем ветре более чем это нужно, между хвостом (2) и боковой лопатой натянута растяжка (4).

Когда скорость ветра достигает 8 м/с, давление на боковую лопату становится сильнее, чем усилие пружины, и ветрогенератор начинает складываться. При этом ветряной поток начинает набегать на лопасти под углом, что ограничивает мощность ветроколеса.

При очень сильном ветре ветряк складывается полностью, и лопасти устанавливаются параллельно направлению ветра, работа ветряка практически прекращается. Обратите внимание, что хвост оперения не связан с рамой жестко, а вращается на шарнире (5), который должен быть изготовлен из конструкционной стали и иметь диаметр не менее 12 мм.

Размеры боковой лопаты приведены на рис. 1. Саму боковую лопату, также как и оперение, лучше всего изготовить из профильной трубы 20х40х2,5 мм и стального листа толщиной 1-2 мм.

В качестве рабочей пружины можно использовать любые пружины из углеродистой стали с защитным цинковым покрытием. Главное, чтобы в крайнем положении усилие пружины равнялось 12 кг, а в начальном положении (когда ветряк ещё не складывается) — 6 кг.

Для изготовления растяжки следует использовать стальной велосипедный тросик, концы тросика загибаются в петлю, а свободные концы закрепляются восемью витками медной проволки диаметром 1,5-2 мм и спаиваются оловом.

Мачта ветрогенератора

В качестве мачты для ветряной электростанции можно использовать стальную водопроводную трубу диаметром не менее 101-115 мм и минимальной длинной 6-7 метров при условии относительно открытой местности, где на расстоянии 30 м не было бы препятствий для ветра.

Если же ветряную электростанцию невозможно установить на открытой площадке, то тут ничего не поделаешь. Нужно увеличивать высоту мачты так, чтобы ветроколесо было хотя бы на 1 м выше окружающих препятствий (домов, деревьев), иначе выработка электроэнергии ощутимо снизится.

Само основание мачты следует устанавливать на бетонную площадку, чтобы оно не продавливалось в размокшую почву.

В качестве растяжек нужно использовать стальные оцинкованные монтажные тросы, диаметром не менее 6 мм. Растяжки крепятся к мачте посредством хомута. У земли тросы крепятся к прочным стальным колышкам (из трубы, швеллера, уголка и т.д.), которые закопаны в землю под углом на полную глубину полтора метра. Ещё лучше, если они дополнительно замоноличенны у основания бетоном.

Поскольку мачта в сборе с ветрогенератором обладает значительным весом, то для ручной установки нужно использовать противовес, изготовленный из такой же стальной трубы, как и мачта или деревянного бруса 100х100 мм с грузом.

Электрическая схема ветряной электростанции

На рисунке изображена простейшая схема зарядки аккумуляторов: три вывода от генератора подключаются к трёхфазному выпрямителю, который представляет собой три диодных полумоста подключенных параллельно и объединённых звездой. Диоды должны быть рассчитаны на минимальное рабочее напряжение 50В и ток 20А. Так как максимальное рабочее напряжение от генератора будет равно 25-26 В, то выводы от выпрямителя подключаются к двух батареям на 12 вольт, соединённых последовательно.

При использовании такой простейшей схемы зарядка аккумуляторов протекает следующим образом: при низком напряжении менее 22 В зарядка аккумуляторов происходит очень слабо, поскольку ток ограничивается внутренним сопротивлением аккумуляторов. При скорости ветра 7-8 м/с вырабатываемое напряжение генератора будет в пределах 23-25 В, и начнётся интенсивный процесс зарядки аккумуляторов. При более высокой скорости ветра работа ветрогенератора будет ограничиваться боковой лопатой. Для защиты аккумуляторных батарей (при аварийной работе ветряной электростанции) от чрезмерного сильного тока в схеме должен быть плавкий предохранитель, рассчитанный на максимальный ток 25 А.

Как видите, эта простая схема имеет значительный недостаток — при тихом ветре (4-6 м/с) аккумуляторная батарея практически не будет заряжаться, а ведь именно такие ветра чаще всего встречаются на равнинной местности. Для того чтобы подзаряжать аккумуляторные батареи при несильном ветре, нужно использовать контроллер заряда, который подключается перед аккумуляторными батареями. Контроллер заряда будет автоматически преобразовывать необходимое напряжение, также контроллер более надёжен, чем плавкий предохранитель и предупреждает перезаряд аккумуляторов.


Чтобы использовать аккумуляторные батареи для питания бытовой техники рассчитанной на переменное напряжение 220 В, понадобится дополнительно инвертор для преобразования постоянного напряжения 24 В соответствующей мощности, которая подбирается в зависимости от пиковой мощности. Например, если Вы будете подключать к инвертору освещение, компьютер, холодильник, то вполне достаточно инвертора рассчитанного на 600Вт, если же планируете хоть изредка дополнительно пользоваться электродрелью или дисковой пилой (1500 Вт), то следует выбрать инвертор мощностью 2000 Вт.

На рисунке показано более сложную электрическую схему: в ней ток от генератора (1) сначала выпрямляется в трехфазном выпрямителе (2), далее напряжение стабилизируется контроллером заряда (3) и заряжает аккумуляторные батареи на 24 В (4). Для питания бытовых приборов подключается инвертор (5).

Токи от генератора достигают десятки ампер, поэтому для соединения всех приборов в цепи следует использовать медные провода общим сечением 3-4 мм 2 .

Желательно ёмкость аккумуляторных батарей взять не менее 120 а/ч. Общая емкость батарей будет зависеть от средней интенсивности ветра в регионе, а также от мощности и частоты подключаемой нагрузки. Более точно необходимая ёмкость будет известна в процессе эксплуатации ветряной электростанции.

Уход за ветряной электростанцией

Рассмотренный тихоходный ветрогенератор для изготовления своими руками, как правило, хорошо запускается при слабом ветре. Для нормальной работы ветрогенератора вцелом нужно придерживаться таких правил:

1. Через две недели после запуска опустить ветрогенератор при слабом ветре и проверить все крепления.

2. Не менее чем два раза в год смазывать подшипники поворотного узла и генератора.

3. При первых признаках разбалансировки ветроколеса (дрожание лопастей при вращении в установившемся по ветру положении) ветрогенератор следует опустить и устранить неисправность.

4. Раз в год проверять щетки токоприёмника.

5. Красить металлические детали ветряной электростанции один раз в 2-3 года.

Игорь Соларов, специально для

Технология изготовления домашней ветроэлектростанции (простой ветряк).

Технология изготовления домашней ветроэлектростанции (простой ветряк ) . Потребность в электроэнергии появляется сразу, как только мы становимся обладателями садового участка или дома в сельской местности. В этом случае на помощь могут придти индивидуальные электростанции, как работающие на нефтепродуктах, так и использующие энергию ветра, воды и т.п., но купить такие электростанции негде – их нет в продаже. Наиболее экологически чистый источник – ветер. Одну из таких электростанций можно сделать вручную, например ветроэлектростанцию (ВЭС) . С помощью пропеллера электрогенератором, который заряжает аккумулятор через выпрямительное устройство. ВЭС использует восполняемый и бесплатный источник энергии и не нуждается в постоянном присмотре. Однако электроэнергия вырабатывается крайне неравномерно – только в ветреную погоду. Впрочем, малые ветросиловые установки (ветроагрегаты) , подключенные к аккумуляторной батарее, этот недостаток почти компенсируют.

Ветроэлектростанции в заводских условиях, как правило, производятся лопастные пропеллерные двигатели. В отличие от роторных, лопастные ветроэлектростанции имеют преимущество – более высокий КПД. Но лопастные двигатели гораздо сложнее изготовить, поэтому если Вы хотите сделать ветроэлектрогенератор своими руками, а проще – самодельную ветроэлектростанцию, специалисты советуют изготавливать именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектростанции :

1 — лопасти
2 — крестовина
3 — вал
4 — подшипники с корпусами
5 — соединительная муфта
6 — силовая стойка (швеллер № 20)
7 — редуктор
8 — электрогенератор
9 — растяжки (4 шт.)
10 — лестница.

Важно: роторный двигатель нужно поднять не менее чем на 3-4 метра над землей. Тогда ротор будет находиться в зоне свободного ветра, а помехи от рядом стоящих строений останется ниже его. , поднятая над землей будет выполнять еще одну функцию — функцию молниеотвода, а для местности с невысокими строениями это немаловажно.

В конструкции, разработанной В. Самойловым, ротор состоит из 4 лопастей, это обеспечивает ему более равномерное вращение. Ротор – одна из самых важных частей ветряка. Его конструкция и размеры лопастей играют особую роль – от их расположения и конструкции зависит мощность и скорость вращения вала приводящего в движение редуктор ветряной электростанции. Чем больше рабочая площадь лопастей, которые образуют обтекаемую поверхность, тем меньше количество оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:

1 — подшипник
2 — корпус подшипника
3 — дополнительное крепление вала четырьмя растяжками
4 — вал.
Ротор совершает обороты благодаря аэродинамической несимметричности. Ветер, дующий поперек оси ротора, «соскальзывает» с округлой части лопасти и попадает в ее противоположный «карман». Разница в аэродинамических свойствах округлой и вогнутой поверхностей создает тягу, которая, вращает ротор. Такой двигатель имеет больший крутящий момент. Мощность ротора диаметром 1 м превышает мощность пропеллера с тремя лопастями диаметром 2 м.
При порывах ветра роторные ветродвигатели, работают более стабильно, чем винтовые. И еще не маловажный факт, роторы работают более плавно, издают меньше шума, работают при любом направлении ветра без дополнительных приспособлений, но минус в том, что скорость их вращения ограничена 200-500 об/мин.
Но увеличение оборотов асинхронного генератора не даст рост напряжения. Поэтому мы не будем рассматривать автоматическое изменение угла лопастей ротора для различных скоростей ветра.
Есть разные виды роторных ветроэлектроэлектростанций которые можно сделать своими руками. Вот некоторые из них:

Примеры роторных колес.

Четырехлопастное роторное ветряное колесо, КПД до 15%. Двухъярусное роторное колесо проще в изготовлении, имеет более высокий КПД (до 19%), а также развивает большее число оборотов в сравнении с четырехлопастным. Но, для того чтобы сохранить надежность установки, целесообразно увеличивать диаметр вала. У ротора Савониуса меньшее количество оборотов по сравнению с двухлопастным ротором. Его КПД не превышает 12%. Такой двигатель, в основном применяется для привода поршневых агрегатов (насосов, помп и т.д.). Карусельное ветряное колесо — одна из самых простейших конструкций. Этот ротор способен развивать сравнительно низкие обороты и имея малую удельную мощность, имеет КПД не более 10%.

Мы рассмотрим ветроэлектростанцию которую можно сделать своими руками , собранную на основе четырехлопастного ротора. Энергию ветра можно использовать и в качестве етряного насоса для воды , как отдельную установку или совмещенную с электростанцией.

Лопасти ветроколеса можно сделать из железной 100, 200 литровой бочки. Ее необходимо разрезать «болгаркой», не рекомендуют резать бочку любой сваркой, так как свойства метала по шву резки очень сильно изменяться. Усиливать края изготовленной лопасти можно, закрепив на них прутья арматуры или полосками металла диаметром от 6 до 8 мм.
Лопасти первого ротора закрепляем на двух крестовинах двумя болтами М12-М14. Верхняя крестовина изготавливается из стального листа толщиной 6-8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижнюю крестовину нужно сделать более прочной, так как на нее приходится основной вес лопастей. Для ее изготовления, берем швеллер длиной не менее 1 м (это зависит от применяемой бочки), со стенкой 50-60 мм
Мачта и основной вал.
В предлагаемой ветро-электроустановке рама из уголка для крепления электрогенератора закреплена на стойке, которая изготовлена из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал ротора целесообразней собрать из двух составляющих, это даст Вам удобство при расточке его концов под подшипники. Подшипники (в корпусах (буксах)),
соответствующие по размерам валу, крепятся на швеллере болтами. Части вала соединяют между собой. Диаметр вала должен составлять не менее 35-50 мм.
К одной из полок швеллера самодельной ветроэлектростанции привариваем отрезки трубы длиной 500 мм м диаметром 20 мм, которые будут выполнять роль лестницы. Стойку вкапываем в землю не менее, чем на 1200 мм, а также для дополнительной устойчивости закрепляем ее 4-мя растяжками. Для защиты от коррозии, энергоустановку необходимо покрасить краской основой которой является олифа.

Рис. 4. Возможные схемы крепления роторов к вертикальному валу:

а, б — карусельные колеса;
в — ротор Савониуса.
Нижняя часть рисунка.Лопасть ветряка, сделаная
из 1/4 бочки и схема разреза:
1 — отверстие крепления к крестовине
2 — усиление борта
3 — контур лопастей.

Сделать ветряк самостоятельно кажется непосильной задачей, которая отнимает много времени и сил. Но следуя пошаговой инструкции можно легко и быстро достичь желаемого результата за небольшие деньги.

Задавшись целью обзавестись ветрогенератором, многие хотят его сделать самостоятельно. Как показали исследования в интернете — большинство так и делает, но такое решение отняло у них очень много времени и усилий (по крайней мере, самая первая сборка). Чаще всего применяется схема сборки на магнитах постоянного тока. Этот путь является значительно проще, чем самостоятельное создание самого генератора. По этой причине рекомендуется запастись терпением и начинать поиски двигателя, который бы отлично подходил по параметрам, чтобы сделать ветрогенератор своими руками.

Подбор генератора

Как оказалось, большинство использует в виде генератора старый мотор из компьютеров. Такой мотор является раритетом и применялся еще во времена, когда у вычислительных машин использовались большие ленточные катушечные накопители. Среди всех возможных вариантов самым лучшим можно считать двигатель постоянного тока от производителя Ametekна 30 вольт. Это самый подходящий вариант, чтобы сделать ветрогенератор, так как даже легкое вращение его вала может свободно генерировать 12 В. Данный двигатель довольно тяжело найти, но на торговых площадках ebay и Amazon полно его аналогов. Дополнительно в описании знающие люди указывают возможность их использования в качестве генератора для ветряка.

Подбор двигателя нужно делать с учетом следующих параметров:

  • постоянный ток;
  • низкие обороты;
  • высокое напряжение;
  • высокая сила тока.

Все дело в том, что двигатель, рассчитанный на 7200 оборотов и напряжением в 24 В, при низких оборотах вряд ли сможет дать требуемые значения. Но если взять 30-вольтовый мотор с номинальным значением в 325 об/мин, то вполне реально ожидать от него напряжение в 12 вольт даже при характерных ветряку низких оборотах.

Примерная стоимость того же Ametek примерно 26 $. Можно найти и немного дешевле двигатель, но это не столь важно. При обычном легком толчке он зажигает без проблем лампу на 12 вольт, что нам и требовалось. Итак, двигатель-генератор мы нашли. Приступаем к следующему шагу — расчету лопастей.

Лопасти

В качестве , можно без проблем использовать обычную сантехническую трубу из ПВХ длиной 60 см и диаметром 15 см. Разрежьте ее на 4 части. Это будут заготовки лопастей. Затем вырежьте квадрат 5х5 у основания для создания крепежа в дальнейшем. Чтобы сохранить точную форму и не срезать лишнего рекомендуется просверлить изначально небольшое отверстие в нужном месте. Далее просто обрезаете лишний пластик вдоль заготовки по диагонали. Все, первая лопасть готова.

Используйте вырезанный элемент как шаблон для создания остальных трех лопастей. Также он будет играть роль запасной детали, если что-то пойдет не так. Двигатель на наш ветрогенератор мы выбрали и изготовили лопасти. Теперь нужно их сделать одним единым.

Сборка генератора с лопастями

Для объединения лопастей с генератором можно применять обычный шкив как основу и алюминиевый диск диаметром 13 см. Скрепив их вместе с использованием болтового соединения, вы получите отличную легкую и практичную основу, которая будет являться промежуточным звеном, передающим силу ветра с лопастей, вращая ветрогенератор. Сами лопасти крепятся также при помощи болтов. В магазине сантехники можно приобрести колпак, чтобы скрыть все металлические детали и придать ветряку большей обтекаемости. Практика показала, что все эти параметры позволяют даже легкому ветерку создавать вращения и при этом ветрогенератор вырабатывает положенные ему 12 В.

Установка турбины

Для установки турбины своими руками можно использовать обычную деревянную подставку из бруска длиной 84 см. Также желательно использовать кусок пластиковой трубы диаметром 10 см для защиты двигателя от разного рода осадков. В качестве хвоста для ветряка на 12 вольт рекомендуется применять алюминиевую пластину размером 21х35 см и толщиной 20-30 мм. Она идеально подойдет как противовес и как элемент для поворота установки по ветру. Все размеры не критичны и могут быть немного изменены под особенности конструкции.

Также рекомендуется провести шлифовку всех элементов и закругление углов для более привлекательного вида и лучших аэродинамических показателей. Затем покройте все деревянные части несколькими слоями краски. Цвет можете выбрать любой, так как от этого ничего не зависит.

Для большего удобства на краю, где будет располагаться сам генератор, можно прикрутить несколько планочек, чтобы он плотно сидел на своем месте. Крепиться мотор при помощи хомутов. Ветрогенератор готов. Теперь нужно установить его на мачте.

Элементы мачты

Конечный результат при создании ветряка своими руками полностью зависит от возможности поворачиваться в зависимости от направления ветра и основной высоты.

Обычная железная труба диаметром 2,5 сантиметра легко скользит внутри электрического трубопровода сечением 3 сантиметра. На бруске установите железный фланец с посадочным местом под трубу 2,5 см. Центр ее должен находиться примерно в 19 см от края. Далее просто вверните кусок трубы в фланец. Также нужно просверлить отверстие в бруске под провода, которые будут проходить через него.

Основание можно сделать в следующей последовательности:

  1. Из фанеры вырезается круг диаметром 60 см;
  2. К нему крепятся два металлических сантехнических колена диаметром 2,5 см при помощи фланцев;
  3. Посредине устанавливается тройник диаметром 3,5 см, на который накручивается основная труба;
  4. В деревянном диске нужно просверлить несколько отверстий для закрепления его на земле.

Труба, которая будет служить мачтой, может использоваться как разборная, так и цельная. Длина ее должна быть не менее 3 метра, а диаметр 3,5 см. Для закрепления трубы можно использовать обычные веревки с хомутами.

Мы создали мачту и теперь можем смело устанавливать наш 12-вольтовый ветрогенератор в рабочее положение. При этом не нужно забывать о подсоединении к нему проводов и протягивании их через трубу. У основания требуется проделать отверстие, чтобы их вывести и подсоединить к контроллеру, который мы сейчас и рассмотрим.

Схема контроллера

Контроллер позволяет регулировать заряд в батареях и при этом не дает им излишка энергии. Если АКБ полные, то это устройство перенаправляет ток напрямую к потребителю. Контроллер на 12 вольт можно легко найти в любом магазине электроники. Но его можно сделать и своими руками, что в положительно отразится на цене.

На рисунке приведена схема сборки контроллера. Она немного изменена в силу того, что большое количество стандартных деталей очень тяжело найти. Любой радиолюбитель сможет ее собрать в кучу.

Установив ветряк и присоединив контроллер мы видим, что наша конструкция работает и даже мультиметр демонстрирует практически точное значение в 12 вольт при слабом ветре. Сборка ветрогенератора своими руками выполнена.

Затраты

Наверное, самой важной частью являются затраты. Проведя небольшое исследование рынка можно прийти к выводу, что на закупку всех элементов с учетом инвертора и батарей, наш ветряк, собранный своими руками, обойдется не более 250 $. Заводские ветрогенераторы имеют практически такие же характеристики, как и тот, что вы соберете своими руками. Вот только придется за них выложить больше 1000 $.

Получение электрической энергии с помощью ветра становится одним из модных трендов последнего времени. Бытовой ветряной генератор, который относится к техническим средствам альтернативной электроэнергетики, приобрел свою популярность вполне заслуженно, так как обращение к нему обеспечивает владельцу ряд преимуществ:

  • ветроэнергетика относится к экологически чистым средствам выработки электроэнергии, отсутствие генерация отходов;
  • удобен в использовании из-за своей высокой надежности и низких эксплуатационных расходов;
  • может быть смонтирован самостоятельно при наличии минимальных навыков в области строительства и электрики;
  • его привлекательность с течением времени будет только увеличиваться из-за неизбежного увеличения тарифов электросбытовых компаний.

Устройство и принцип работы

Любой ветряной генератор состоит из нескольких типовых укрупненных блоков. Агрегат обязательно содержит турбину, которая вращается под действием воздушного потока, непосредственно или чаще всего через повышающий редуктор передает создаваемый момент на вал электрического генератора. Ротор вращается внутри статора на основе неодимовых магнитов, в результате чего вырабатывается электрическая энергия.

Конструкция ветряного генератора небольшой мощности показана на рисунке 1.

Рис. 1. Конструкция самодельного ветрового генератора

Вырабатываемая ветряным генератором электрическая энергия поступает в промежуточный накопитель, функции которого обычно берет на себя аккумуляторная батарея. Ток, отдаваемый аккумулятором, питает инвертор, с выхода которого снимают нормальное 220-вольтовое переменное напряжение бытовой частоты.

Наличие аккумулятора обязательно, т.к. он позволяет сгладить колебания мощности, снимаемой с турбины. Свою роль в этом играет факт того, что бытовой ветряной генератор устойчиво функционирует при скорости ветра от 6 м/с и выше, тогда как среднегодовое значение этого параметра на большинстве территории России оказывается примерно в полтора раза ниже.

Необходимые переключения, регулировки и прочие функции реализует блок автоматики.

Соответствующий уровень эксплуатационной надежности достигается наличие у конструкции запасов по отдаваемой мощности (обычно 10 – 20%).

Виды ветряков

Основное отличие ветряных генераторов между собой – исполнение воздушной турбины, которая может иметь различную конструкцию. Обычно полная совокупность агрегатов по ориентации вала вращения турбины делят на две основные разновидности: вертикальные и горизонтальные.

Вертикальные

Отличительная особенность и главное преимущество вертикального агрегата ветряного генератора – отсутствие жестких требований к высоте его установки, что заметно упрощает выбор места установки, процесс монтажа, последующее обслуживание механически подвижных частей. Воздушная турбина относится к тихоходной разновидности этой техники, может быть исполнена как

  • простейший классический ротор с минимумом тремя вертикально ориентированными лопастями (пример такого устройства представлен на рисунке 2);
  • двухрядный ротор, наличие внутреннего ряа регулируемых лопастей обеспечивает ему повышенный КПД)
  • ротор Дарье;
  • ротор Савониуса;
  • геликоидный ротор.

Более сложная форма трех последних типов турбин обеспечивает им меньшую материалоемкость.

Рисунок 2. Роторная воздушная турбина вертикального ветрогенератора

Отличается минимумом подвижных частей, КПД установки мало зависит от направления ветра.

Горизонтальные

Ветрогенераторы с горизонтальной ориентацией вала турбины приводятся во вращение пропеллером. Пропеллер может быть двух-, трех и многолопастным. Лопастям некоторых пропеллеров иногда придают довольно сложную форму для некоторого увеличения эффективности функционирования установки. Пример такого агрегата показан на рисунке 3.

Рис. 3. Горизонтальный многолопастной ветрогенератор

За счет большого диаметра винта обычно монтируются на стальной трубчатой или решетчатой мачте на высоте вплоть до нескольких десятков метров. Примеры таких мачт показаны на рисунке 4 и рисунке 5. Оборотной стороной увеличения высоты установки становится снижение турбулентности воздушного потока из-за ослабевания влияния земли, т.е. увеличение КПД и генерируемой мощности. С учетом этой особенности не рекомендуется использовать ветряки этой конструкции для коттеджных поселков из-за сильного экранирующего действия соседних строений.

Рисунок 4. Мачта ферменной конструкции для установки горизонтального ветрогенератора
Рис. 5. Крепежный узел для мачты трубчатой конструкции

Для создания баланса по крутящему моменту генератор закрывают обтекателем вала таким образом, чтобы он выполнял функции противовеса винта. Дополнительно удлиненная конструкция корпуса облегчает его ориентацию “по потоку”.

По сравнению с вертикальным устройством позволяет снять большую мощность. Платой за это становится трудности с выбором места установки, сложность монтажа, текущего обслуживания, а также неприятные акустические шумы при работе. Кроме того, из-за большой высоты конструкции горизонтальные ветряные генераторы обязательно требуют молниезащиты.

Малые ветрогенераторы

К малым или бытовым ветрогенераторам обычно относят агрегаты с мощностью не свыше 5 кВт. В розничной продаже доступны агрегаты различной мощности и исполнения отечественного и импортного производства, что позволяет подобрать нужное устройство без переплаты.

Обычно агрегаты поставляются в минимальном комплекте, который:

  • включает контроллер;
  • не содержит буферной аккумуляторной батареи;
  • обеспечивает сборку агрегата на месте установки при условии отсутствия местных ограничений.

Проект установки устройств горизонтального типа из-за их технической сложности требует тщательной проработки, может потребоваться консультация специалиста.

Стоимость маломощных моделей начинается с нескольких десятков тысяч рублей, сильно зависит от отдаваемой мощности.

Автоматика ветроэлектростанций

Современные электрические ветровые установки оборудуются развитой системой автоматики, которая:

  • значительно улучшает характеристики;
  • обеспечивает выравнивание отдаваемой мощности;
  • делает эксплуатацию безопасной.

Типовой набор автоматики включает в себя:

  • ограничитель частоты вращения ветряного колеса при высоких скоростях ветра;
  • выравнивание колеса “по потоку” (важно для горизонтальных ветряков);
  • защиту от короткого замыкания;
  • отключение при отказах техники, ураганных ветрах, превышении порогового уровня вибрации.

Модели среднего и старшего классов обязательно поддерживают дистанционное управление и диагностику. Часть агрегатов дополнительно контролирует направление и силу воздушного потока для максимизации снимаемой мощности за счет выбора соответствующего угла установки всего устройства и лопастей турбины.

Система торможения

Система торможения предотвращает механическое разрушение агрегата при слишком высокой скорости ветра. Суть этой системы заключается в том, что автоматика производит замыкание электрических цепей магнитной системы генератора, что приводит к появлению мощного тормозящего усилия.

Дополнительно алгоритм функционирования системы управления предусматривает полный останов воздушной турбины при ветрах ураганной силы. Порог останова может регулироваться пользователем, типовые заводские настройки этого параметра предполагают включение режима останова при скорости 80 км/час.

Производители

Отечественной промышленностью налажен серийный выпуск широкой гаммы бытовых ветрогенераторов. Их параметры приведены в таблице:

Максимальная скорость ветра 25 м/с

Примечание: Г – горизонтальный, В – вертикальный

Плюсы и минусы

Основное преимущество ветряных электростанций – это их автономность.

Главные технические минусы оборудования этой разновидности – зависимость от погоды (кроме силы ветра влияет также снег и дождь) и сравнительно небольшая мощность, значение которой в среднем не превышает нескольких сотен Ватт. Требуют обязательного применения промежуточной буферной аккумуляторной батареи, которая требует замены через несколько лет службы.

При сравнении с дизель-генераторами уступают им по продолжительности работы, но зато не требуют подвоза топлива и выполнения сложных и дорогостоящих мероприятий по пожарной безопасности его хранения.

Которые в средних широтах реально работают максимум пять месяцев, заметно превосходит тем, что функционируют круглый год.

При существующих тарифах на электроэнергию не дают существенного выигрыша по приведенным затратам, однако не оказываются убыточными.

Изготовители ветровых электростанций большое значение уделяют их внешнему оформлению. Так что наличие этого агрегата на загородном участке не только свидетельствует о “технической продвинутости” его обладателя, но и может стать важным элементом дизайна и наглядной демонстрации заботы об окружающей среде.

О эстетических параметрах можно судить по рисунку 6.

Рис. 6. Горизонтальный ветрогенератор Condor Home отечественного производства

Ветровые электростанции могут считаться полноценным альтернативным источником электрической энергии. С учетом типовых климатических условий большинства местностей нашей страны малые ветрогенераторы имеет смысл комбинировать в единую систему с солнечной батареей и дизельным генератором. В этом случае они вполне могут стать эффективным автономным вспомогательным средством выработки электроэнергии на даче или в загородном доме.

Конструируем ветряной генератор своими руками

Ветряной генератор за городом уже никого не удивляет. Многие видели исполинские белые ветряки, вращающие лопастями над полями и селами. Энергия ветра хороша по нескольким причинам. Но самое приятное то, что она бесплатна. а если сделать ветряной генератор своими руками, то все затраты выльются только в стоимость материалов и быстро окупятся.

Именно поэтому мы предлагаем вам подробное описание изготовления ветрогенератора. Всего несколько несложных шагов — и ваш загородный дом будет питаться экологически чистой бесплатной электроэнергией.

Что такое ветрогенератор: устройство и преимущества

Точно так же, как колодец во дворе, теплица из поликарбоната на огороде, вольер для собаки и пр. это устройство приносит пользу и выгоду, особенно, если это связано с коммунальными экономиями.

Ветрогенератор позволить экономить электроэнергию

Ветряным генератором называют механически-электрическое устройство, которое вырабатывает энергию за счет силы движения воздуха, или просто ветра. Технология такова, что даже слабого ветра (до 4 м/с) достаточно для производства электроэнергии.

При этом мощность ветрогенератора может варьироваться от 5 КВт до 4 500 КВт. Поэтому экономическая эффективность ветряного генератора высока, а само устройство становится все более популярным. Как правило, небольшой самодельный генератор устанавливают на приусадебных участках.

Работа ветрового генератора происходит по тому же принципу, что работа ветряной мельницы. Лопасти ветряка вращаются за счет давления потоков ветра. В свою очередь, ветряк приводит в движение ротор, а ротор сообщает энергию движения (кинетическую) электрическому генератору.

Для максимальной эффективности этого процесса лопасти имеют изогнутую форму и ориентированы под углом. Кроме того, ветрогенераторы снабжают стабилизаторами и/или системой ориентации по ветру. Полученная от генератора электрическая энергия может быть направлена непосредственно в электросеть (дома, участка или др.) или запасаться в аккумуляторных батареях.

У ветрогенератора как у локального источника энергии для частного использования много преимуществ.

  1. По сравнению с другими (т.н. “традиционными”) источниками энергии, затраты на электричество, полученное от энергии ветра, гораздо ниже. Вложения нужны на этапе установки, затем ветрогенератор начинает себя окупать.
  2. Затраты на техническое обслуживание — единственные затраты, которых требует ветрогенератор после начала работы.
    Установка занимает минимум времени. Ввод в эксплуатацию большого ветрогенератора охватывает пару месяцев. В случае изготовления ветрогенератора своими руками, процесс займет у вас 1-2 дня.
  3. Использование энергии ветра полностью экологично. Работа ветрового генератора не наносит вреда окружающей среде. Производство электроэнергии не расходует природные ресурсы.

Разумеется, работа ветряного генератора напрямую зависит от внешних факторов — то есть, от силы ветра. Но, в то же время, по сравнению с условно “независимыми” дизельными генераторами, ветряк процентов на 80 экономит ваши средства. Речь идет о покупке, транспортировке, хранении дизтоплива.

Из чего можно сделать ветряной генератор

На первый взгляд может показаться, что главное в ветрогенераторе — это, собственно, ветряк с вертушкой-лопастями. На самом деле, основное устройство ветрового генератора скрывается внутри.

  1. Генератор с валом, вырабатывающий переменный ток. Производительность генератора (напряжение и сила тока) находится в прямой зависимости от силы и скорости ветра.
  2. Контроллер, превращающий переменный ток в постоянный, стабилизирующий напряжение и регулирующий заряд аккумуляторов.
  3. Аккумуляторная батарея, накапливающая произведенную электроэнергию. Это обеспечивает запас тока в то время, когда ветра нет.
  4. Инвертор, получающий запас энергии от аккумуляторной батареи и преобразующий (инвертирующий) этот постоянный ток снова в переменный, для питания электрической техники.
  5. Ветряк с лопастями, вращающимися при движении воздуха. Лопасти установлены на оси, вращающей вал генератора.

Еще одна заметная деталь ветрогенератора — это мачта. И она тоже, как лопасти, играет лишь вспомогательную роль. При помощи мачты конструкция ветрового генератора поднимается как можно выше над уровнем земли или крышей дома, чтобы захватить как можно более сильные потоки ветра.

Бетонные столбыО бетонных столбах для забора мы подготовили для вас интересную статью.

Как соорудить беседку из бревна своими руками? С этими рекомендациям — легко.

Самостоятельное изготовление ветрогенератора для дома

Мы выяснили, что главная деталь, “сердце” агрегата — это генератор. Как сделать его своими руками? Судя по отзывам, именно этот этап вызывает больше наибольшие затруднения. Вот несколько вариантов решения задачи.

  1. Компьютерный мотор Ametek напряжением 99 вольт. Найти его можно в магазине подержанной компьютерной техники, на радиорынке или на интернет-аукционе Ebay.
  2. Двигатель от бытовых приборов (например, вентилятора).
  3. Любой бытовой двигатель с максимальным обратным соотношением между количеством оборотов и высотой напряжения (низкие обороты и высокое напряжение).

Ветрогенератор можно построить своими руками

Что касается лопастей ветрогенератора, то здесь простор для творчества еще больший. Но зачем тратить время на эксперименты, которые могут оказаться неудачными, если есть положительный опыт изготовления “крыльев” ветряка из водопроводной пластиковой трубы. Оптимальный размер: 60 см в длину и 15 см в диаметре.

Разрежьте отрезок трубы вдоль на две продолговатые половины. Теперь каждую половину трубы разрежьте по диагонали, чтобы получить четыре одинаковые изогнутые треугольные лопасти. Для аккуратности обработайте края среза мелкой наждачной бумагой.

Три из четырех (четвертая — запасная) лопасти неподвижно прикрепите на равных расстояниях к диску, который будет передавать движение ротору. Желательно использовать готовый шкив с зубцами по периметру окружности. Шкив передает энергию движения генератору, который устанавливается за вертушкой.

Вертушка устанавливаются на одном конце осевой балки (ее можно сделать из деревянной палки или тонкой трубы). На противоположном конце балки устанавливается вертикально стоящий “хвост” из металлической пластины 25х25 см. Он нужен, чтобы регулировать направление оси и поворачивать ветрогенератор по ветру.

Найдите точку на оси, опираясь на которую конструкция уравновешивает хвост и вертушку. В этой точке закрепите металлический штырь, направленный вертикально вниз. Толщина штыря должна быть такой, чтобы свободно входить и вращаться внутри трубы, служащей мачтой ветрогенератора.

Провода от генератора тоже пропускаются сквозь трубу-штангу. Они выходят с другой стороны (снизу) и соединяются с инвертором и аккумуляторной батареей. Можно сказать, что вы уже сделали ветряной генератор своими руками. Но для начала эксплуатации его нужно установить как можно выше.

Крыша дома
— подходящее место, чтобы разместить ветряной генератор. Выбирайте открытый для ветра участок, подальше от веток деревьев. Убедитесь, что штанга надежно закреплена и стоит строго вертикально. Теперь и в вашем дом есть источник экологически чистой доступной энергии.

А самым любопытным, предлагаем ознакомиться с видео о ветрогенераторе для дома

Источник http://wuds.ru/design/kak-sdelat-vetryanoi-generator-svoimi-rukami-iz-chego-mozhno-sobrat.html

Источник http://masters-tut.ru/iz-chego-sdelat-vetryak-vertikalnyi-vetryak-svoimi-rukami/

Источник http://sad-doma.net/dacha-dom/delaem-vetryanoj-generator.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: