Как заземлить щиток в частном доме

Содержание

Как заземлить щиток в частном доме

Мой горький опыт электрика позволяет мне утверждать: Если у Вас “заземление” сделано как надо – то есть в щитке есть место присоединения “заземляющих” проводников, и все вилки и розетки имеют “заземляющие” контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии – пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз – тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

Не надо забывать, что нельзя делать имитацию схемы “заземления” , соединяя в евророзетке “нулевой рабочий” и “нулевой защитный” проводники, как иногда практикуют некоторые “умельцы”. Такая замена крайне опасна. Не редки случаи отгорания “рабочего нуля” в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

“Заземление” и “зануление”

Одним из вариантов “заземления” является “зануление”. Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться “заземлением”.

В этой ситуации тоже есть свои нюансы. Что мешает “нулю” отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский “авось”, который проблему не решает.

Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале “контур заземления” должен состоять из 3х – 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с “заземляющим” контактом. Короб, плинтус, скоба – дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй – на “заземляющий” контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Как подключить заземление в щитке

Уют и комфорт в частном доме или квартире трудно представить без налаженной системы электроснабжения. Потребление электроэнергии постоянно увеличивается, поэтому защита людей и домашних животных от поражения электрическим током осложняется. Устранить риски, минимизировать последствия травм можно с помощью заземляющей системы, соединяющей точки электрической сети или энергетического потребителя с заземляющей конструкцией.

Заземление в частном доме

Общие требования

Заземление является одной из основных мер защиты от поражения электрическим током.

В данной статье приведена подробная, пошаговая инструкция о том как сделать заземление в частном доме своими руками.

Для начала определимся с тем, что такое заземление?

Согласно ПУЭ Заземление — это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. (пункт 1.7.28.)

В качестве заземляющего устройства используют металлические стержни или уголки которые вбиваются вертикально в землю (так назымаемые вертикальные заземлители) и металлические стержни либо металлические полосы которые посредством сварки соединяют между собой вертикальные заземлители (так назымаемые горизонтальные заземлители).

Вертикальные и горизонтальные заземлители вместе образуют конур заземления, данный контур может быть замкнутый (рисунок 1) или линейный (рисунок 2):

Контур заземления должен быть присоединен к главной заземляющей шине во вводном электрическом щитке дома с помощью заземляющего проводника в качестве которого, как правило, используется та же металлическая полоса или стержень которые применены в качестве горизонтального заземлителя.

Защитное заземление частного дома будет иметь следующий общий вид:

В свою очередь совокупность контура заземления и заземляющего проводника называют заземляющим устройством.

Замкнутый контур заземления обычно выполняют в форме треугольника со сторонами от 2 до 3 метров (в зависимости от длины вертикальных заземлителей) важно что бы расстояние между вертикальными заземлителями было не менее их длины (см. рис. 1). Замкнутый контур так же может выполняться и в других формах, например овал, квадрат и т.д. В свою очередь линейный контур представляет из себя ряд вертикальных заземлителей в количестве 3-4 штуки выстроеных в линию, при этом так же как и в случае с замкнутым контуром расстояние между ними в линейном контуре должно быть не менее их длины, т.е. от 2 до 3 метров (см. рис. 2).

Примечание: Замкнутый контур заземления считается более надежным, т.к. даже при повреждении одного из горизонтальных заземлителей данный контур сохраняет свою работоспособность.

Горизонтальные и вертикальные заземлители должны выполняться из черной или оцинкованной стали либо из меди (пункт 1.7.111. ПУЭ). Ввиду своей дороговизны медные заземлители, как правило, не применяются. Так же не следует выполнять заземлители из арматуры — наружный слой арматуры каленый из-за чего нарушается распределение тока по ее сечению, кроме того она сильнее подвержена коррозии.

Вертикальные заземлители выполняют из:

  • круглых стальных стержней диаметром минимум 16мм (рекомендуется: 20-22мм)
  • стальных уголков размерами минимум 4х40х40 (рекомендуется: 5х50х50)

Длина вертикальных заземлителей должна составлять 2-3 метра (рекомендуется не менее 2,5 м)

Горизонтальные заземлители выполняют из:

  • круглых стальных стержней диаметром минимум 10мм (рекомендуется: 16-20мм)
  • стальной полосы размерами 4х40

Заземляющий проводник выполняют из:

  • круглого стального стержня диаметром минимум 10мм
  • стальной полосы размерами минимум 4х25 (рекомендуется 4х40)

Рекомендуется в качестве заземляющего проводника использовать тот же материал который был использован в качестве горизонтального заземлителя.

2. Порядок монтажа заземления:

ШАГ 1 — Выбираем место для монтажа

Место для монтажа выбирается как можно ближе к главному электрощитку (вводному щиту) дома в котором находится главная заземляющая шина (ГЗШ), она же PE шина.

В случае если вводной электрощиток находится внутри дома или на его наружной стене заземляющий контур монтируется около стены на которой находится электрощиток, на расстоянии примерно 1-2 метра от фундамента дома. Если же электрический щиток находится на опоре воздушной линии электропередач или на выносной стойке контур заземления можно монтировать прямо под ним.

При этом не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п. (п. 1.7.112 ПУЭ)

ШАГ 2 — Земляные работы

Выкапываем траншею в форме треугольника — для монтажа замкнутого конура заземления, либо прямую — для линейного:

Глубина траншеи должна составлять 0,8 — 1 метра

Ширина траншеи должна составлять 0,5 — 0,7 метра (для удобства проведения сварочных работ в дальнейшем)

Длина траншеи — в зависимости от выбранного количества вертикальных заземлителей и расстояний между ними.(Для треугольника используется 3 вертикальных заземлителя, для линейного контура, как правило, 3 или 4 вертикальных заземлителя)

ШАГ 3 — Монтаж вертикальных заземлителей

Расставляем в траншеи вертикальные заземлители на необходимом расстоянии друг от друга (1,5-2 метра) после чего забиваем их в землю при помощи перфоратора со специальной насадкой либо обычной кувалдой:

Предварительно концы заземлителей необходимо заострить для более легкого вхождения в грунт:

заостренные вертикальные заземлители

Как уже было написано выше длина вертикальных заземлителей должна составлять примерно 2-3 метра (рекомендуется минимум 2,5 метра), при этом необходимо вбить их в землю на всю длину, так что бы над дном траншеи выступала верхняя часть заземлителя на 20-25 см:

вертикальный заземлитель в траншее

Когда все вертикальные заземлители забиты в землю можно переходить к следующему шагу.

ШАГ 4 — Монтаж горизонтальных заземлителей и заземляющего проводника:

На данном этапе необходимо соединить между собой все вертикальные заземлители с помощью горизонтальных заземлителей и к получившемуся контуру заземления приварить заземляющий проводник который будет выходить из земли на поверхность и предназначен для соединения заземляющего контура с главной заземляющей шиной вводного электрощита.

Горизонтальные и вертикальные заземлители соединяются между собой посредством сварки, при этом место соединения необходимо обварить со всех сторон для лучшего контакта.

ВАЖНО! Не допускается использование болтовых соединений! Вертикальные и горизонтальные заземлители образующие заземляющий контур, а так же заземляющий проводник в месте его присоединения к заземляющему контуру должны быть соединены при помощи сварки.

Сварные швы необходимо защитить от коррозии, для чего места сварки можно обработать битумной мастикой.

ВАЖНО! Сам заземляющий контур не должен иметь окраски! (пункт 1.7.111. ПУЭ)

В результате должно получится примерно следующее:

ШАГ 5 — Засыпаем грунтом траншею.

Здесь все просто, засыпаем траншею со смонтированным заземляющим контуром землей, так что бы над контуром было не менее 50 см грунта, как уже было указано выше.

Однако и здесь есть свои тонкости:

ВАЖНО! Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора (п. 1.7.112. ПУЭ).

ШАГ 6 — Подключение заземляющего проводника к ГЗШ вводного электрощитка (вводного устройства).

Наконец мы подошли к завершающему этапу — заземлению электрощитка дома, для этого выполняем следующие работы:

Подводим заземляющий проводник к электрощитку, так что бы до электрощитка оставалось около 1 метра, если вводной щиток находится в доме, желательно завести заземляющий проводник в здание. При этом у мест ввода заземляющих проводников в здания должен быть предусмотрен следующий опознавательный знак (п.1.7.118. ПУЭ):

Сам заземляющий проводник находящийся над поверхностью земли необходимо покрасить, он должен иметь цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (от 15 до 100 мм) желтого и зеленого цветов. (п.1.1.29. ПУЭ).

К концу заземляющего проводника со стороны электрощитка привариваем болт, на который подсоединяем гибкий медный провод сечением не менее 10 мм2, который так же должен иметь желто-зеленую окраску. Второй конец этого провода подключаем к главной заземляющей шине, в качестве которой внутри вводного устройства (вводного электрощитка дома) следует использовать шину РЕ (п.1.7.119. ПУЭ).

ВАЖНО! Главная заземляющая шина должна быть, как правило, медной. Допускается применение главной заземляющей шины из стали. Применение алюминиевых шин не допускается. (п.1.7.119. ПУЭ).

В итоге схема заземления щитка дома должна иметь следующий вид:

ПРИМЕЧАНИЕ: приведенная схема заземления электрощитка относится к системе заземления TN-C-S.

В данном электрощитке установлены следующие аппараты защиты:

1 — Автоматические выключатели — для защиты электропроводки от коротких замыканий и перегрузок.

2 — УЗИП — устройство для защиты сети от грозовых или импульсных перенапряжений сети.

3 — УЗО — устройство для защиты от поражения человека электрическим током.

ВАЖНО! Конур заземления должен присоединяться только к PE шине вводного щитка и ни в какое другое место электрической сети. Во вводном электрощитке рабочий ноль (N) должен быть так же соединен с PE шиной (как показано на схеме) таким образом выполняется его повторное заземление. После вводного щитка рабочие нули от N шины и защитные нули от PE шины соединяться не должны!

При этом проводка в доме должна выполняться трехжильным кабелем: желто-зеленая жила кабеля подключается к PE шине и используется в качестве заземляющего провода, синяя или голубая жила подключается к N шине и служит в качестве рабочего нуля и наконец третья жила подключается через автоматический выключатель на фазу. Пример трехпроводной схемы электропроводки смотрите здесь.

подключение трехжильного кабеля

Так же к PE шине присоединяются проводники системы уравнивания потенциалов.

На этом все, но необходимо помнить, что защитное заземление это лишь одна составляющая из комплекса мер обеспечивающих надежную защиту от поражения электрическим током. К другим составляющим относятся:

  • автоматическое отключение питания — обеспечивается аппаратами защиты, в первую очередь такими как УЗО и автоматические выключатели.
  • уравнивание потенциалов — подробнее о системе уравнивания потенциалов читайте здесь.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

↑ Наверх

Конструкция и назначение заземляющих устройств

Подобные конструкции подразделяются на рабочие и защитные устройства.

  1. Рабочее используется для организации безопасности функционирования агрегатов промышленного назначения. Также распространено в частных хозяйствах.
  2. Система защитного заземления обязательна для электросетей в жилом секторе.

Установка заземляющего устройства (ЗУ) требуется в соответствии с Правилами устройства электроустановок и Правилами эксплуатации электроустановок потребителей.

Прикосновение людей к токоведущим частям, открытым в результате неправильной эксплуатации электрооборудования, дефектов конструкции, прихода в негодность изоляции и других причин, встречается часто. Некачественная конструкция ЗУ и ее монтаж может повлечь тяжелые последствия для людей: электрический шок, ожоги, нарушение работы сердца и иных органов человека поражение током часто приводит к ампутации конечностей, инвалидности и даже летальным исходам.

Система заземления состоит из наружной и внутренней частей, которые стыкуются в электрическом щитке. Наружное заземляющее устройство состоит из комплекса металлических электродов и проводников, отводящих аварийный ток от электрооборудования в землю в безопасных для людей местах. Электроды называются заземлителями. Электрические жилы – это заземляющие проводники, представляют собой штыри длиной 1,5 м, диаметром 1 мм.

Изготавливаются промышленностью из меди или стали, покрытой медью. Их основное достоинство — повышенная проводимость тока. Вбиваются в землю молотами или кувалдами на глубину 50 см, контакт с землей должен быть максимально прочным, иначе ухудшится способность конструкции отводить ток.

Простая конструкция изготавливается из одного электрода. Применяется в молниеотводах или для защиты удаленных объектов и оборудования. В индивидуальных хозяйствах предпочтение отдается многоэлектродным устройствам. Размещаются в один ряд и называются линейными профилями ЗУ. Стандартная длина цепи — 6 метров. Между собой соединяются латунными муфтами, крепление резьбовое, сварка не рекомендуется. Заземляющие проводники устанавливаются через клеммы. Скручивания, пайки жил исключаются.

По-прежнему распространено такое устройство, как контур заземления (замкнутый вариант). Сооружается на расстоянии не ближе 1 метра и не далее 10 метров от дома. Размещается в траншее в виде равностороннего треугольника. Длина стороны 3 м, глубина – 50 см, ширина – 40 см. По углам вбиваются заземлители. Эта же операция проделывается с другими вертикальными электродами (не свыше пяти единиц). Заземлители в нижней опорной части свариваются с горизонтальными изделиями.

Изготавливаются из меди, покрытого медью или цинком стального уголка (полка 5 мм, полоса 40 мм), Часто применяется стандартный уголок из нержавеющей стали любого профиля. Изделия не окрашиваются, так как в этом случае ухудшатся электротехнические свойства из-за ослабления контакта с землей.

Конструкция контура несложная, ее можно сделать собственными руками. Но работа упрощается при использовании готовых заземляющих устройств, представленных на рынке, в комплекте с которыми есть провода заземления. Финансовые потери окупятся за счет применения качественных материалов, стойких к коррозии и с большим сроком эксплуатации.

Устройство заземления своими руками: поэтапная инструкция

Как заземлить щиток в частном доме

Если Вы задаетесь вопросом: «как сделать заземление на даче?», то для выполнения данного процесса потребуется следующий инструмент:

  • сварочный аппарат или инвертер для сварки металлопроката и вывода контура на фундамент здания;
  • угловая шлифмашинка (болгарка) для разрезания металла на заданные куски;
  • гаечные глючи для болтов с гайками М12 или М14;
  • штыковая и подборная лопаты для рытья и закапывания траншей;
  • кувалда для вбивания электродов в землю;
  • перфоратор для разбивания камней, которые могут встречаться при рытье траншей.

Чтоб правильно и согласно нормативным требованиям выполнить контур заземления в частном доме нам потребуются следующие материалы:

    Уголок 50х50х5 — 9 м (3 отрезка по 3 метра).

Как заземлить щиток в частном доме

Как заземлить щиток в частном доме

Как заземлить щиток в частном доме

Как заземлить щиток в частном доме

После того как все необходимые материалы и инструменты есть в наличии можно переходить непосредственно к монтажным работам, которые детально расписаны в следующих главах.

Выбор места для монтажа контура заземления

В большинстве случаев рекомендуется монтировать контур заземления на расстоянии в 1 м от фундамента здания в месте где оно будет скрыто от человеческого глаза и к которому будет сложно добраться как людям, так и животным.

Такие меры необходимы для того, что при повреждении изоляции в электропроводке потенциал будет идти на контур заземления и может возникнуть шаговое напряжение, которое может привести к электротравме.

Выполнение земляных работ

Как заземлить щиток в частном доме

После того как было выбрано место, выполнена разметка (под треугольник со сторонами 3 м), определено место вывода полосы с болтами на фундамент здания можно приступать к земляным работам.

Для этого необходимо с помощью штыковой лопаты по периметру размеченного треугольника со сторонами по 3 м снять слой земли в 30–50 см. Это необходимо для того, чтоб в дальнейшем без особых трудностей к заземлителям приварить полосовой металл.

Также стоит дополнительно прокопать траншею такой же глубины для подвода полосы к зданию и выводу ее на фасад.

Забивание заземлителей

После подготовки траншеи можно приступать к монтажу электродов контура заземления. Для этого предварительно с помощью болгарки необходимо заточить края уголка 50х50х5 или круглой стали диаметром 16 (18) мм².

Далее выставить их в вершины полученного треугольника и с помощью кувалды забить в землю на глубину 3 м. Также важно чтоб верхние части заземлителей (электродов) находились на уровне выкопанной траншеи чтоб к ним можно было приварить полосу.

Сварные работы

После того как электроды будут забиты на необходимую глубину с помощью стальной полосы 40х4 мм необходимо сварить между собой заземлители и вывести данную полосу на фундамент здания где будет подключен заземляющий проводник дома, дачи или коттеджа.

Читать также: Напряжение разряда ni mh

Там, где полоса будет выходить на фундамент на высоте 0.3–1 мот земли, необходимо приварить болт М12 (М14) к которому в дальнейшем будет подключено заземления дома.

Обратная засыпка

Как заземлить щиток в частном доме

После выполнения всех сварных работ полученную траншею можно засыпать. Однако перед этим рекомендуется залить траншею соляным раствором в пропорции 2–3 пачки соли на ведро воды.

После полученную почву необходимо хорошо утрамбовать.

Проверка контура заземления

Как заземлить щиток в частном доме

После выполнения всех монтажных работ возникает вопрос «как проверить заземление в частном доме?». Для этих целей конечно обычный мультиметр не подойдет, поскольку у него очень большая погрешность.

Для выполнения данного мероприятия подойдут приборы Ф4103-М1, Клещи Fluke 1630, 1620 ER и так далее.

Однако эти приборы очень дорогие, и если Вы выполняете заземление на даче своими руками, то для проверки контура Вам будет достаточно обычной лампочки на 150–200 Вт. Для данной проверки Вам необходимо один вывод патрона с лампочкой подключить к фазному проводу (обычно коричневого цвета) а второй — к контуру заземления.

Если лампочка будет ярко светить — все отлично и контур заземления полноценно функционирует, если же лампочка будет тускло светить или вообще не испускать световой поток — значит контур смонтирован неверно и нужно либо проверять сварные стыки или монтировать дополнительные электроды (что бывает при низкой электропроводимости почвы).

Подключение наружной части ЗУ к щитку

Для определения точного порядка подключения заземления к щитку требуется знание способа применения нейтрали. Она бывает изолированной и заземленной. Изолированная жила используется в сетях с повышенными значениями напряжения 3-35 кВ. При электроснабжении 380 В и 220 В эффективно работают оба варианта. Однако новые правила ПУЭ требуют заземлять нейтраль. Контуры должны возводиться под напряжение до 1000 В.

Популярны системы заземления TN-C, TN-S, TN-C-S. Двухфазная TN-C устарела, но по-прежнему применяется в строениях, имеющих длительный срок эксплуатации. Их замена связана с трудностями технического и финансового характера. В этой схеме в качестве защитного заземляющего провода используется нулевая жила. С практической точки зрения, для жильцов квартир и домов кабельная и проводниковая продукция с 4 жилами выгодна: ее стоимость ниже, монтажные работы проще.

Интерес представляет вопрос, как подключить заземление в многоэтажном доме. Проводники подключаются к общей шине ЗУ. Затем шина выводится на корпус электрического щитка на этаже. Аналогичен процесс перевода TN-C на TN-C-S в домашнем щитке. Суть заключается в подключении нулевых защитных проводников на единую шину ЗУ с последующим креплением перемычкой с нулевой шиной.

Главный недостаток связан с опасностью повреждения нулевого провода. Тогда заземляющая конструкция придет в негодность. Регламентирующими документами введен запрет на использование TN-C в новостройках. Но для полной замены системы потребуются десятилетия.

Принцип работы TN-S основан на том, что нулевые рабочая и защитная линии подводятся к потребителю отдельными жилами от трансформаторной подстанции. В РФ и странах СНГ распространен промежуточный вариант TN-C-S, при котором разделение проводников производится непосредственно при вводе в дом. В обоих вариантах функции безопасности выполняет устройство защитного отключения (УЗО).

Заземление розетки

Что нужно знать о заземлении

Перед тем, как начать собирать своими руками контур заземления, необходимо разобраться в терминологии. Сам контур состоит из заземлителей и металлосвязи. Заземлители – металлические штыри длиной 2-3 м, полностью, погружаемые в землю. А металлосвязь соединяет между собой эти штыри и распределительный щит в доме.

В качестве заземлителей, согласно «Правилам устройства электроустановок», могут быть металлические трубы, уголки, пруты или многопроволочные канаты.

Как заземлить щиток в частном доме

Категорически запрещается использовать арматуру для заземляющего контура – недостаточный диаметр сечения и ребристая поверхность быстро приводят к проржавению конструкции и потере заземляющих свойств.

Между собой заземлители можно соединять любыми из указанных проводников, но стоит учесть, что уголки и металлические ленты довольно сложно сгибать на поворотах.

Как заземлить щиток в частном доме

Поэтому при выборе металлосвязи нужно заранее определиться со схемой контура и способом ввода заземляющего проводника в дом.

Схемы заземляющего контура – их преимущества и недостатки

От выбранной схемы будет зависеть надежность и долговечность всей конструкции. Так, условно контуры делятся на:

  • линейные – когда заземлители уложены в ряд и соединяются друг с другом последовательно;
  • с замкнутым контуром (треугольные, квадратные, овальные) – когда все заземлители соединены в замкнутый круг.

Как заземлить щиток в частном доме

Линейная схема немного проще в исполнении – нужно на одно соединение меньше и не требуется много места. Монтаж уложенных в ряд заземлителей можно производить даже вдоль отмостки фундамента (но не ближе 1,2 м от края). Зато замкнутый контур надежнее – даже при выходе из строя одного соединения контур будет работать, ведь цепь не разомкнется.

Типы подключения заземления к распределительному щитку

Подключение к линии электропередач, в основной своей массе, происходит воздушными линиями. Заземление линий в этом случае выполнено по системе TN-C, когда в дом подводятся два провода – фаза (L) и ноль (совмещенный защитный и рабочий провод PEN), а нейтраль самого источник питания заземлена.

Как заземлить щиток в частном доме

Чтобы в этом случае подключить контур заземления дома или дачи к электрическому щиту, необходимо самостоятельно переделать систему заземления:

Читать также: Дюбель гвоздь 6х40 технические характеристики

    с TN-C на TN-C-S – в этом случае провод PEN подключается к рабочему нулю N и защитному проводу PE;

с TN-C на ТТ – провод PEN подключается напрямую к нулю N, а PE выводится на шину заземления.

В первом варианте провод PEN разделяется и подключается на две отдельные шины N и PE, которые обязательно маркируются. Ноль – синей изолентой, заземление – желтым знаком заземления. Шина N должна крепиться в щитке специальными изоляторами, чтобы не контактировать с коррусом. А шина заземления PE крепится прямо на корпус. Обе шины соединяются с собой токопроводящей перемычкой.

Как заземлить щиток в частном доме

При разделении PEN проводника ни в коем случае в дальнейшем нельзя соединять провода N и PE – это приведет к короткому замыканию!

Во втором варианте провод PEN не разделяется, а крепится к шине N и в дальнейшем считается нулем. К шине PE будут крепиться только провода заземления электроприборов. Этот способ предпочтительнее, так как при отгорании PEN-проводника все пользователи линии электропередач будут подключены на шины заземления в домах. И если заземление есть не у всех жителей, то это может привести к поломке техники у тех пользователей, кто всё же озаботился его устройством.

Единственный недостаток системы ТТ – необходимость установки УЗО или реле напряжения, что ведет за собой увеличение затрат на организацию электропроводки.

Ошибки при установке ЗУ

К типовым недостаткам, часто встречающимся на практике, относятся:

  1. Использование в качестве контура металлических заборов или мачт. Не учитывается сопротивление току и создается опасность тяжелого поражения током людей в случае аварии в системе.
  2. Подключение контура непосредственно к корпусу электроприборов, минуя заземляющие шины в щите.
  3. Установка отдельных выключателей в нулевом проводнике. При выходе устройства из строя электроприборы могут оказаться под напряжением. Иногда контакт нулевого провода не прочен. Последствия те же.
  4. Использование для заземлителей изделий меньшего сечения или толщины. Подобные электроды под воздействием коррозии быстро выходят из строя.
  5. Использование как заземлителя рабочего «ноля». Повышается вероятность того, что система окажется под напряжением.
  6. Расположение горизонтальных заземлителей на поверхности земли. При аварии зона поражения увеличится.
  7. Подключение заземления к трубе отопления. Нельзя сказать, какое направление возьмут блуждающие токи, поскольку неизвестна ситуация в соседней квартире. Возрастает вероятность поражения током посторонних людей.

По завершении монтажных работ проводится проверка системы. Внимание обращается на величину сопротивления рассеиванию тока. Для проведения этой работы желательно привлечение специалиста с соответствующей аппаратурой.

Пример щита учета с УЗО для частного дома | Система заземления TT

Установка в щите учета дома селективного устройства защитного отключения (УЗО), позволяет значительно повысить пожарную безопасность. Это особенно актуально, если у вас используется система заземления – ТТ

В этой статье мы рассмотрим пошаговую сборку схемы щита учета частного дома, в котором установлено УЗО. Данная сборка, соответствует Техническим Условиям, которые чаще всего выдают энергосбытовые компании:

– Выделенная мощность 15 кВт

-Вводной кабель – СИП – Самонесущий изолированный провод (4 шт: 3 фазы и PEN)

– Дополнительный контур заземления на участке, от которого до щитка проложен проводник 1х16мм.кв.

Схема рассчитана на тип заземления ТТ, при котором приходящий от трансформатора PEN становится рабочим НУЛЁМ, а защитный ноль (заземление) берется от дополнительного контура, смонтированного на участке. Межу собой они нигде не соединяются.

Вариант с системой TN-C-S, где ноль и заземление сводятся в одну точку в щите, лишь после которой разделяются, мы уже рассматривали ТУТ.

Все распространенные сборки щитков учета, в том числе с УЗИП и с розеткой, для разных способов заземления, доступны ЗДЕСЬ.

Как сделать щит учета электроэнергии : Построй свой дом

Размещено 14 июня 2016в рубрике Электричество | Прокомментировать

В предыдущей статье я рассказывал о подводных камнях, которые могут вам встретиться при получении технических условий на присоединение электроэнергии. Одним из пунктов тех. условий гласит: «выполнить монтаж приемного устройства, в том числе приборов учета и аппаратов защиты, обеспечивающих контроль величины максимальной мощности». Если сказать простым языком, необходимо повесить на столб металлический ящик, в котором будет размещен счетчик и другое необходимое оборудование. О том, как сделать щит учета электроэнергии самостоятельно и какая схема щита учета электроэнергии, мы и поговорим в этой статье.

Из чего состоит узел учета электроэнергии на столбе

Щит учёта электроэнергии уличный для трёхфазного счётчика предназначен для учета электроэнергии и защиты электрооборудования от перегрузок и короткого замыкания на отходящей линии в сетях с глухозаземленной нейтралью при напряжении 380 В (трехфазный)/ 220 В (однофазный). переменного тока с частотой 50 Гц.Существует большое количество организаций, выполняющих эту работу. Цены, скажем прямо, кусаются. Поэтому, если у вас нет средств оплатить данную работу, попробуйте собрать уличный ящик для электросчетчика своими руками. Благо, все необходимое можно приобрести в специализированных магазинах. Далее я подробно расскажу как выглядит схема щита учета электроэнергии.

Ящик на столбе для приемного устройства

Прежде всего вам понадобится сам металлический ящик. При его покупке вы должны обратить внимание на следующие вещи:

— Степень защиты ящика должна быть IP54. Если сказать проще, по периметру дверцы ящика должно быть смонтировано резиновое уплотнение, предотвращающее попадание влаги.

— Размер ящика для 3 ф ввода 15 квт должен позволять разместить все необходимое оборудование. Чаще всего используют ящик размером 400х300х165.

— В ящике должно быть стеклянное окошко, для возможности снятия показаний счетчика.

Ящик должен иметь защитную панель от случайного контакта с токоведущими частями отходящей линии.

Счетчик учета электроэнергии

При выборе счетчика обратите внимание на следующие нюансы:

— счетчик должен быть указан в реестре счетчиков, допущенных к установке на территории России. Этот список можно посмотреть на сайте любой электросбытовой организации.

— сейчас применяется многотарифная система оплаты, поэтому выбирайте счетчик, способный учитывать не менее трех тарифов.

— счетчик лучше брать известных марок. Во-первых, это подтвержденное качество. Во-вторых, если он поломается вам будет легче его отремонтировать. В-третьих, у инженера, который будет принимать у вас работу, будет меньше поводов придраться.

В свой ящик я установил счетчик Меркурий 231 АТ-01.

Автоматический выключатель

В ящике необходимо установить два автоматических выключателя. Один перед счетчиком, другой после него. Параметры выключателя рассчитываются исходя из предоставляемой вам мощности. Формула, по которой рассчитывается автомат выглядит так: Ток (в Ампера) = выделенная мощность (в ваттах) / напряжение сети (в Вольтах). Если вам выделили мощность 5 Квт, то вам надо купить автомат: 5000 Вт / 220 В = 22,7А. Ближайший к этому значению автомат 25А.

Розетка для щита на столбе

Розетка не обязательное оборудование. Но если у вас нет пока дома, а строительные работы только предстоят, я бы вам порекомендовал ее установить. Это позволит строителям использовать электрический инструмент, не прибегая к производству переходников.

Нулевая рейка

В задачи нулевой рейки входит объединение всех нулевых кабелей, идущих от потребителей. При наличии в доме или в квартире заземления она также используется для коммутации жил заземления.

Каким проводом монтировать щит

Для коммутации оборудования в ящике необходимо подобрать провода, сечение которых соответствует выделенной мощности. Чтобы не рисовать формулу расчета, диаметр сечения проводов можно посмотреть в таблице ниже.

Как сделать заземление щита на столбе

Ящик необходимо заземлить. Для этого забейте в землю на глубину, не менее 1 м., рядом со столбом, металлическую полосу или уголок. Соедините ящик и полосу проводом, сечение которого, будет немного больше, чем у остальных проводов, например, 4 мм.

Все приборы необходимо собрать по схеме, приведенной ниже.

Схема щита учета электроэнергии 380в для частного дома 15 квт

Схема щита учета электроэнергии 380в для частного дома 15 квт достаточно проста. И если вы хотя бы немного разбираетесь в правилах подключения электроприборов, собрать ящик учета электроэнергии для вас будет не сложным.

схема щита учета электроэнергии

Провода к клеммам счетчика необходимо подключить согласно схеме:

В итоге ваш ящик должен выглядеть вот так:

Электрический щиток

После сборки ящика его необходимо прикрепить на столб специальными хомутами.

Крепление электрощитка на столб

Обратите внимание, что высота крепления ящика на столбе должна быть 1.5-1.8 метров. Это делается для удобства проверки показаний счетчика контролирующими органами. Если места на столбе на этой высоте нет, то вам придется смонтировать ящик на выносной опоре.

Обратите внимание, что вам еще придется подсоединить к ящику провода, которыми в последствии он будет соединен с ЛЭП. Провод крепится к столбу и поднимается вверх, с таким расчетом, чтобы его можно было присоединить к действующей линии. Как правило этот провод прячут в гофрированную трубу, которая крепится к столбу обыкновенными пластиковыми хомутами. В качестве такого провода может быть использован СИП. Вам понадобится длинная лестница, чтобы залезть на столб.

Ну вот вроде бы и все. В заключении хочу вас предостеречь, если для вас схема щита учета электроэнергии сложна и вы не знаете как сделать щит учета электроэнергии качественно, обратитесь к специалистам. Лучше в ту же организацию, которая вам осуществляет технологическое присоединение. В следующей статье я расскажу как проложить электрический кабель своими руками.

Рекомендую еще почитать:

Kомментарии

Монтаж корпуса

При установке вне дома, рекомендуется применять стальные электрощиты (№1 на изображении), которые можно запирать на замок. Степень защищённости от попадания пыли или влаги у них должны быть не ниже IP54.

Обычно щиток монтируется на границе участка, например, на опоре линии электропередач, стене строения или ограждении. В зависимости от удобства доступа к нему проверяющих. Заводить провода и кабели внутрь для коммутации, лучше всего снизу, с использованием гермовводов. Так вы обеспечите максимальную герметичность и значительно обезопасите электроустановку в целом.

Всё современное щитовое оборудование монтируется на DIN-рейки. Убедитесь, что в купленном вами щитке они установлены или идут в комплекте. В ином случае, дин рейку придёться докупать дополнительно.

Установка бокса для вводного автоматического выключателя

В целях предотвращения несанкционированного подключения, в обход электросчетчика, все коммутационные и защитные устройства, стоящие до него, должны, закрываться в боксы (№2 на изображении) и опечатываться.

Вот и мы, при монтаже, сперва ставим специальный корпус для АВ (автоматического выключателя). Он отличается тем, что имеет «ушки», для удобства пломбировки. В трехфазной сети 380В, бокс устанавливается минимум на три модуля, чтобы туда поместился Автоматический выключатель.

Установка автомата

Вводной автомат (№3 на изображении) устанавливается в отдельный корпус, который, закрывается кожухом. Позже, представители энергосбытовой компании его опечатают, установят пломбу и будут её проверять при каждом снятии показаний или контрольных обходах.

Для трёхфазных сетей 380В, при выделенной мощности 15кВт, номинал автоматического выключателя должен быть 25А.

Установка учетных и защитных устройств в щиток

Теперь пришла очередь установить на дин-рейку все остальные элементы. Полный перечень оборудования необходимого для щита частного дома следующий:

1) Стальной электрический щит (степень защиты ip54 или выше)

2) Бокс/кожух для АВ на 3 модуля

3) Автоматический выключатель трехполюсный 25А

4) Трехфазный счетчик электрической энергии 380В

5) распределительный блок на DIN-рейку

6) Селективное УЗО от 40А, ток утечки 100мА или 300мА

Электросчетчик, должен быть трехфазный, для сетей 380В. Обычно выбирается электронный, двухтарифный. При выборе производителя, основной ориентир срок гарантии, у кого она больше, тот и нужно брать. Обычно берется простой, без лишних интерфейсов, например, Меркурий или Энергомера.

Распределительный блок должен иметь достаточное количество клемм под нужные сечения проводников. Для варианта с ВДТ – выключателем дифференциального тока, с заземлением ТТ, потребуется:

1 клемма – 16мм.кв – для контура повторного заземления ПВ1 или ПуВ(ПуГВ)

2 клеммы по 6мм.кв – для внутренних проводников, используемых при коммутации

Противопожарное УЗО выбирается селективное – имеющее задержку при срабатывании. Ток утечки может быть, как 100мА, так и 300мА.

Выбор порога срабатывания Устройства Защитного Отключения зависит от многих факторов. Практически любой электроприбор имеет определенную утечку и это нормально. Если таких устройств много, суммарные потери могут быть большими.

Исходя из этого и выбирается эта величина. Если жилье небольшое, достаточно ставить 100мА. Если же это коттедж, с большим количеством техники и оборудования, то однозначно 300мА.

Для внутренних соединений в щитке, удобнее всего использовать гибкие провода ПуГВ (еще могут называться ПВ-3) 1х6мм.кв. и наконечники НШВИ.

Установка вводного щита на столбе

Весь процесс установки электрощита на уличном столбе включает в себя такие операции:

  1. Подготовительная разметка на столбе, которая помогает определить необходимое место установки в соответствии с требованиями по высоте (0,8-1,7 м).
  2. Фиксация необходимого оборудования. Крепежной скобой обхватывают столб, и 2 конца ее выводят в направлении верхней крышки щитка. С лицевой стороны она соединяется швеллером. Нижний край щитка закрепляется аналогичным образом.
  3. Корпус заземляется.
  4. Производится сборка автоматов, защитных устройств внутри щитка.

Установка щита

Монтаж щита для установки счетчика может производиться на отдельной опоре, на столбе линии электропередач или на стойке, выполненной из подручных материалов. Важно, чтобы она была устойчивая и ровная, чтобы щит можно было зафиксировать в уровень и закрепить сквозными болтами.

Читать также: Насадки для перфоратора для снятия плитки

По стандарту высота расположения щита не может превышать 1,7 метра, однако сетевики могут потребовать установку на высоте 2,5-3,0 метра. В этом случае при выборе опоры и креплений нужно учитывать еще и увеличенную ветровую нагрузку.

Ввод проводки и подключение автоматов

Для ввода в щит необходимо предусмотреть промежуточные изоляторы, которые предупреждают повреждения изоляции на вводном кабеле.

Что касается состава уличного электрического щита, то в него включаются:

  • Вводной автомат с 2 полюсами (если сеть однофазная) и с 3-4 полюсами (если 3-фазная);
  • Дифференциальный автоматический выключатель для противопожарной защиты сети (УЗО номиналом 100-300 мА);
  • Прибор учета электрической энергии, подобранный в соответствии с подключенной мощностью;
  • Дополнительно можно установить реле контроля напряжения, ограничитель перенапряжений (ОПН) или УЗИП (устройство защиты от импульсных перенапряжений), которое защищает не только от коммутационных скачков, но и от перенапряжений, вызванных электрическими разрядами в атмосфере (грозой).

Также поставщик электроэнергии может рекомендовать утепленный щиток или необходимость установки в нем модульного термостата для поддержания плюсовой температуры внутри корпуса в зимний период.

Заземление щита

В щите размещают нулевые шины PE и N, объединяя их перемычкой, что позволяет объединить нулевые и заземляющие проводники. Металлический корпус заземляется соединением с шиной РЕ. К ней же подключается повторное заземляющее устройство (для подключения используется медный провод таким же сечением, как и для вводного фазного проводника).

Само заземляющее устройство выполняется из стальных прутков диаметром 16 мм или уголков такого же сечения. Элементы свариваются между собой стальной полосой 4х10 мм, и все конструкция углубляется в землю в месте установки счетчика.

Сборка электрического щита учета с УЗО

подключение вводного кабеля СИП 4х16

В первую очередь подключаем все провода большого сечения. В нашем случае это Самонесущие Изолированные Провода (СИП). Всего четыре штуки. Все они алюминиевые, снаружи черная изоляция. Их маркировка выполнена в виде цветной непрерывной полосы.

Желтый, зеленый и красный проводники подключаем на верхние клеммы вводного АВ – это три фазы. PEN – с голубой полосой, в нулевую клемму счетчика электрической энергии.

Обычно это две крайние справа. Можно подключить к любой из них, они внутри соединены.

Зеземления

Далее подключаем к распределительному блоку проводники заземления. В первую очередь, как самый большой, от смонтированного на участке контура. Тудаже заземление токопроводящего корпуса щитка, которое монтируется под специальный болт.

Именно такая схема подключения N и PE отличает систему ТТ от других.

В системе TN-C-S, схему щита учета с УЗО, которой мы уже рассматривали ЗДЕСЬ, всё сделано иначе. Там наоборот, и PEN проводник и контур заземления дома объединены в распределительном блоке. И только после него делятся.

Здесь же вводной СИП с голубой полосой – PEN, по сути является рабочим нулём «N» всей электроустановки. Защитный ноль, он же заземление «PE», берется от смонтированного у во дворе контура.

Организационные вопросы

Прежде всего, следует учитывать, что электросетевая компания выполняет подключение непосредственно к электросетям только при условии соблюдения всех требований по установке щита учета и оформлении всех необходимых документов.

Следовательно, первым этапом является составление проекта и утверждение его в электросетевой организации. Как правило, в организации есть типовые проекты подключения к электросетям и перечень требований относительно выбора номинала защитных аппаратов, типа электросчетчика, сечения вводного провода (кабеля), типа и конструктивного исполнения корпуса учетно-распределительного щитка, а также требования по монтажу самого щитка на опоре либо в другом месте. Возможно, по требованию снабжающей организации потребуется подключение счетчика к автоматизированной системе коммерческого учета электроэнергии (АСКУЭ).

Нередко возникают ситуации, когда после приобретения вводного кабеля, установки щита, прибора учета и необходимых защитных аппаратов без предварительного согласования, энергоснабжающая организация отказывает в подключении к электросети и приходится устранять ошибки в монтаже либо заново приобретать новый электросчетчик, защитные аппараты и другие элементы.

Поэтому если у вас уже есть готовый проект, то прежде чем приобретать необходимые конструктивные элементы и приступать к монтажу электрощита, следует согласовать проект в снабжающей организации.

Провода от вводного автомата до счетчика

Следующим шагом провода от нижних клемм вводного автомата – 3 фазы, прокладываем и подсоединяем к соответствующим контактам счётчика электрической энергии.

Как подключить трехфазный счетчик электроэнергии, в каком порядке соединять провода мы подробно рассматривали ЗДЕСЬ, на примере устройства Энергомера се 306.

Подключение заземления в щитке – советы электрика

Тонкости подключения автоматов и УЗО в щитке: нюансы монтажа + схемы

От правильного подключения электропроводки в доме зависит комфортное проживание всех его обитателей и бесперебойная работа бытовых приборов. Согласны? Чтобы обезопасить технику, находящуюся в доме, от последствий перенапряжения или короткого замыкания, а обитателей от опасностей, связанных с электрическим током, нужно включить в схему защитные аппараты.

При этом необходимо выполнить главное требование — подключение УЗО и автоматов в щитке должно быть сделано правильно. Не менее важно не ошибиться с выбором этих устройств. Но не волнуйтесь, мы расскажем вам о том, как все сделать правильно.

В этой статье речь пойдет о том, по каким параметрам выбирают УЗО. Кроме того, здесь вы найдете особенности, правила подключения автоматов и УЗО, а также множество полезных схем по подключению. А приведенные в материале видеоролики помогут реализовать все на практике даже без привлечения специалистов, если вы хоть немного разбираетесь в электрике.

Основные принципы подключения

Для подключения УЗО в щитке нужны два проводника. По первому из них ток поступает к нагрузке, а по второму — уходит от потребителя по внешнему контуру.

Как только происходит утечка тока, появляется разность между его величинами на входе и выходе. Когда результат превосходит заданную величину, УЗО срабатывает в аварийном режиме, защищая тем самым всю квартирную линию.

На аппараты защитного отключения негативно воздействуют КЗ (короткое замыкание) и перепады напряжения, поэтому они сами нуждаются в прикрытии. Задачу решают путем включения в схему автоматов.

В составе УЗО имеется кольцеобразный сердечник с двумя обмотками. По своим электрическим и физическим характеристикам обмотки идентичны

Самостоятельное выполнение работ по монтажу устройств защиты предполагает использование схем. Как модульные УЗО, так и автоматы для них устанавливают в щитке.

Прежде чем начинать монтаж нужно решить следующие вопросы:

  • сколько УЗО следует установить;
  • где они должны находиться в схеме;
  • как подключить, чтобы УЗО работало корректно.

Правило электромонтажа гласит, что все соединения в однофазной сети должны входить в подключаемые устройства сверху вниз.

Профессиональные электрики объясняют это тем, что если завести их снизу, то КПД у подавляющего большинства автоматов снизится на четверть. Кроме того, мастеру, работающему в щитовой, не придется дополнительно разбираться в схеме.

УЗО, рассчитанные для установки на отдельных линиях и обладающие малыми номиналами, в общую сеть монтировать нельзя. В случае несоблюдения этого правила возрастет как вероятность утечек, так и КЗ.

Выбор УЗО по главным параметрам

Все технические нюансы, связанные с выбором УЗО, знают только профессиональные монтажники. По этой причине специалисты должны делать подбор устройств еще при разработке проекта.

Критерий #1. Нюансы подбора аппарата

При выборе аппарата в качестве основного критерия выступает номинальный ток, проходящий через него в длительных режимах работы.

Исходя из стабильного параметра — утечки тока, есть два основных класса УЗО: «А» и «АС». Аппараты последней категории более надежные

Величина In находится в диапазоне 6-125 А.

Дифференциальный ток IΔn — вторая по важности характеристика. Это фиксированное значение, по достижении которого срабатывает УЗО.

При его выборе из ряда: 10, 30, 100, 300, 500 мА, 1 А приоритет имеют требования безопасности.

Влияет на выбор и цель установки. Для обеспечения безопасной работы одного прибора ориентируются на значение номинального тока с небольшим запасом. Если защита нужна для дома в целом или для квартиры, все нагрузки суммируют.

Критерий #2. Существующие типы УЗО

Следует различать УЗО и по типам. Их всего два — электромеханические и электронные. Основной рабочий узел первого — магнитопровод с обмоткой. Его действие заключается в сравнении значений тока, уходящего в сеть и возвращающегося обратно.

Есть такая функция и в аппарате второго типа, только выполняет ее электронная плата. Работает она исключительно при наличии напряжения. Из-за этого электромеханический прибор защищает лучше.

У аппарата электромеханического типа имеется дифференциальный трансформатор+реле, а у электронного типа УЗО присутствует электронная плата.

В этом заключается различие между ними

При этом защитное устройство не сработает, а электромеханическое в таких условиях останется работоспособным.

Установка УЗО и автоматов в щитке

Электрощит, в котором находятся устройства учета и распределения нагрузки, обычно является местом и для монтажа УЗО. Независимо от выбранной схемы, существуют правила, обязательные при подключении.

Главные правила подключения

Наряду с устройством автоматического отключения, на щиток устанавливают и автоматы. Все что нужно для этого — минимум инструментов и грамотная схема.

Стандартный набор должен состоять:

  • из пакета отверток;
  • пассатижей;
  • бокорезов;
  • тестера;
  • торцевых ключей;
  • кембрика.

Также для монтажа потребуется кабель ВВГ разных цветов, подобранный по сечению в соответствии с токами. Изоляционной трубкой ПВХ выполняют маркировку проводников.

Когда на DIN-колодке, имеющейся на щите, есть место, на него монтируют устройство защитного отключения. В противном случае устанавливают дополнительную.

Ключевой принцип монтажа следующий: соприкосновение нулевого проводника после УЗО ни с входным нулем, ни с заземлением недопустимо, поэтому его изолируют по аналогии с другими жилами.

Последовательно с УЗО необходимо включать защитный автомат. Это также одно из важнейших правил.

Когда защита всего жилья выполнена с применением одного УЗО, используют схему, включающую несколько автоматов.

Чтобы исключить присутствие дополнительных проводов на щите, что выглядит не очень эстетично, для подключения пучка жил применяют гребенчатую (распределительную) шину

В проект включают, кроме добавочных АВ, еще одну составляющую — изолятор нулевой шины. Монтируют его на корпус щитка или на din-рейку.

Вводят это дополнение из-за того, что при большом числе нулевых проводников, подключаемых к выходной клемме отключающего устройства, они просто не поместятся в одном зажиме. Изолированная нулевая шина — лучший выход из этой ситуации.

Иногда электрики, чтобы поместить весь пучок нулевых проводов в гнездо, принимают решение о подпиливании жил одножильного кабеля. В случае когда кабель многожильный несколько жилок удаляют.

Этот вариант лучше не использовать, поскольку из-за уменьшения сечения проводников увеличится сопротивление, следовательно, возрастет нагрев.

Как число монтажных отверстий, так и их диаметр может быть разным. Шина земли крепится непосредственно на корпус.

Нулевые провода в одной скрутке — дополнительное неудобство при выявлении повреждений на линии, а также когда нужно демонтировать один из кабелей. Здесь не обойтись без откручивания зажима, разматывания жгута, что обязательно спровоцирует появление трещин в жилах.

Нельзя монтировать синхронно и два провода в одно гнездо. Входы автоматов защиты связывают перемычками. В качестве последних при профессиональном монтаже применяют специальные стыковочные шины под названием «гребенка».

Особенности схем подключения

Выбор схемы предусматривает учет особенностей конкретной электрической сети. Среди многочисленных вариантов есть всего две схемы, использующиеся для подключения автоматов и УЗО в щитке, считающиеся основными.

Самая простая схема монтажа автоматов и защитного устройства. Она может быть применена для подключения от одной до нескольких нагрузок, соединенных параллельно

В первом и самом простом способе, когда одно УЗО защищает всю электрическую сеть, кроются недостатки. Основной — трудности в выявлении конкретного места повреждения.

Второй — когда в функционировании УЗО произойдет какой-то сбой, из работы будет выведена вся система. Прибору защитного отключения отводят место сразу после счетчика.

Следующий способ предусматривает наличие таких аппаратов на каждой индивидуальной линии. При сбое на одной из них, все остальные будут в рабочем состоянии. Для реализации этой схемы требуется более габаритный щиток и большие затраты в финансовом плане.

Подробно о простой схеме

Рассмотрим подключение УЗО с автоматами на простой квартирный щит. На входе стоит автомат включения двухполюсный. К нему подключено двухполюсное УЗО, к которому два однополюсных автомата.

К выходу каждого из них подключена нагрузка. В принципе УЗО вводят в схему также, как и автоматический выключатель.

На корпусе УЗО имеется кнопка «Тест». Она предназначена для тестирования его работы. Производители советуют не реже одного раза в месяц пользоваться этой клавишей и проверять работу самого устройства

Фаза, подведенная к автомату включения, заходит на вход УЗО с выводом на автоматы. Нулевой выход с автомата идет на нулевую шину, а с нее — на вход в аппарат.

С его выхода нулевой проводник направляется уже на вторую нулевую шину. В наличии этой второй шины и заключается особый нюанс, не зная о котором невозможно добиться нормального функционирования схемы.

УЗО в процессе работы контролирует как входящее, так и выходящее напряжение — сколько зашло на входе, столько должно быть и на выходе.

Если равновесие нарушено и на выходе оно больше на величину уставки, на которую настроено УЗО, происходит его срабатывание и автоматическое отключение питания. За этот процесс как раз и отвечает нулевая шина.

В электрических схемах, где не предусмотрен монтаж аппарата защитного отключения, только один общий ноль.

В схемах с УЗО картина другая — здесь уже присутствует несколько таких нолей. При использовании одного устройства их два — общий и тот, относительно которого работает защитный аппарат.

Если подключено два УЗО — нулевых шин три. Обозначают их индексами: N1, N2, N3 и т.д. В целом нулей всегда на один больше, чем устройств защитного отключения. Один из них основной, а все остальные привязаны непосредственно к УЗО.

Цветовое обозначение электрических проводов согласно правилам, установленным ПУЭ. Эту маркировку нужно изучить, прежде чем приступать к установке защитных аппаратов

Если предполагается подключать через УЗО не все оборудование, то ноль подают с общей шины. Прибор защитного отключения в этом случае исключают из цепи.

При добавлении однополюсного автомата, работающего от УЗО, с выхода последнего фазу подают на вход автоматического выключателя. С выхода выключателя проводник подключают к одному контакту нагрузки. Ноль на нее подводят ко второму выводу. Поступает он с нулевой шины, созданной УЗО.

На щите имеется еще один элемент — шина защитного заземления. Корректная работа УЗО без нее невозможна.

Трехпроводная сеть есть только в новых домах. В ней обязательно присутствует нулевая фаза и заземление. В домах, построенных давно, имеется только фаза и ноль. В таких условиях УЗО также будет функционировать, но немного иначе, чем в трехфазной сети.

Как выход из положения заземление выводится третьим проводником на розетки, а затем на потолок к тому месту, где подключаются люстры. К выключателям «землю» не подают.

Вариант подключения автоматов без УЗО

Бывают случаи, когда один из автоматов нужно подключить, минуя устройство защитного отключения. Питание подключают не с выхода УЗО, а со входа в него, т.е. непосредственно с автомата. Фазу подают на вход, а с выхода ее подключают к левому выводу нагрузки.

Ноль берут с общей нулевой шины (N). Если случится повреждение на участке, подконтрольном УЗО, он будет выведен из схемы, а вторая нагрузка не будет обесточена.

УЗО в трехфазной сети

В сеть такого вида включают или специальное трехфазное УЗО с восемью контактами, или три однофазных.

Размещают схему подключения УЗО на его корпусе. Провода, отходящие от выходных клемм, подводят к распредсети квартиры

Принцип подключения полностью идентичен. Монтируют его согласно схеме. Фазы А, В и С подают питание на нагрузки, рассчитанные на 380 В. Если рассматривать каждую фазу отдельно, то в тандеме с кабелем N (0), она обеспечивает серию однофазных потребителей 220 В.

Производители выпускают трехфазные аппараты защиты отключения, адаптированные к большим токам утечки. Они предохраняют электропроводку только от возгорания.

На фото две схемы: аппарат защиты отключения в однофазной и трехфазной сети системы TN-C-S.

Это обозначает, что нулевой кабель делится на рабочий и защитный

С целью защиты людей от воздействия электрического тока, на отходящих ветках монтируют однофазные двухполюсные УЗО, настроенные на ток утечки в диапазоне 10-30 мА. Для прикрытия перед каждым вставляют автомат. В схеме после УЗО нельзя соединять рабочий ноль и заземление.

Узо и автоматы на трехфазном щите

Разберем подробно не совсем стандартную схему, собранную на трехфазном распределительном щитке. На нем находятся:

  • трехфазные вводные автоматические выключатели — 3 шт.;
  • трехфазное устройство защитного отключения — 1 шт.;
  • однофазные УЗО — 2 шт.;
  • однополюсные однофазные автоматы — 4 шт.

С первого вводного автомата напряжение поступает на второй трехфазный автомат через верхние клеммы. Отсюда же одна фаза идет на первое однофазное УЗО, а вторая — на следующее.

Напряжение со второго входного автомата поступает на трехфазное УЗО, на нижние клеммы которого подключена трехфазная нагрузка.

Это защитное устройство предохраняет от токов утечки, а второй вводный автомат — от КЗ

Однофазные УЗО, установленные на щиток, являются двухполюсными, а автоматы — однополюсными.

Для корректного функционирования защитного устройства необходимо, чтобы рабочие нули после него больше нигде не соединялись. Поэтому после каждого УЗО здесь установлена нулевая шина.

Когда автоматы не одно-, а двухполюсные, то отдельную нулевую шину устанавливать не придется. Если две нулевые шины объединить, будет происходить ложное срабатывание.

Каждое из однополюсных УЗО рассчитано на два автомата (1-3, 2-4). К нижним клеммам автоматов подключена нагрузка.

Общая шина заземления установлена отдельно. На вводный автомат заходят три фазы: L1, L2, L3, рабочий нулевой провод N и PE — защитный.

Ноль подключен на общий ноль, а с него уходит на все УЗО. После он идет на нагрузку: с первого аппарата — на трехфазную, а со следующих однофазных — каждый на свою шину.

В трехфазной сети электрические величины векторные, поэтому их суммарное значение определяют не алгебраической, а векторной суммой этих величин

Хотя в этом распределительном щитке ввод трехфазный, разделение провода на PEN и PE не выполнено, т.к. ввод пятипроводный. На щит приходит три фазы, ноль и заземление.

Выводы и полезное видео по теме

Нюансы установки всех элементов на квартирном щитке:

Подробности монтажа УЗО:

УЗО и автоматы — оборудование технически сложное. Его целесообразно устанавливать в местах, где электрический ток может нести угрозу как безопасности людей, так и домашней технике. Монтаж его предусматривает учет многих параметров, поэтому как расчет, так и установку лучше выполнят квалифицированные специалисты.

Как подключить заземление. Заключительная часть

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разговор о подключении заземления. Во второй части статьи мы рассмотрели системы заземления TN-S и TN-C-S. Выяснили их преимущества и недостатки. Сегодня продолжаем и начнем с системы заземления ТТ.

4. Система заземления ТТ

Система ТТ – система, в которой нейтраль силового трансформатора глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали силового трансформатора.

Эта система разработана для мобильных зданий, сделанных из металла или с металлическим каркасом, предназначенных для уличной торговли и бытового обслуживания населения (торговые павильоны, киоски, палатки, летние кафе, будки, фургоны и т.д.). Большую популярность система ТТ стала набирать и в домах в частном секторе.

Как видно из рисунка, в системе ТТ фазный L и нулевой рабочий N проводники электрически не связаны с нулевым защитным РЕ. Здесь делается свой контур заземления, который заводят в дом и подключают в местный внутренний щит.

От щита защитный проводник РЕ разводится по всем розеткам, а также подводится к месту крепления ламп освещения, чтобы заземлить металлические корпуса люстр. Как видите, система проста, но также имеет свои недостатки.

Например: произошло короткое замыкание фазы на «землю».

Автоматический выключатель здесь вряд ли поможет, так как сопротивление между фазным проводником и собственным контуром заземления очень велико. Ток, который возникнет между ними, будет очень мал и автоматический выключатель его не почувствует, так как такой ток не будет являться током короткого замыкания.

Если же будет стоять устройство защитного отключения типа УЗО, реагирующее на токи утечки, то оно сработает и отключит питание.

При коротком замыкании фазы и рабочего нуля выручит автоматический выключатель, а УЗО не среагирует.

Поэтому в системе ТТ применяется комбинированная защита от действия электрического тока. А это получается немного дороговато — но жизнь дороже.

При построении схемы питания дома обязательное условие использования не менее двух устройств защитного отключения типа УЗО: одно общее на входе и одно после счетчика. Второе УЗО будет дублировать первое, на тот случай, если первое выйдет из строя.

Приведу оптимальную схему, где дом делят на группы потребителей, и уже для каждой группы устанавливают свое дополнительное УЗО. Например: санузел – группа №1, подсобное помещение – группа №2, комнаты – группа №3, кухня и прихожая – группа №4. Рассмотрим внутреннюю комплектацию и монтаж главного распределительного щита.

Разберем схему

От линии 0,4 кВ «фаза» и «ноль» заходят в главный распределительный щит дома (ГРЩ) и подключаются на вход автоматического выключателя QF1.

С выхода автомата QF1 «фаза» и «ноль» заходят в счетчик SW1, а с выхода счетчика подключаются на вход QF2 – устройство защитного отключения типа УЗО.

Далее с выхода QF2 «фаза» и «ноль» попадают на входа автоматов QF3 и QF4 типа УЗО.

С выходов автоматов QF3 и QF4 каждая нулевая жила подключается на свою нулевую колодку N1 или N2, а фазные жилы от этих автоматов распределяются следующим образом:

1. QF3 – фаза подключается на входа автоматических выключателей SF1 и SF2, подающих питание на группу потребителей №1;

2. QF4 — фаза подключается на входа автоматических выключателей SF4 и SF5, подающих питание на группу потребителей №3.

3. С выхода QF2 фазная жила перемычкой подключается на вход автоматического выключателя SF3, подающего питание на группу потребителей №2.

Силовую часть схемы мы разобрали. Сечение жил фазы и нуля при монтаже в силовой части используется не менее 4-х квадратов (на рисунке жилы силовой части выделены толстыми линиями).

Теперь разберем, как запитываются группы потребителей на примере группы №1

Допустим, мы распределили: автомат SF1 подает питание на розетки, а автомат SF2 на освещение. Начнем с розеток.

От главного щита к соединительной коробке прокладывается трехжильный провод сечением 2,5 квадрата.

Первая жила подключается на выход автомата SF1, вторая жила подключается на нулевую колодку N1, а третья жила защитного заземления РЕ подключается на колодку заземления, на которую выведен свой контур заземления. Таким образом сделано и освещение, но только сечение жил для освещения берется 1,5 квадрата.

И теперь, если произойдет утечка тока в группе потребителей №1, то сработает QF3 и отключит питание от этой группы. При этом, к потребителям №2 и №3 напряжение поступать будет.

От соединительной коробки к каждой розетке и к каждой люстре прокладывается свой трехжильный провод. В этой статье монтаж нарисован более подробно.

Теперь разберем группу №2.
На вход автоматического выключателя SF3 подается фазная жила, которая берется с выхода общего автомата QF2, а нулевая жила приходит с нулевой колодки N.

Как правило, таким образом запитывается группа оборудования, к которому не предъявляются усиленные меры защиты по электробезопасности. И если произойдет утечка тока, то сработает QF2, но в этом случае, он отключит общее питание 220 Вольт, то есть всех потребителей.

И еще немного о защитном оборудовании:

QF2 – устройство защитного отключения с током утечки на 300 mA;
QF3, QF4 — устройства защитного отключения с током утечки на 30 mA;
SF1, SF4 — автоматические выключатели на розетки — 16 Ампер;
SF2, SF5 — автоматические выключатели на освещение — 10 Ампер;
SF3 — например, для мощного потребителя — 25 Ампер.

Только с появлением ГОСТ 30339-95/ГОСТ Р 50669-94 и ПУЭ-7 появилась возможность использования системы ТТ, а до этого момента она была запрещена. Но и в ПУЭ есть ограничения на использования системы заземления ТТ:

Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
RаIа

5. Система заземления IТ

Система заземления IT – это система, в которой нейтраль трансформатора изолирована от земли или заземлена через большое сопротивление, а открытые проводящие части заземлены.

Система IT используется редко и применяется только в электроустановках, где не допускается перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов.

В таких электроустановках для защиты при косвенном прикосновении и при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети, или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания.

Вот мы и рассмотрели все типы систем заземления, их преимущества и недостатки. И теперь, зная устройство и принцип работы любой из систем, Вы без труда сможете подключить заземление.
Удачи!

1. Правила Устройства Электроустановок (ПУЭ) – седьмое издание.

2. ГОСТ 30339-95/ГОСТ Р 50669-94.
Межгосударственный стандарт. Электроснабжение и электробезопасность мобильных (инвентарных) зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания населения. Технические требования.

3. ГОСТ Р 51628-2000.
Государственный стандарт Российской Федерации. Щитки распределительные для жилых зданий. Общие технические условия.

4. Системы заземления в электроустановках низкого напряжения. Выпуск №20. «Шнейдер Электрик».

5. Ветка форума Домодел.ru — «Заземление в квартире, как его сделать»
http://forum.domodel.ru/index.php?topic=225.0

Как подключить заземление?

В последние годы строительные фирмы всё чаще предлагают квартиры без внутренних работ, в которых потенциальный покупатель сможет раскрыть свой дизайнерский талант.

Электропроводка в таких квартирах обычно уже проложена, но на местах установки розеток есть только торчащие из стены провода, так что некоторые работы по их монтажу придётся выполнять самостоятельно.

Как подключить розетку с заземлением

Перед началом работ нужно отключить автоматы и убедиться в отсутствии напряжения на проводах. Розетки устанавливаются в монтажные коробки, и провода наружу выводятся через них.

Перед монтажом провода необходимо укоротить до нужной длины и зачистить их концы от изоляции, а с розетки нужно снять лицевую часть. На внутренней стороне розетки расположены клеммы с зажимными винтами, куда вставляются провода и фиксируются.

Изоляция проводов различается по цветам: темно-коричневый провод подключается к фазе, а синий к нулю. На розетке около клемм для их подсоединения часто наносятся метки в виде стрелок.

Жёлтый провод с зелёной полосой – это заземление, и он должен быть подключен к соответствующей клемме, которая соединяет его с «усиками».

После подключения проводов розетка вставляется на своё место и фиксируется в коробке винтами. Лицевую панель обычно монтируют уже после оклейки обоями или покраски стен.

Как подключить вилку с заземлением

Некоторые бытовые электроприборы не комплектуются вилками на сетевых шнурах, а рассчитаны на прямое подключение. Но если уже имеется розетка под этот прибор, то на провод вилку можно установить самостоятельно.

Вилки бывают разборные и неразборные. Если дома завалялась неразборная вилка от старого электроприбора, ее не следует использовать. Во-первых, на ней может быть «уставшая» изоляция, а во-вторых, лишние скрутки на проводах тоже не нужны, лучше приобрести новую разборную вилку.

При помощи отвёртки нужно открутить винт и разобрать корпус вилки, вынуть резиновое уплотнение и одеть его на кабель. Нередко на концах проводов бывают клеммы с отверстиями, и если это так, то можно приступать к их монтажу.

Если клеммы отсутствуют, необходимо зачистить концы и свернуть их кольцом при помощи круглогубцев, а после этого залудить.

Провода фиксируются винтами. Очень важно жёлто-зелёный провод заземления установить на своё место. Остальные два можно прикручивать как угодно.

Как подключить заземление к щитку

Все провода заземления от потребителей должны сходиться к щитку. В нём должна находиться заземляющая шина, представляющая собой обычный клеммник с механической фиксацией проводов.

Перед подключением проводов необходимо убедиться в том, что этот клеммник соединён с заземляющим контуром здания.

Все работы в щитке необходимо проводить с соблюдением правил электробезопасности и только квалифицированными специалистами. Перед проведением таких работ необходимо обратиться в РЭС для согласования всех вопросов, связанных с их проведением.

Заземление в квартире, инструкция как сделать

Во всех инструкциях современных бытовых приборов прописано, что использовать их без заземления нельзя. Поэтому заземление в квартире – основное требование безопасной их эксплуатации. Вероятность, что прибор ударит током небольшая, но она есть, когда со временем изоляция проводников внутри аппаратов становится тонкой.

В новостройках жилых комплексов проектировщики закладывают заземляющую систему, а что делать жителям многоквартирных домов старого образца, где нет заземляющих контуров. Выход один – сделать заземление в квартире своими руками.

Создание заземляющего контура

Если вы откроете распределительный щиток в подъезде, то в технологических каналах находятся четыре провода: три фазы и один ноль. То есть, защитный и рабочий нулевой контур совмещены в одном проводнике. Такая схема называется занулением и имеет буквенную аббревиатуру TN-C.

В квартиру обычно заходит два проводника по отдельности: одна фаза и один ноль, или один двухжильный кабель. При этом если открыть розетку, то в ней защитная клемма PE отсутствует.

К сожалению, эта схема заземления в старых домах еще присутствует. И это серьезная опасность для поражения током человека. Установленные в щитке автоматы реагируют только на короткое замыкание. А вот на блуждающие токи нет.

Поэтому в 2003 году было принято постановление, что во всех жилых домах необходимо избавиться от TN-C и перейти на новую схему – TN-S или TN-C-S, что обозначает: система выравнивания потенциалов.

То есть, необходимо во всем доме провести проводку системы заземления, а уже после, этот же контур внедрить в каждую квартиру.

Получается так, что перед тем, как сделать заземление в квартире, необходимо сделать его во всем доме. Надо подвести к общему силовому щиту дома отдельный кабель, соединяющийся с заземление в трансформаторе.

Процесс этот сложный и долгий. Поэтому многие энергоснабжающие компании поступают так: они вводной нулевой проводник делят на два контура: ноль и заземление. Но перед этим, тот же общий ноль, заземляют повторно.

До квартирных щитков доводятся два провода:

  • PE – защитный;
  • N – нулевой рабочий.

Все остальное можно сделать своими руками внутри своей квартиры. А именно, проложить провод от каждой розетки до распределительного щитка. Для этого придется штробить стены, укладывая проводку в каналы с последующей заделкой и отделкой. Можно монтаж провести открытым способом, уложив провода в короба.

Установка УЗО

Есть несколько вариантов, которые частично могут решить вопрос заземления в квартире. Один из них – это монтаж устройства защитного отключения, короче УЗО. Всей проблемы он не решает, но питающую сеть в квартире отключит, если в ней появятся утечки электрического тока.

Вот схема подключения УЗО без заземления. Сразу же оговоримся, что данное устройство можно устанавливать только в системах TN-C, потому что в других схемах ему и делать-то нечего, заземление работает.

К тому же в самом УЗО всего два контакта, где не предусмотрен третий, рассчитанный на заземляющий проводник. По сути, этот прибор является своеобразным выключателем, который не только реагирует на утечку токов, но и контролирует их величину.

Если величина небольшая, то прибор не отключают питающую сеть. Как только значение тока превышает допустимый, сеть моментально отключается.

Как подключить УЗО в щитке? Он устанавливается между входным выключателем и автоматами.

Теперь схема подключения:

  • В приборе есть две входные клеммы и две выходные. К входной фазной клемме подключение производится от общего автоматического выключателя. К нулевой от нуля корпуса распределительного щита.
  • Выходная фазная клемма УЗО соединяется с входными контактами автомата. Выходная нулевая соединяется со специальным соединяющим устройством, которое устанавливается на монтажной шине автоматов.

Теперь нужно проверить, как работает защитный аппарат. Включаете общий автомат и промежуточный, включаете УЗО. Остается только в розетку подключить какой-нибудь бытовой прибор под нагрузкой. Если защитное устройство не выбьет, то значит, все сделано правильно.

Есть на приборе кнопка «ТЕСТ». Она специально установлена, чтобы проверит аппарат до его подключения в силовую сеть. Включаете общий автомат, но не включаете промежуточные автоматические выключатели. Нажимаете на кнопку. Если прибор УЗО отключился, то он исправен.

Сборка собственного контура

Есть еще один вариант, который подойдет для жителей первых этажей в многоквартирном доме. Он полностью отвечает на вопрос, как сделать заземление в квартире. Это схема заземления в квартире основана на создание собственного заземляющего провода. Что делать необходимо?

  • Сначала надо на улице вбить в землю три металлических штыря. Их можно сделать из арматуры, заточив концы. Диаметр штырей 8-12 мм.
  • Расположение штырей относительно друг друга – треугольник со сторонами 1,0-1,5 м. Вбивать надо на глубину 2-3 м так, чтобы конец арматуры торчал от поверхности грунта на 3-5 см.
  • Все штыри обвязываются между собой металлической лентой толщиною 2-3 мм и шириною 20-30 мм. Метод обвязки – сварка.
  • Эта конструкция соединяется с распределительным щитом или металлической лентой, или кабелем сечением не меньше 5 мм².

Опасные схемы защиты

Когда в домах многоэтажного типа использовались металлические трубы систем водопровода и отопления, то некоторые горе-электрики подключали к ним PE контур.

Это опасная игра, потому что пробитая фаза на любом бытовом приборе создавала ток утечки, который стремился по наименьшему сопротивлению, то есть, двигался по заземлению в квартире. При этом током могло ударить от соприкосновения с трубой или радиатором отопления.

И не только в этой квартире, но и в других, ведь стояки являются единой сетью, как в водопроводе, так и в отоплении. Благо сегодня все перешли на пластиковые трубы.

Есть случаи, когда проводилось заземление розеток, в которых нулевую и заземляющую клеммы соединяли перемычкой. Опасность заключается в том, что при обрыве нулевого контура весь ток начнет проходить по заземляющей сети. То есть, напряжение будет переходить на корпус всех находящихся в квартире приборов.

Вот все, что вы должны знать о заземлении в многоквартирном доме. Хорошо, если оно уже предусмотрено конструкцией здания. Но если нет заземления, то его можно сделать своими руками. Варианты вам предложены, но, как показывает практика, самый простой и эффективный – это заземлить проводку и розетки с помощью УЗО.

Что делать если в квартире нет заземления?

Электричество характеризуется двумя основными параметрами: силой тока и напряжением. Всем известны последствия превышения силы тока (короткое замыкание) – от выхода из строя конкретного электроприбора до пожара в квартире или на лестничной клетке.

Поскольку опасность от короткого замыкания очевидна, практически в каждой квартире в распределительном щитке установлена обычная пробка-автомат. Недостаток – электричество отключается при незначительной перегрузке.

Преимущество – защита от последствий короткого замыкания.

А вот превышение напряжения – скрытая опасность. Большинство электроприборов имеют либо встроенный стабилизатор, который выравнивает напряжение, либо как в случае с нагревателями перепады напряжения в пределах 30% от нормы не сказываются на их работоспособности. А куда девается остаточный потенциал от высокого напряжения?

Если прибор заземлён – уходит в грунт. Если в квартире нет заземления – оседает на корпусе или накапливается на поверхности окружающих предметов. Если прикоснутся к такому предмету, статический потенциал переходит в электрический ток, который стремится по пути меньшего сопротивления, в этом случае, по человеческому организму.

Самые опасные незаземленные водонагревательные электроприборы, стиральные машины, электроплиты.

Негласное правило, известное с советских времён, что около работающей электроплиты нужно стоять в обуви с резиновой подошвой и не брать металлические кастрюли двумя руками – написано кровью.

Резина имеет высокое сопротивление, следовательно, поток электронов не стремится в землю через организм человека.

Естественно, это свидетельствует о ненадлежащем заземлении в те времена. Но ведь большинство проживает в тех же квартирах с той же проводкой, а современные бытовые электроприборы стали мощнее, соответственно, опаснее. Как сделать заземление квартиры в доме, сданном в эксплуатацию до 1998 года?

Понятие и виды

Самым нарочным примером заземления является громоотвод, проводящий электрический разряд по пути наименьшего сопротивления от наивысшей точки в почву, минуя системы электрокоммуникации здания.

Для высоковольтных линий громоотводами являются опоры ЛЭП (линия электропередач), которые не дают возможность доставать грозовым разрядам до провода, тем самым создавать перепады напряжения в сети во время грозы.

Второй вид – УЗИП (устройство защиты от импульсных перенапряжений). Один электрод присоединён к низковольтному проводу, а другой заземлён. Пространство между электродами заполнено преимущественно инертным газом.

При достижении определённого напряжения на 1–5%, ниже, чем максимальное при котором может функционировать тот или иной прибор, происходит пробой – напряжение выравнивается.

УЗИПы используются для ликвидации остаточного напряжения на сетевых коммутационных кабелях.

Третий вид применяется для заземления в многоквартирном доме. В качестве заземления используется нулевой или дополнительный заземляющий провод, который подводится к каждому гнезду как дополнительный контакт розетке 220В или в случае промышленного 3-фазного напряжения 380В.

Заземление квартир и частных домов

Заземление дома можно провести самостоятельно, благо дело, природная земля (почва) находится в непосредственной близости.

Достаточно провести ко всем розеткам в частном доме дополнительный защитный заземляющий провод площадью поперечного сечения 16 мм для алюминиевого или 10 мм для медного и заземлить его около распределительного щитка в почву на глубину не менее 1,5 м. В деревенской местности многие заземляют свой жилой дом таким способом.

А вот заземлить квартиру таким способом не удастся.

Ну, где взять природную землю на четвёртом этаже? Некоторые «умельцы» в качестве заземления в старых домах использовали металлические элементы системы централизованного отопления или газоснабжения.

Но после серии случаев поражения электротоком соседей, маленьких детей или взрывов в системе газоснабжения от такой практики отказались. Теперь заземление или зануление в квартире проводится только к распределительному щитку.

Как сделать заземление в квартире зависит уже от существующего заземления в многоквартирном доме. Заземление в многоквартирных домах проводится по трём схемам:

  • TN-S – современный способ заземления, прописанный нормативом с 1998 года;
  • TN-C-S – защитный заземляющий кабель проведён только к распределительному щитку;
  • TN-C – в качестве заземления используется нулевой провод, который заземляется на трансформаторной подстанции, например, заземление в хрущёвке проводится по такому принципу.

Как же сделать заземление в квартире если его нет? Перед тем как сделать заземление в квартире своими руками нужно определиться со схемой заземления.

Для этого нужно открыть распределительный щиток на лестничной клетке.

Если по стояку проведён пятижильный провод, это как минимум TN-C-S, а это означает, что защитный заземляющий провод достаточно подсоединить к защитному проводу жёлтого-зелёного цвета.

Затем нужно перейти к распределительному щитку в квартире, если счётчик электроэнергии находится на лестничной клетке, то посмотреть на провода, идущие от него в квартиру. Если идёт 3 провода и один из них жёлтого-зелёного цвета, значит, в квартире используется современная схема заземления TN-S. В этом случае, вам не придётся озадачиваться вопросом, как правильно сделать заземление.

Важно! В больших современных квартирах 3 и больше комнат, в квартиру могут проводиться две фазы, соответственно, проводов будет больше. Главное наличие провода с жёлто-зелёной окраской.

Всё равно, перед тем, как подключать мощный электроприбор, потребляющий более 3,2 кВт/ч, проверьте заземление розетки.

Возможно, был сделан незаземленный отвод через некоторое время после сдачи дома в эксплуатацию.

Если в общем распределительном щитке отсутствует защитный заземляющий провод – это старая схема TN-C. В этом случае можно провести только зануление розеток.

Но, в случае значительных перегрузок или перекоса фаз, что случается не так и редко, могут выйти из строя подключённые в данный момент к занулённой электросети приборы.

Единственный выход за общие средства жильцов многоквартирного дома или самостоятельно, поменять проводку целиком.

Этапы проведения самостоятельного заземления

Если при проведении электрокоммуникаций использовалась схема TN-C-S, можно провести самостоятельное заземление розеток, придерживаясь следующей последовательности действий:

  1. Обесточить квартиру – вывинтить все пробки или отключить пробки-автоматы или ползунковые автоматы.
  2. Очистить доступ к проводке – снять штукатурку или другие отделочные материалы в необходимых местах.
  3. Демонтировать необходимые розетки.
  4. Присоединить зачищенные концы проводников к специальным контактам, которые имеются в розетках Евростандарта.
  5. Соединить между собой все выводы к заземляемым розеткам.
  6. Обесточить стояк или дом.
  7. Подсоединить проведённое заземление к общему заземлению стояка или фазы.
  8. Включить подачу электричества в доме и в квартире.

Заключение

Такое заземление действенно, только если в бытовом приборе поддерживается подключение к электросети, заземлённой по схеме TN-S. Определить это можно по вилке подключения. Если она предназначена для розеток Евростандарта, значит, TN-S поддерживается.

Замена электропроводки в квартире-3

Итак, завершающий этап работ после монтажа вводного кабеля и установки квартирного щитка– сборка схемы электропроводки, подключение автоматов и УЗО в щитке.

Как я уже говорил в предыдущей статье электроповодку в квартире я разделил на три группы и на каждую группу установил свой автоматический выключатель.

1 группа- автомат на 16 А- комнаты, коридор. Провод АВВГ 2х2,5(старая проводка)

2 группа- автомат на 20 А- кухня. Провод ВВГнг 3х2,5

3 группа- автомат на 16 А- ванная. Провод ВВГнг 3х2,5

Допустимый ток для провода сечением 2,5 кв.мм составляет 25 А, поэтому выбор автоматов у меня сделан правильно.

При токе больше 20 А отключится автомат на 20 А (кухня), а при нагрузке с током более 16 А отключатся 16-амперные автоматы (комнаты, коридор и ванная).

Это защита от перегрузки. А от короткого замыкания (КЗ) автоматы и так должны отработать, потому что ток КЗ очень большой и может достигать больших значений- иногда даже тысяч ампер.

Есть такое понятие как кратность тока. У применяемых мною автоматических выключателей тип- С, у которого кратность 5-7 номинальных токов автомата.

То есть при 5-кратном токе от Iн автомата произойдет его отключение без выдержки времени.

Поясню на примере.

Если автомат на 16 ампер, то умножаем на 5 и получаем ток отключения автомата от КЗ- 80 ампер.

Автоматы крепятся на DIN-рейку, входящую в комплект квартирного щитка. Рядом с автоматами устанавливаю УЗО- устройство защитного отключения.

УЗО отключает все три автомата, то есть фаза с нулем на автоматы идет через УЗО с номинальным током в 40 ампер.

Дифференциальный ток отключения у УЗО- 30 мА или 0,03 Ампера.

Хочу обратить ваше внимание что ни в квартирном щитке, ни в этажном щите я

НЕ подключил провод заземления!

При этом вводной кабель я проложил трехжильный. Но провод заземления желто- зеленого цвета заизолировал в этажном щитке и в квартире.

Дело в том, что в доме применено заземление типа TN-C, при этом рабочий ноль и защитный находятся в нулевом проводе- PEN.

Если я подключу заземление, то при обрыве нуля между этажным щитом и вводом в дом на корпусе этажного щита появится опасный для жизни потенциал (именно на корпус щита прикручен вводной нулевой провод-PEN).

А так как провод заземления в квартиру будет подключен на этот корпус, то опасный потенциал попадет в квартиру на корпуса холодильника, стиральной машины, утюга и т.д., то есть везде где в розетке с вилкой будет подключен заземляющий контакт.

И при прикосновении к металлическому корпусу под высоким потенциалом УЗО может в таком случае и не отключиться

Последствия могут быть сами понимаете какие, с электричеством шутки плохи.

Если же провод заземления не подключать, то при обрыве нуля будет только повышенное или напряжение в электропроводке и самое страшное что может случиться- это сгорит какой нибудь электроприбор.

УЗО при этом тоже не отключится, оно для этого и не предназначено, зато никого током не “дернет”.

Хочу добавить что разделять в квартирном щитке нулевой провод на защитный и рабочий по правилам запрещено.

Можно это сделать в этажном щите- но только на свой страх и риск и при условии что вы уверены в том, что в доме сделано заземляющее устройство.

Я же поступаю проще- не подключаю заземление и все. При этом УЗО свои функции выполняет прекрасно.

В дальнейшем этот провод заземления должен быть подключен после перевода электропроводки дома на систему TN-C -S или TN-S.

Вводной автомат я установил в этажном щите, после счетчика электроэнергии. В схему подключения счетчика вмешиваться не стал- пусть кто обслуживает- переделывает.

Так как вводной кабель сечением 4кв.мм то автомат выбираю на 32 ампера, с немного заниженным номиналом, можно и на 40 ампер поставить но я чуток перестраховался.

Вводной автомат- двухполюсный, 2Р.

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Заземление в квартире

Обычно вопросами о монтаже заземления в квартире начинают задумываться в момент реконструкции электропроводки. После того как вы частично или полностью заменили старую двухжильную электропроводку на новую, трехжильную (с учетом заземляющего провода), подключили ко всем розеткам заземление, пришло время подключаться к этажному электрощиту.

Однако чтобы подключение было грамотным, а главное, чтобы после этого подключения были оправданы условия электробезопасности, необходимо знать, каким образом произведено подключение самого электрощита.

Система заземления многоэтажных домов

В домах советской постройки, как правило, используются системы заземления TN – C. В этой системе к стоякам подъездов подходят три фазы L и совмещенный PEN проводник. Этажные щитки в этой системе зануляют, заземление в них как правило не предусмотрено.

В более новых домах или с реконструированными сетями установлена система TN – C – S. В этой системе к стоякам подъездов подходят три фазы L и разделенный нулевой рабочий N и защитный PE проводник.

В этом случае, подключение происходит гораздо проще, в этажном щитке предусмотрены отдельные шины для подключения фазы, нуля и заземления, причем шина заземления имеет металлическую связь с корпусом щита.

Если ваш дом относится к новостройкам (примерно с 1997 г.), то в таком случае все условия для подключения заземления уже имеются, так как в новых домах устанавливается система заземления TN-S.

При подключении дома по такой системе, заземляющий провод прокладывается отдельно, вместе с нулевым и фазными проводами от самой подстанции к электрощитам дома. В этом случае переживать не следует.

Ваш дом подключен по системе заземления TN – C – S

Такие системы заземления проектируются в домах новой постройки, в которых электромонтаж выполняется пяти- проводной системой и заземление в квартире в этом случае присутствует.

При такой системе заземления все этажные щитки должны заземляться. Определить подключен ли ваш дом по системе TN – C – S очень просто. Для этого достаточно взглянуть на вводной кабель подходящий к стояку, он должен быть пятипроводным :

  • – три фазы L1, L2, L3;
  • – рабочий нуль N;
  • – защитный нуль PE.

Подключение в этом случае осуществляется таким образом: фазный провод квартиры подключается к той шине, где был старый провод; нулевой рабочий N подключается к шине с нейтральными проводами; заземляющий провод РЕ (нулевой защитный) подключается к корпусу щита.

Причем, подключать все заземляющие провода в щитке на один зажим (болт) – нельзя. Необходимо использовать разные болтовые соединения. А лучше будет использовать шину, прикрутите шину к щитку, а потом подсоединяйте PE.

Такое подключение заземления в квартире аналогично, если ваш дом подключен по системе заземления TN-S.

Ваш дом подключен по системе заземления TN – C

При такой системе подключения дома к вводному стояку подходит четырехпроводный кабель: три фазы L1, L2, L3; и совмещенный нулевой рабочий и защитный провод PEN. В этом случае заземление в доме полностью отсутствует, контура заземления нет – электрощитки не заземлены! Как произвести подключение в этом случае?

Многие неграмотные электрики считают, что подключать защитный нуль PE необходимо в месте с рабочим N, на корпус щитка. Однако такое зануление является не безопасным.

При отгорании рабочего нуля, фазное напряжение через подключенную технику появится на всех нулевых проводах в квартире, а если нулевые защитные и рабочие провода будут связаны, то на всех заземленных корпусах приборов, появится напряжение 220 В. Поэтому прежде чем подключаться таким образом хорошенько подумайте нужна ли вам такая защита!

Наверное, ни для кого не является секретом, что электрические сети ЖКХ находятся в плачевном состоянии и такое явление как отгорание нуля в жилых домах встречается очень часто. Лучше уж без зануления, чем зануляться на изношенное электрооборудование и подвергать себя и своих близких опасности.

По этому, если заземления в доме нет то лучше защитный провод РЕ не подключать вместе с рабочим нулем на корпус щита. Оставьте его просто неподключенным. Будет резервным, на случай повреждения одного из рабочих. А для того чтобы эксплуатация электроустановок в сети без заземления была для вас безопасной, применяйте УЗО.

Установите отдельное УЗО для каждой розетки. УЗО хоть и не предотвратит появление фазы на корпусе, но мгновенно сработает при касании к поврежденному корпусу и отключит электроустановку.

Решением проблемы отсутствия заземления может стать установка своего собственного контура заземления. Встречались случаи, когда жильцы, проживающие на первых этажах домов в которых отсутствует заземление, устанавливали свое заземление. Забивали под окном в почву несколько уголков, обваривали их по контуру и соединяли с заземляющим РЕ проводником в квартире.

Можно также решить проблему с незаземленными этажными щитками проживая на пятом этаже. Проложить к подвалу по этажным стоякам 25 м одножильного провода, сделать в подвале или возле подъезда контур заземления, соединить этот одножильный провод с щитками и заземляющим контуром. Все! В таком случае можно смело подключать заземляющий провод от квартиры к электрощитку.

Ни в коем случае не используйте в качестве заземления батареи отопления, водопроводные и газовые трубы. Такое заземление в квартире является небезопасным не только для вас самих но и для ваших соседей.

В случае появления на корпусе электрооборудования напряжения, заземленного через батарею или водопроводную трубу, под напряжением окажутся все батареи и трубы, не только ваши, но и в соседних квартирах и домах.

В итоге соседа с верху, который решил попить воды с крана может смертельно поразить электрическим током!

Заземление шкафов автоматики. Шкаф автоматики. Способы заземления. Виды защитного заземления АСУ ТП

Существующие цепи заземления средств вычислительной техники и автоматизации принято подразделять на:

  1. Цепи защитного заземления (ЗЗ).
  2. Цепи рабочего заземления (РЗ).

1. Защитное заземление

Указанный тип заземления защищает человека от вероятного поражения в случае повреждения изоляции эксплуатируемой электроустановки. В существующих электроустановках объектов, относящихся к АСУ ТП, заземление (зануление) требуется выполнять на:

  • выполненных из металла корпусах следующих устройств: КИП, АУ (аппаратов управления), РУ (регулирующих устройств), осветительных приборов, устройств сигнализации и элементов защиты, электроприводов задвижек и т.п., электрических двигателей МУ (механизмов управления);
  • выполненных из металла пульты, а также щиты любого назначения, если на них смонтированы электроаппараты, приборы, иные средства, относящиеся к элементам вычислительной техники и автоматизации. При этом указанное требование распространяется на открывающиеся и/или съёмные детали указанных пультов и щитов в случаях, когда на них размещена какая-либо аппаратура с напряжениями свыше 42В по (

Некоторые проводники для заземления не требуется использовать для следующих элементов сети:

  • средства и приборы, используемые для автоматизации, которые смонтированы на уже заземлённых металлоконструкциях, если между их корпусами и указанными конструкциями имеется устойчивый электроконтакт;
  • съёмные и открывающиеся части ограждений, пультов и т.п. в тех случаях, когда на них смонтирована аппаратура с напряжением не более 42В по (

Элементы заземления

Все соединения заземляющих проводников разрешено выполнять только сваркой, пайкой, болтовыми соединениями, с использованием специальных флажков и хомутов.
В тех случаях, когда выполняется подключение к узлам заземления защитных проводников, изготовленных из цветных металлов, они должны оконцовываться специальными наконечниками, а гибкие перемычки из меди должны иметь двустороннюю оконцовку.
При использовании соединений при помощи болтов в обязательном порядке требуется применять пружинные шайбы (вариант — стопорные).

Виды защитного заземления АСУ ТП

Такие изделия, как электроприёмники, пульты и щиты оборудованы узлами заземления, к которым защитный проводник подключается напрямую, а опорные рамы, которые имеют многосекционные щиты, соединяют полосовой сталью, проходящей через узлы заземления всех рам. В тех случаях, когда речь идёт о заземлении подверженных вибрациям электроприёмников используется гибкая перемычка из меди.

Заземление технических средств

Защитное заземление АСУ ТП принято начинать с магистрали, которая подключается к существующему заземлителю, имеющемуся в системе электроснабжения объекта. Магистрали защитного заземления (как СВТ, так и СА) подключают к защитному заземлению в единой точке, которая должна располагаться максимально близко к самому заземлителю. В едином узле зануления с нулевым проводом TN-C (TN-C-S, TN-S) соединяется магистраль защитного заземления АСУ ТП. Указанный узел располагается на щитах питания СВТ или СА.
Если данный распределительный щит (РЩ) достаточно далеко отстоит от ТП с глухозаземлённой нейтралью, то на указанном участке используется 4-ёхпроводная схема (три фазных и один рабочий «0» проводник, TN-C). Начиная со щита распределительного, уже 5-типроводная (три фазных, TN-c и нулевой защитный, TN-S).
Сам щит должен быть оборудован повторным заземлением. Указанное требование вытекает их необходимости снижения колебаний потенциала самого щита относительно земли, которые обусловлены изменениями тока, текущего по TN-C между ТП и РЩ.

Заземление для ОИТ

В любых технических средствах АСУ ТП в обязательном порядке имеется оборудование ОИТ (информационных технологий). Сюда включается:

  • оборудование, выполняющее базовую функцию (ввод, поиск, отображение, хранение, и т.п.), либо управлением сообщений и данных;
  • оборудование, напряжение питания которого не превышает 600 В.

В общем, в число ОИТ включаются следующие типы (виды) оборудования, которые, в большей или меньшей степени, используются для функционирования всей АСУ ТП:

  • вычислительные устройства, используемые в составе ПК или совместно с ними (как в отдельных корпусах, так и без них);
  • оконечное оборудование;
  • терминалы;
  • ПК и т.п.

2. Рабочее заземление

Иное наименование указанной системы «нуль система» технических средств, используемых в АСУ ТП. Кроме этого в ряде источников информации рабочее заземление именуется также функциональным, физическим, логическим, информационным, схемным и т.п.

В нуль-систему входят всего два элемента: заземляющие проводники и собственно заземлитель. Наличие персонального заземлителя для данной системы необходимо, в связи с возникновением токов растекания больших значений. Последние могут возникнуть при КЗ, в процессе электросварки и т.п. Это создаёт значительные разности потенциалов между отдельными точками заземляющего устройства, а также существенные колебания потенциалов тех или иных точек естественных и/или искусственных заземлителей по отношению к земле.

Работа любого электрооборудования приводит к возникновению магнитных полей большой мощности, которые являются источниками помех в линиях, предназначенных для передачи информации, которые соединяют СВТ с электроприводами, технологическими агрегатами локальными системами управления и т.п. Мощность упомянутых выше сигналов всего доли ватта, а значение напряжения от нескольких В, до нескольких десятков мВ и даже менее. Именно этим объясняется тот факт, что создаваемые помехи сопоставимы по своим показателям с сигналами полезными, что может привести к серьёзным искажениям последних. Поэтому защита от данных помех крайне необходима. И качественное решение вопросов заземления является одним из наиболее важных методов защиты АСУ ТП и линий связи.

Смотрите также .

Сегодня поговорим о заземлении в ТП и промышленных , основными целями которой являются обслуживающего персонала и стабильной работы . Многие недопонимают тему заземления в промышленных системах, а ее неправильное подключение ведет к плохим последствиям, авариям и даже дорогостоящим простоям из-за нарушения и поломки . Помехи являются случайной величиной, детектировать которых очень сложно без спец аппаратуры.

Источники помех на шине Земля

Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, «шумящее» оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические , движение проводника в магнитном поле и др. В промышленности встречается много помех, связанных с неисправностями или применением не сертифицированной аппаратуры. В России помех регулируются нормативами — Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648. На проектирования промышленного оборудования, чтобы снизить уровень помех, применяют маломощную элементную базу с минимальным быстродействием и стараются уменьшить длину проводников и экранирование.

Основные определения по теме «Общее заземление»

Защитное заземление — соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты человека от поражения током.
Заземляющее устройство — совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников.
Общий провод — проводник в системе, относительно которого отсчитываются потенциалы, например, общий провод БП и прибора.
Сигнальное заземление — соединение с землёй общего провода цепей передачи сигнала.
Сигнальная земля делится на цифровую землю и аналоговую . Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.
Силовая земля — общий провод в системе, соединённый с защитной землей, по которому протекает большой ток.
Глухозаземлённая нейтрал ь — нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление.
Нулевой провод — провод, соединённый с глухозаземлённой нейтралью.
Изолированная нейтрал ь — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству.
Зануление — соединение оборудования с глухозаземлённой нейтралью трансформатора или генератора в сетях трёхфазного тока или с глухозаземлённым выводом источника однофазного тока.

Заземление АСУ ТП принято подразделять на:

  1. Защитноое заземление.
  2. Рабочеее заземление, или FE.

Цели заземления

Защитное заземление нужно для защиты людей от поражения электрическим током для оборудования с напряжением питания от 42 В переменного или от 110 В постоянного тока, за исключением взрывоопасных зон. Но в тоже время защитное заземление часто приводит к увеличению уровня помех в АСУ ТП.

Электрические сети с изолированной нейтралью используются для избежания перерывов питания потребителя при единственном повреждении изоляции, поскольку при пробое изоляции на землю в сетях с глухозаземлённой нейтралью срабатывает защита и питание сети прекращается.
Сигнальная земля служит для упрощения электрической схемы и удешевления устройств и систем промышленной .

В зависимости от целей применения сигнальные земли можно разделить на базовые и экранные. Базовая земля используется для отсчёта и передачи сигнала в электронной цепи, а экранная земля используется для заземления экранов. Экранная земля используется для заземления экранов кабелей, экранирующих , корпусов приборов, а также для снятия статических зарядов с трущихся частей транспортёрных лент, ремней электроприводов.

Виды заземлений

Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение систем заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности. Раздельное исполнение заземляющих проводников позволяет выполнить их соединение с защитной землёй в одной точке. При этом разные системы земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания. Благодаря такой топологии помехи «грязной» земли не протекают по проводникам «чистой» земли. Таким образом, несмотря на то что системы заземления разделены и имеют разные названия, в конечном счёте все они соединены с Землёй через систему защитного заземления. Исключение составляет только «плавающая» земля.

Силовое заземление

В системах автоматизации могут использоваться электромагнитные реле, микромощные серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых существенно превышает ток потребления модулей ввода/вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод такой системы (обычно провод, подключённый к отрицательному выводу источника питания) является силовой землёй.

Аналоговая и цифровая земля

Системы промышленной автоматизации являются аналого-цифровыми. Поэтому одним из источников аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединённых вместе только в одной общей точке. Для этого модули ввода/вывода и промышленные контроллеры имеют отдельные выводы аналоговой земли (A.GND) и цифровой (D.GND).

«Плавающая» земля

«Плавающая» земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (то есть с Землёй). Типовыми примерами таких систем являются батарейные измерительные приборы, автоматика автомобиля, бортовые системы самолёта или космического корабля. Плавающая земля чаще используется в технике измерений малых сигналов и реже – в системах промышленной автоматизации.

Гальваническая развязка

Гальваническая развязка решает много проблем заземления, и её применение фактически стало в АСУ ТП. Для осуществления гальванической развязки (изоляции) необходимо выполнить подачу энергии развязывающим трансформатором и передачу сигнала в изолированную часть цепи через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно. В электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.

В заземление для гальванически связанных цепей сильно отличается от заземления развязанных цепей.

Заземление гальванически связанных цепей

Мы рекомендуем избегать применения гальванически связанных цепей, а если другого варианта нет, то желательно, чтобы размер этих цепей был по
возможности малым и чтобы они располагались в пределах одного шкафа.

Пример неправильного заземления источника и приёмника стандартного сигнала 0…5 В

Здесь допущены следующие ошибки:

  • ток мощной нагрузки (двигателя постоянного тока) протекает по той же шине заземления, что и сигнал, создавая падение напряжения земли;
  • использовано однополярное включение приёмника сигнала, а не дифференциальное;
  • использован модуль ввода без гальванической развязки цифровой и аналоговой частей, поэтому ток питания цифровой части, содержащий помеху, протекает через вывод AGND и создаёт дополнительное падение напряжения помехи на сопротивлении R1

Перечисленные ошибки приводят к тому, что напряжение на входе приёмника Vвх равно сумме напряжения сигала Vвых и напряжения помехи VЗемли= R1· (Iпит + IМ)
Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано ниже.

  • все цепи заземления соединить в одной точке (при этом ток помехи R1 );
  • проводник заземления приёмника сигнала присоединить к той же общей точке (при этом ток Iпит уже не протекает через сопротивление R1 , а
    падение напряжения на сопротивлении проводника R2 не складывается с выходным напряжением источника сигнала Vвых )

Пример правильного заземления источника и приёмника стандартного сигнала 0…5 В

Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую , цифровую , силовую и защитную с последующим их соединением только в одной точке.

При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем шума должны выполняться отдельно от цепей с малым уровнем шума, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков «грязной» земли в контуре, включающем источник и приёмник сигнала, а также если в цепи заземления не образуются замкнутые контуры, принимающие электромагнитные помехи.

Заземление гальванически развязанных цепей

Радикальным решением описанных проблем является применение гальванической изоляции с раздельным заземлением цифровой, аналоговой и силовой частей системы.

Силовая часть обычно заземляется через шину защитного заземления. Применение гальванической изоляции позволяет разделить аналоговую и цифровую землю, а это, в свою очередь, исключает протекание по аналоговой земле токов помехи от силовой и цифровой земли. Аналоговая земля может быть соединена с защитным заземлением через сопротивление RAGND.

Заземление экранов сигнальных кабелей в АСУ ТП

Пример неправильного (с двух сторон ) заземления экрана кабеля на низких частотах, если частота помехи не превышает 1 МГц, то кабель надо заземлять с одной стороны, в противном случае образуется замкнутый контур, который будет работать как антенна.

Пример неправильного (со стороны приёмника сигнала) заземления экрана кабеля. Оплётку кабеля надо заземлять со стороны источника сигнала. Если заземление сделать со стороны приёмника, то ток помехи будет протекать через ёмкость между жилами кабеля, создавая на ней и, следовательно, между дифференциальными входами напряжение помехи.

Поэтому заземлять оплётку надо со стороны источника сигнала, в этом случае путь для прохождения тока помехи отсутствует.

Правильное заземление экрана (дополнительное заземление справа используется для случая высокочастотного сигнала). Если источник сигнала не заземлён (например, термопара), то заземлять экран можно с любой стороны, так как в этом случае замкнутый контур для тока помехи не образуется.

На частотах более 1 МГц увеличивается индуктивное сопротивление экрана, и токи ёмкостной наводки создают на нём большое падение напряжения, которое может передаваться на внутренние жилы через ёмкость между оплёткой и жилами. Кроме того, при длине кабеля, сравнимой с длиной волны помехи (длина волны помехи на частоте 1 МГц равна 300 м, на частоте 10 МГц – 30 м), возрастает сопротивление оплётки, что резко повышает напряжение помехи на оплётке. Поэтому на высоких частотах оплётку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними.

Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплётке кабеля будет протекать часть тока IЗемли , передающего помеху в центральную жилу через взаимную индуктивность.

Ёмкостный ток также будет протекать по пути, показанному на рис. 21, однако высокочастотная составляющая помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к защите от ударов молнии или от величины токов, протекающих через экран в случае его заземления.

В качестве промежуточного варианта можно использовать второе заземление экрана через ёмкость . При этом по высокой частоте экран получается заземлённым с двух сторон, по низкой частоте – с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, то есть когда ещё не нужно выполнять заземление в нескольких промежуточных точках.

Внутренний экран заземляют с одной стороны — со стороны источника сигнала, чтобы исключить прохождение ёмкостной помехи по пути, показанному, а внешний экран уменьшает высокочастотные наводки. Во всех случаях экран должен быть изолирован, чтобы предотвратить его случайные контакты с металлическими предметами и землёй. Для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений нужно передавать сигнал в цифровой форме или ещё лучше через оптический кабель.

Заземление экранов кабелей систем автоматизации на электрических подстанциях

На электрических подстанциях на оплётке (экране) сигнального кабеля системы автоматизации, проложенного под высоковольтными проводами на уровне земли и заземлённого с одной стороны, может наводиться напряжение величиной в сотни вольт во время коммутации тока выключателем. Поэтому с целью электробезопасности оплётку кабеля заземляют с двух сторон. Для защиты от электромагнитных полей с частотой 50 Гц экран кабеля также заземляют с обеих сторон. Это оправданно в случаях, когда известно, что электромагнитная наводка с частотой 50 Гц больше, чем наводка, вызванная протеканием выравнивающего тока через оплётку.

Заземление экранов кабелей для защиты от молнии

Для защиты от магнитного поля молнии сигнальные кабели (с заземленным экраном) АСУ ТП, проходящие по открытой местности, должны быть проложены в металлических трубах из стали, так называемого магнитного экрана. Лучше под землей, иначе заземлять каждые 3 метра. Магнитное поле слабо влияет внутри здания из ж-бетона, в отличие от других материалов.

Заземление при дифференциальных измерениях

Если источник сигнала не имеет сопротивления на землю, то при дифференциальном измерении образуется «плавающий» вход. На «плавающем» входе может наводиться статический заряд от атмосферного электричества или входного тока утечки операционного усилителя. Для отвода заряда и тока на землю потенциальные входы модулей аналогового ввода обычно содержат внутри себя резисторы сопротивлением от 1 до 20 МОм, соединяющие аналоговые входы с землёй. Однако при большом уровне помех или большом источника сигнала даже сопротивление 20 МОм может оказаться недостаточным и тогда необходимо дополнительно использовать внешние резисторы номиналом от десятков кОм до 1 МОм или конденсаторы с таким же сопротивлением на частоте помехи.

Заземление интеллектуальных датчиков

Ныне широкое распространены так называемые интеллектуальные датчики с микроконтроллером внутри для линеаризации выхода с датчика, выдающие сигнал в цифровой или аналоговой форме. Вследствие того, что цифровая часть датчика совмещена с аналоговой, при неправильном заземлении выходной сигнал имеет повышенный уровень шума. Некоторые датчики имеют ЦАП с токовым выходом и поэтому требуют подключения внешнего сопротивления нагрузки порядка 20 кОм, поэтому полезный сигнал в них получается в форме напряжения, падающего на нагрузочном резисторе при протекании выходного тока датчика.

Напряжение на нагрузке равно:

Vнагр = Vout – Iнагр · R1+ I2· R2 ,

то есть оно зависит от тока I2 , который включает в себя ток цифровой земли. Ток цифровой земли содержит помеху и влияет на напряжение на нагрузке. Чтобы устранить этот эффект, цепи заземления надо выполнить так, как показано ниже. Тут ток цифровой земли не идет через сопротивление R21 и не вносит шум в сигнал на нагрузке.

Правильное заземление интеллектуальных датчиков:

Заземление шкафов с аппаратурой систем автоматизации

Монтаж шкафов АСУ ТП должен учитывать всю ранее изложенную информацию. Изложенные далее примеры заземления шкафов автоматики разделены условно на правильные , дающие меньший уровень шумов, и ошибочные .

Вот пример (красным цветом выделены неправильные соединения; GND — вывод для подключения заземлённого вывода питания), в котором каждое отличие от следующего рисунка ухудшает сбоев цифровой части и повышает погрешность аналоговой. Здесь сделаны следующие «неправильные» соединения:

  • заземление шкафов выполнено в разных точках, поэтому потенциалы их земель отличаются;
  • шкафы соединены между собой, что создаёт замкнутый контур в цепи заземления;
  • проводники аналоговой и цифровой земель в левом шкафу на большом участке идут параллельно, поэтому на аналоговой земле могут появиться индуктивные и ёмкостные наводки от цифровой земли;
  • вывод GND блока питания соединён с корпусом шкафа в ближайшей точке, а не на клемме заземления, поэтому по корпусу шкафа течёт ток помехи, проникающий через трансформатор блока питания;
  • используется один блок питания на два шкафа, что увеличивает длину и индуктивность проводника заземления;
  • в правом шкафу выводы земли подсоединены не к клемме заземления, а непосредственно к корпусу шкафа, при этом корпус шкафа становится источником индуктивной наводки на все провода, проходящие вдоль его стен;
  • в правом шкафу в среднем ряду аналоговая и цифровая земли соединены прямо на выходе блоков.

Перечисленные недостатки устранены на примере правильного заземления шкафов системы промышленной автоматизации:

Доп. плюсом разводки в этом примере было бы применение отдельного проводника заземления для наиболее чувствительных аналоговых модулей ввода. В пределах шкафа (стойки) желательно группировать аналоговые модули отдельно, цифровые – отдельно, чтобы при прокладке проводов в кабельном канале уменьшить длину участков параллельного прохождения цепей цифровой и аналоговой земель.

Заземление во взаимоудаленных системах управления

В системах , распределённых по некоторой территории с характерными размерами в десятки и сотни метров, нельзя использовать модули ввода без гальванической развязки. Только гальваническая развязка позволяет соединять цепи, заземлённые в точках с разными потенциалами. Наилучшим решением для передачи сигналов является оптоволокно и применение датчиков со встроенными в них АЦП и цифровым интерфейсом.

Заземление исполнительного оборудования и приводов АСУ ТП

Цепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ управлением должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической составляющей излучаемой помехи. Экран кабеля должен быть заземлён с одной стороны. Цепи подключения датчиков таких систем должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств.

Заземление в промышленных сетях RS-485, Modbus

Промышленная сеть на основе интерфейса выполняется экранированной витой парой с обязательным применением модулей гальванической развязки .

Для коротких отрезков (порядка 15 м) и при отсутствии поблизости источников шумов экран можно не использовать. На больших длинах порядка до 1,2км разница потенциалов земли в удалённых друг от друга точках может достигать нескольких десятков вольт. Чтобы предотвратить протекание по экрану тока, экран кабеля нужно заземлять только в ЛЮБОЙ одной точке. При использовании не экранированного кабеля на нём может наводиться большой статический заряд (несколько киловольт) за счёт атмосферного электричества, который способен вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например 0,1. 1 МОм. Сопротивление, показанное штриховой линией, снижает также вероятность пробоя при повреждениях заземления или большом сопротивлении гальванической изоляции в случае применения экранированного кабеля. В сетях Ethernet с малой пропускной способностью (10 Mбит/с) заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках.

Заземление на взрывоопасных промышленных объектах

На взрывоопасных объектах при монтаже заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.

Экран кабеля интерфейса заземляется в одной точке вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищён от случайного соприкосновения с заземлёнными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10 , п6.3.5.2). И должны быть смонтированы таким образом, чтобы наводки от внешних электромагнитных полей (например, от расположенного на крыше здания радиопередатчика, от воздушных линий электропередачи или близлежащих кабелей для передачи большой мощности) не создавали напряжения или тока в искробезопасных цепях. Это может быть достигнуто экранированием или удалением искробезопасных цепей от источника электромагнитной наводки.

При прокладке в общем пучке или канале кабели с искроопасными и искробезопасными цепями должны быть разделены промежуточным слоем изоляционного материала или заземлённой металлической . Никакого разделения не требуется, если используются кабели с металлической оболочкой или экраном. Заземлённые металлические конструкции не должны иметь разрывов и плохих контактов между собой, которые могут искрить во время грозы или при коммутации мощного оборудования. На взрывоопасных промышленных объектах используются преимущественно электрические распределительные сети с изолированной нейтралью, чтобы исключить возможность появления искры при коротком замыкании фазы на землю и срабатывания предохранителей защиты при повреждении изоляции. Для защиты от статического электричества используют заземление, описанное в соответствующем разделе. Статическое электричество может быть причиной воспламенения взрывоопасной смеси.

10.17. Ввод от заземлителя в служебно-техническое здание может выполняться стальным проводником диаметром не менее 6 мм, жгутом из трех стальных оцинкованных проводов диаметром не менее 5 мм каждый, силовым или контрольным кабелем с алюминиевыми жилами сечением не менее 25 мм. Стальные проводники привариваются непосредственно к заземлителю. Алюминиевые жилы силовых или контрольных кабелей соединяют со стальной шиной с помощью сталеалюминиевой переходной вставки, один конец которой предварительно алитирован (покрыт слоем алюминия). Переходную вставку на месте устройства заземления приваривают неалитированной частью к соединительной шине контура, а алитированной — к алюминиевым жилам кабеля. Место соединения жил кабеля с переходной вставкой дважды покрывают глифталевой эмалью и заключают в чугунную муфту, заливаемую битумной массой.

Применяют следующую технологию соединения. Один конец стальной полосы залуживают на расстоянии 90 мм, затем изготавливают удлиненный алюминиевый наконечник под кабель необходимого сечения. Залуженные полосы и наконечник стягивают тремя болтами и место стыка пропаивают. Стальную полосу приваривают к соединительной полосе контура, а в наконечник вставляют жилы кабеля и опрессовывают пресс-клещами в 5-6 местах. По окончании стыковки место соединения стальной полосы и наконечника помещают в чугунную муфту МЧ-70 и заливают битумной массой.

10.18. В том случае, если проектом не предусматривается прокладка шин заземления в зданиях, заземление оборудования необходимо производить следующим образом. Один непрерывный проводник из жгута заземляющих проводников, идущих от заземлителя или от щитка трех земель, подключается к заземляющим болтам всех крайних стативов, образуя кольцо, которое замыкается перед местом подключения проводника к первому стативу; другие непрерывные проводники подключаются к заземляющим болтам панелей электропитания, секциям пульта управления и выносного табло.

Заземление стативов одного ряда производится в соответствии с п.10.16. Подключение проводников, заземляющих стативы одного ряда, а также проводников, идущих от трансформаторов ТС, кабельных шкафов и другой аппаратуры к заземляющим проводникам, идущим от заземлителей, производится с помощью болтовых плашечных зажимов.

10.19. Последовательное подключение к заземляющему проводнику нескольких заземляющих стативов, панелей электропитания, секций пультов и другого оборудования запрещается.

10.20. Для заземления постовых устройств СЦБ запрещается использовать трубы отопления, рельсы, оболочки и броню кабеля.

Заземляющие проводники защитного заземления при прокладке в здании должны быть изолированы от других заземляющих проводников, кабелей и металлических конструкций.

Заземление светофорных мостиков, консолей, светофоров, релейных шкафов на участках железных дорог с электротягой и автономной тягой

На участках железных дорог с электротягой постоянного и переменного тока

10.21. Заземление металлических частей светофорных мостиков и консолей, светофоров и релейных шкафов производится путем их присоединения к средним выводам путевых дроссель-трансформаторов.

В тех случаях, когда поблизости нет дроссель-трансформаторов, заземляющий проводник подключается к тяговому рельсу с помощью специального зажима-скобы.

Металлическая оснастка светофоров на железобетонных мачтах должна быть соединена между собой заземляющими проводниками (рис.53 и 54).

https://pandia.ru/text/80/297/images/image071_4.gif» width=»463″ height=»596 src style=»border-collapse:collapse»>

10.26. В релейном шкафу зажимы для заземления разрядников должны быть кратчайшим путем присоединены к металлическому корпусу релейного шкафа медным проводником сечением не менее 20 мм.

На участках железных дорог с автономной тягой

10.27. Релейные шкафы заземляются путем соединения металлического корпуса шкафа с заземляющим устройством кабельного ящика.

В качестве соединительного провода следует использовать перепаянные между собой металлическую оболочку и броню кабеля, проложенного между релейным шкафом и кабельным ящиком.

Медный заземляющий провод диаметром не менее 20 мм припаивается к месту соединения брони и оболочки кабеля и подключается к металлическому корпусу релейного шкафа и кабельного ящика.

При кабелях без металлической оболочки это соединение может выполняться жгутом из трех стальных оцинкованных проволок диаметром 5 мм. Жгут проводов прокладывается в земле на глубине не менее 30-40 см и соединяется с заземляющими проводниками низковольтного заземлителя кабельного ящика на расстоянии не менее 0,4 м над поверхностью земли.

Присоединение следует производить электрической или термической сваркой либо с помощью металлических зажимов.

10.28. Для выравнивания и снижения потенциалов, возникающих на токоведущих частях сигнальных и путевых приборов автоблокировки, автоматической локомотивной и переездной сигнализации, необходимо объединить заземляющими перемычками металлические корпуса релейных шкафов с металлическими частями светофоров или светофорных мостиков и консолей.

Заземление кабельных ящиков

10.29. Для заземления кабельных ящиков применяются типовые заземляющие устройства, состоящие из одного стального стержня диаметром не менее 20 мм, длиной 2,5 м — заземлителя и приваренного к нему заземляющего проводника из двух свитых между собой стальных оцинкованных проволок диаметром 5 мм. Для установки заземлителя и прокладки заземляющего проводника должна быть вырыта траншея глубиной не менее 0,6 м.

10.30. Допускается устройство общего заземлителя для заземления низковольтного и высоковольтного оборудования силовых опор высоковольтно-сигнальных линий автоблокировки, оборудуемых защитой, действующей на отключение при однофазных замыканиях на землю.

При общем заземлителе спуски к нему от высоковольтного (напряжением выше 1 кВ) и низковольтного (до 1 кВ) оборудования должны быть раздельными и привариваться к разным стержням заземлителя или (в случае глубинного заземлителя) к одному стержню, но в разных местах.

10.31. Заземляющий проводник подводится к опоре по дну траншеи, прокладывается по опоре и подключается к заземляющему болту кабельного ящика. К деревянной опоре заземляющий проводник крепится скобами, а к железобетонной — хомутами из проволоки диаметром 2,5-4 мм, устанавливаемыми на расстоянии 0,5-0,6 м друг от друга.

10.32. Сопротивление заземляющих устройств не должно превышать значений, приведенных в табл.39.

Техника заземления в системах промышленной автоматизации сильно различается для гальванически связанных и гальванически развязанных цепей. Большинство методов, описанных в литературе, относится к гальванически связанным цепям, доля которых в последнее время существенно уменьшилась в связи с резким падением цен на изолирующие DC-DC преобразователи.

3.5.1. Гальванически связанные цепи

Примером гальванически связанной цепи является соединение источника и приемника стандартного сигнала 0…5 В (рис. 3.95 , рис. 3.96). Чтобы пояснить, как правильно выполнить заземление, рассмотрим вариант неправильного (рис. 3.95) и правильного (рис. 3.96 , монтажа. На рис. 3.95 допущены следующие ошибки:

Перечисленные ошибки приводят к тому, что напряжение на входе приемника равно сумме напряжения сигала и напряжения помехи . Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано на рис. 3.96 , а именно:

Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке. При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем помех должны выполняться отдельно от цепей с малым уровнем помех, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков «грязной» земли в контуре, включающем источник и приемник сигнала, а также если в цепи заземления не образуются замкнутые контуры, по которым циркулирует ток, наведенный электромагнитной помехой.

Недостатком метода разделения проводников заземления является низкая эффективность на высоких частотах, когда большую роль играет взаимная индуктивность между рядом идущими проводниками заземления, которая только заменяет гальванические связи на индуктивные, не решая проблемы в целом.

Большая длина проводников приводит также к увеличению сопротивления заземления, что важно на высоких частотах. Поэтому заземление в одной точке используется на частотах до 1 МГц, свыше 10 МГц заземлять лучше в нескольких точках, в промежуточном диапазоне от 1 до 10 МГц следует использовать одноточечную схему, если наиболее длинный проводник в цепи заземления меньше 1/20 от длины волны помехи. В противном случае используется многоточечная схема [Барнс ].

Заземление в одной точке часто используется в военных и космических устройствах [Барнс ].

3.5.2. Экранирование сигнальных кабелей

Рассмотрим заземление экранов при передаче сигнала по витой экранированной паре, поскольку этот случай наиболее типичен для систем промышленной автоматизации.

Если частота помехи не превышает 1 МГц, то кабель нужно заземлять с одной стороны. Если его заземлить с двух сторон (рис. 3.97), то образуется замкнутый контур, который будет работать как антенна, принимая электромагнитную помеху (на рис. 3.97 путь тока помехи показан штриховой линией). Ток, протекающий по экрану, является источником индуктивных наводок на соседних проводах и проводах, находящихся внутри экрана. Хотя магнитное поле тока оплетки внутри экрана теоретически равно нулю, но вследствие технологического разброса при изготовлении кабеля, а также ненулевого сопротивления оплетки наводка на провода внутри экрана может быть значительной. Поэтому экран нужно заземлять только с одной стороны, причем со стороны источника сигнала.

Оплетку кабеля надо заземлять со стороны источника сигнала. Если заземление сделать со стороны приемника (рис. 3.98), то ток помехи будет протекать по пути, показанному на рис. 3.98 штриховой линией, т.е. через емкость между жилами кабеля, создавая на ней и, следовательно, между дифференциальными входами, напряжение помехи. Поэтому заземлять оплетку надо со стороны источника сигнала (рис. 3.99). В этом случае путь для прохождения тока помехи отсутствует. Обратите внимание, что на этих схемах изображен дифференциальный приемник сигнала, т.е. оба его входа имеют бесконечно большое сопротивление относительно земли.

Если источник сигнала не заземлен (например, термопара), то заземлять экран можно с любой стороны, т.к. в этом случае замкнутый контур для тока помехи не образуется.

На частотах более 1 МГц увеличивается индуктивное сопротивление экрана и токи емкостной наводки создают на нем большое падение напряжения, которое может передаваться на внутренние жилы через емкость между оплеткой и жилами. Кроме того, при длине кабеля, сравнимом с длиной волны помехи (длина волны помехи при частоте 1 МГц равна 300 м, на частоте 10 МГц — 30 м) возрастает сопротивление оплетки (см. раздел Модель «земли»), что резко повышает напряжение помехи на оплетке. Поэтому на высоких частотах оплетку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними (рис. 3.100). Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплетке кабеля будет протекать часть тока , передающего помеху в центральную жилу через взаимную индуктивность. Емкостной ток также будет протекать по пути, показанному на рис. 3.98 , однако высокочастотная компонента помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к защите от ударов молнии или от величины токов, протекающих через экран в случае его заземления.

В качестве промежуточного варианта можно использовать второе заземление экрана через емкость (рис. 3.99). При этом по высокой частоте экран получается заземленным с двух сторон, по низкой частоте — с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, т.е. когда еще не нужно выполнять заземление в нескольких промежуточных точках. Величину емкости можно рассчитать по формуле , где — верхняя частота границы спектра помехи, — емкостное сопротивление заземляющего конденсатора (доли Ома). Например, на частоте 1 МГц конденсатор емкостью 0,1 мкФ имеет сопротивление 1,6 Ом. Конденсатор должен быть высокочастотным, с малой собственной индуктивностью.

Для качественного экранирования в широком спектре частот используют двойной экран (рис. 3.101) [Zipse ]. Внутренний экран заземляют с одной стороны, со стороны источника сигнала, чтобы исключить прохождение емкостной помехи по механизму, показанному на рис. 3.98 , а внешний экран уменьшает высокочастотный наводки.

Во всех случаях экран должен быть изолирован, чтобы предотвратить случайные его контакты с металлическими предметами и землей.

Напомним, что частота помехи — это частота, которую могут воспринимать чувствительные входы средств автоматизации. В частности, если на входе аналогового модуля имеется фильтр, то максимальная частота помехи, которую надо учитывать при экранировании и заземлении, определяется верхней граничной частотой полосы пропускания фильтра.

Поскольку даже при правильном заземлении, но длинном кабеле помеха все равно проходит через экран, то для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений сигнал лучше передавать в цифровой форме или через оптический кабель. Для этого можно использовать, например, модули аналогового ввода RealLab! серии с цифровым интерфейсом RS-485 или оптоволоконные преобразователи интерфейса RS-485, например типа SN-OFC-ST-62.5/125 фирмы RealLab! .

Нами было проведено экспериментальное сравнение различных способов подключения источника сигнала (терморезистора сопротивлением 20 КОм) через экранированную витую пару (0,5 витка на сантиметр) длиной 3,5м. Был использован инструментальный усилитель RL-4DA200 с системой сбора данных RL-40AI фирмы RealLab!. Коэффициент усиления канала усиления был равен 390, полоса пропускания 1 КГц. Вид помехи для схемы рис. 3.102 -а представлен на рис. 3.103 .

3.5.4. Экраны кабелей на электрических подстанциях

На электрических подстанциях на оплетке (экране) сигнального кабеля автоматики, проложенного под высоковольтными проводами на уровне земли и заземленного с одной стороны, может наводиться напряжение величиной в сотни Вольт во время коммутации тока выключателем. Поэтому с целью электробезопасности оплетку кабеля заземляют с двух сторон.

Для защиты от электромагнитных полей с частотой 50 Гц экран кабеля также заземляют с обеих сторон. Это оправдано в случаях, когда известно, что электромагнитная наводка с частотой 50 Гц больше, чем наводка, вызванная протеканием выравнивающего тока через оплетку.

3.5.5. Экраны кабелей для защиты от молнии

Для защиты от магнитного поля молнии сигнальные кабели систем автоматизации, проходящие по открытой местности, должны быть проложены в металлических трубах из ферромагнитного материала, например, стали. Трубы играют роль магнитного экрана [Vijayaraghavan ]. Нержавеющую сталь использовать нельзя, поскольку этот материал не является ферромагнитным. Трубы прокладывают под землей, а при наземном расположении они должны быть заземлены примерно через каждые 3 метра [Zipse ]. Кабель должен быть экранирован и экран заземлен. Заземление экрана должно быть произведено очень качественно с минимальным сопротивлением на землю.

Внутри здания магнитное поле ослабляется в железобетонных зданиях и не ослабляется в кирпичных.

Радикальным решением проблем защиты от молнии является применение оптоволоконного кабеля, который стоит уже достаточно дешево и легко подключается к интерфейсу RS-485, например, через преобразователи типа SN-OFC-ST-62.5/125 .

3.5.6. Заземление при дифференциальных измерениях

Если источник сигнала не имеет сопротивления на землю, то при дифференциальном измерении образуется «плавающий вход» (рис. 3.105). На плавающем входе может наводиться статический заряд от атмосферного электричества (см. также раздел «Виды заземлений») или входного тока утечки операционного усилителя. Для отведения заряда и тока на землю потенциальные входы модулей аналогового ввода обычно содержат внутри себя резисторы сопротивлением от 1 МОм до 20 МОм, соединяющие аналоговые входы с землей. Однако при большом уровне помех или большом сопротивлении источника сигнала сопротивление 20 МОм может оказаться недостаточным и тогда необходимо дополнительно использовать внешние резисторы сопротивлением от десятков кОм до 1 МОм или конденсаторы с таким же сопротивлением на частоте помехи (рис. 3.105).

3.5.7. Интеллектуальные датчики

В последнее время получили быстрое распространение и развитие так называемые интеллектуальные датчики, содержащие микроконтроллер для линеаризации характеристики преобразования датчика (см., например, «Датчики температуры, давления, влажности»). Интеллектуальные датчики выдают сигнал в цифровой или аналоговой форме [Caruso ]. Вследствие того, что цифровая часть датчика совмещена с аналоговой, при неправильном заземлении выходной сигнал имеет повышенный уровень шума.

Некоторые датчики, например, фирмы Honeywell, имеют ЦАП с токовым выходом и поэтому требуют подключения внешнего сопротивления нагрузки (порядка 20 кОм [Caruso ]), поэтому полезный сигнал в них получается в форме напряжения, падающего на нагрузочном резисторе при протекании выходного тока датчика.

шкафы соединены между собой, что создает замкнутый контур в цепи заземления, см. рис. 3.69 , раздел «Защитное заземление зданий» , «Заземляющие проводники» , «Электромагнитные помехи» ;

проводники аналоговой и цифровой земли в левом шкафу на большом участке идут параллельно, поэтому на аналоговой земле могут появиться индуктивные и емкостные наводки от цифровой земли;

блок питания (точнее, его отрицательный вывод) соединен с корпусом шкафа в ближайшей точке, а не на клемме заземления, поэтому по корпусу шкафа течет ток помехи, проникающий через трансформатор блока питания (см. рис. 3.62 , );

используется один блок питания на два шкафа, что увеличивает длину и индуктивность проводника заземления;

в правом шкафу выводы земли подсоединены не к клемме заземления, а непосредственно к корпусу шкафа. При этом корпус шкафа становится источником индуктивной наводки на все провода, проходящие вдоль его стен;

в правом шкафу, в среднем ряду, аналоговая и цифровая земли соединены прямо на выходе блоков, что неправильно, см. рис. 3.95 , рис. 3.104 .

Перечисленные недостатки устранены на рис. 3.108 . Дополнительным улучшением разводки в этом примере было бы применение отдельного проводника заземления для наиболее чувствительных аналоговых модулей ввода.

В пределах шкафа (стойки) желательно группировать аналоговые модули отдельно, цифровые — отдельно, чтобы при прокладке проводов в кабельном канале уменьшить длину участков параллельного прохождения цепей цифровой и аналоговой земли.

3.5.9. Распределенные системы управления

В системах управления, распределенных по некоторой территории с характерными размерами в десятки и сотни метров, нельзя использовать модули ввода без гальванической развязки. Только гальваническая развязка позволяет соединять цепи, заземленные в точках с разными потенциалами.

Кабели, проходящие по открытой местности, должны быть защищены от магнитных импульсов во время грозы (см. раздел «Молния и атмосферное электричество» , «Экраны кабелей для защиты от молнии») и магнитных полей при коммутации мощных нагрузок (см. раздел «Экраны кабелей на электрических подстанциях»). Особое внимание надо уделить заземлению экрана кабеля (см. раздел «Экранирование сигнальных кабелей»). Радикальным решением для территориально распределенной системы управления является передача информации по оптическому волокну или радиоканалу.

Неплохие результаты можно получить, отказавшись от передачи информации по аналоговым стандартам в пользу цифровых. Для этого можно использовать модули распределенной системы управления RealLab! серии NL фирмы Reallab! . Суть этого подхода заключается в том, что модуль ввода располагают возле датчика, уменьшая тем самым длину проводов с аналоговыми сигналами, а в ПЛК передается сигнал по цифровому каналу. Разновидностью этого подхода является применение датчиков со встроенными в них АЦП и цифровым интерфейсом (например, датчиков серии NL-1S).

3.5.10. Чувствительные измерительные цепи

Для измерительных цепей с высокой чувствительностью в плохой электромагнитной обстановке лучшие результаты дает применение «плавающей» земли (см. раздел «Виды заземлений») совместно с батарейным питанием [Floating ] и передачей информации по оптоволокну.

3.5.11. Исполнительное оборудование и приводы

Цепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ-управлением должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической компоненты излучаемой помехи. Экран кабеля должен быть заземлен с одной стороны. Цепи подключения датчиков таких систем должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств.

Заземление в промышленных сетях

Промышленная сеть на основе интерфейса RS-485 выполняется экранированной витой парой с обязательным применением модулей гальванической развязки рис. 3.110). Для небольших расстояний (порядка 10 м) при отсутствии поблизости источников помех экран можно не использовать. При больших расстояниях (стандарт допускает длину кабеля до 1,2 км) разница потенциалов земли в удаленных друг от друга точках может достигать несколько единиц и даже десятков вольт (см. раздел «Экранирование сигнальных кабелей»). Поэтому, чтобы предотвратить протекание по экрану тока, выравнивающего эти потенциалы, экран кабеля нужно заземлять только в одной точке (безразлично, в какой). Это также предотвратит появление замкнутого контура большой площади в цепи заземления, в котором за счет электромагнитной индукции может наводится ток большой величины при ударах молнии или коммутации мощных нагрузок. Этот ток через взаимную индуктивность наводит на центральной паре проводов э. д. с., которая может вывести из строя микросхемы драйверов порта.

При использовании неэкранированного кабеля на нем может наводиться большой статический заряд (несколько киловольт) за счет атмосферного электричества, который может вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например, 0,1. 1 МОм (на рис. 3.110 показано штриховой линией).

Особенно сильно проявляются описанные выше эффекты в сетях Ethernet с коаксиальным кабелем, когда при заземлении в нескольких точках (или отсутствии заземления) во время грозы выходят из строя сразу несколько сетевых Ethernet-плат.

В сетях Ethernet с малой пропускной способностью (10 Mбит/с) заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках, пользуясь рекомендациями раздел «Экранирование сигнальных кабелей»

При прокладке кабеля на открытой местности нужно использовать все правила, описанные в разделе «Экранирование сигнальных кабелей»

3.5.12. Заземление на взрывоопасных объектах

На взрывоопасных промышленных объектах (см. раздел «Автоматизация опасных объектов») при монтаже цепей заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.

Экран кабеля интерфейса RS-485 заземляется в одной точке, вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищен от случайного соприкосновения с заземленными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, раздел «Экранирование сигнальных кабелей»).

3.6. Гальваническая развязка

Гальваническая развязка (изоляция) цепей является радикальным решением большинства проблем, связанных с заземлением, и ее применение фактически стало стандартом в системах промышленной автоматизации.

Для осуществления гальванической развязки необходимо выполнить подачу энергии в изолированную часть цепи и обмен с ней сигналами. Подача энергии выполняется с помощью развязывающего трансформатора (в DC-DC или AC-DC преобразователях) или с помощью автономных источником питания: гальванических батарей и аккумуляторов. Передача сигнала осуществляется через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно.

Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.

Гальваническая изоляция позволяет решить следующие проблемы:

уменьшает практически до нуля напряжение синфазной помехи на входе дифференциального приемника аналогового сигнала (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли не влияет на дифференциальный сигнал на входе модуля ввода);

защищает входные и выходные цепи модулей ввода и вывода от пробоя большим синфазным напряжением (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли может быть как угодно большим, если оно не превышает напряжение пробоя изоляции).

Для применения гальванической развязки система автоматизации делится на автономные изолированные подсистемы, обмен информацией между которыми выполняется с помощью элементов гальванической развязки. Каждая подсистема имеет свою локальную землю и локальный источник питания. Подсистемы заземляют только для обеспечения электробезопасности и локальной защиты от помех.

Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC- DC преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации. На высоких частотах емкость подсистемы на землю, а также проходная емкость элементов гальванической изоляции являются фактором, ограничивающим достоинства гальванически изолированных систем. Емкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры изолированной системы.

При использовании гальванически развязанных цепей понятие «напряжение изоляции » часто трактуется неправильно. В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях. В зарубежной литературе для описания характеристик изоляции используют три стандарта: UL1577, VDE0884 и IEC61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие «напряжение изоляции» трактуется в отечественных описаниях зарубежных приборов неоднозначно. Главное различие состоит в том, что в одних случаях речь идет о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции) , в других случаях речь идет об испытательном напряжении (напряжение изоляции ), которое прикладывается к образцу в течение от 1 мин. до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку напряжение, при котором наступает пробой, зависит от длительности тестового импульса.

табл. 3.26 показывает связь между рабочим и испытательным (тестовым) напряжением по стандарту IEC61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.

Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002 синусоидальным напряжением с частотой 50 Гц в течение 60 сек при напряжении, указываемом в руководстве по эксплуатации как «напряжение изоляции». Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 3.26 Действующее значение, 50/60 Гц,

Что касается требований по заземлению электротехнических изделий к которым относятся и щиты (шкафы) автоматизации, то необходимо ознакомиться дополнительно с такими НТД:
1)ГОСТ Р 12.1.019-2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты» п.4.2.2 (прим.-для РФ), где перечислены способы для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, что для щитов (шкафов) очень актуально.
2)ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности» с измами п.3.3. Требования к защитному заземлению, в т.ч. п.3.3.7, п.3.3.8, в котором указывается на необходимость оборудования элементами для заемления оболочек, корпусов, шкафов и т.п..
3)РМ 4-249-91 «Системы автоматизации технологических процессов. Устройство сетей заземления. Пособие», а там все про заземление, в т.ч. п.2.12, п.3.15, . Есть п.2.25, в котором дается ссылка на требования РМ3-82-90 «Щиты и пульты систем автоматизации технологических процессов. Конструкция. Особенности применения».
4)РМ3-54-90 «Щиты и пульты систем автоматизации. Монтаж электрических проводок. Пособие» п.1.4 Требования к занулению (заземлению) с примерами соединений элементов щита (шкафа) внутри щита (шкафа).
5)РМ 4-6-92 Часть 3 «Системы автоматизации технологических процессов. Проектирование электрических и трубных проводок. Указания по выполнению документации. Пособие» п.3.6 Защитное заземление и зануление и п.3.7.1 в части выполнения указаний по защитному заземлению и занулению электроустановок с примерами в приложениях.
6)и т.д. и т.п.
7)ГОСТ 21.408-2013 «СПДС. Правила выполнения рабочей документации автоматизации технологических процессов» п.5.6.2.1 и п.5.6.2.5 и п.5.6.2.7 в части выполнения защитного заземления и зануления оборудования систем автоматизации.
Обращаю внимание, есть понятие ознакомиться и проверка на предмет действующих НТД, главное где взять полезную информацию и уметь ее фильтровать и применять.
А при комплексном проектировании обычно кабель для подключения электроприемника, которым и яв-ся щит (шкаф) автоматизации, к распредустройству системы электроснабжения и обустройство контуров заземления и узлов заземления в щитовых и операторных, как и подключение этих узлов к контурам заземления, учитываются в комплекте силовой части (прим.-марка «ЭС»), а вот само расключение этого кабеля уже приводится на чертежах соответствующих схем в комплекте по автоматизации, в комплекте по автоматизации указываются (учитывается) и требования и (или) показывается на чертежах (прим.-обычно это схемы внешних соединений или таблицы соединений внешних проводок) подключения заземляющих проводников к узлам и контурам заземления от корпусов приборов и щитов и т.п..

Источник https://brshop.ru/elektromontazh/zazemlenie-shchita-na-opore.html

Источник https://orenburgelectro.ru/montazh/podklyuchenie-zazemleniya-v-shhitke-sovety-elektrika.html

Источник https://od4dzm.ru/holodilnik/zazemlenie-shkafov-avtomatiki-shkaf-avtomatiki-sposoby-zazemleniya-vidy.html