Технология выплавки стали в основных электродуговых печах

Содержание

Технология выплавки стали в основных электродуговых печах

Технология плавки стали в дуговых печах определяется составом выплавляемой стали и предъявляемыми к ней требованиями, а также качеством шихты. В зависимости от этих факторов технология плавки даже в одной печи может быть существенно различной.

Имеются две основные разновидности технологии плавки легиро­ванной стали: плавка на углеродистой («свежей») шихте и плавка переплавом легированных отходов.

Углеродистая шихта характеризуется повышенным содержанием углерода, фосфора, серы и отсутствием или незначительным коли­чеством легирующих элементов. Для передела такой шихты в ка­чественную сталь требуется проведение специального окислитель­ного периода, в течение которого окисляются углерод, фосфор и не­ которые сопутствующие элементы: кремний, хром, марганец, вана­дий и др.

Наличие окислительного периода является характерной особен­ностью технологии плавки на свежей шихте, поэтому ее называют еще плавкой с полным окислением.

Плавка высококачественной стали на свежей шихте включает следующие этапы:

  • подготовку шихтовых материалов,
  • подго­товку печи к плавке,
  • загрузку шихты,
  • период плавления,
  • окислительный период,
  • восстановительный период.

Выплавка рядовой стали проводится по упрощенной технологии под одним шлаком с интенсивным использованием кислорода и харак­теризуется отсутствием восстановительного периода.

Проведение всех периодов плавки позволяет глубоко очистить металл от вредных примесей — фосфора и серы. Окисление угле­рода в окислительный период вызывает кипение ванны и способ­ствует дегазации металла — удалению растворенных в нем водорода и азота. Поэтому плавка с полным окислением позволяет получать из рядовой шихты высококачественную сталь. Недостаток этого метода плавки заключается в потере некоторых содержащихся в шихте легирующих элементов (хрома, ванадия и др.) и большей продолжительности плавки.

При плавке методом переплава окислительный период исключают из суммарного процесса плавки, в результате чего некоторые из содержащихся в шихте легирующих элементов не окисляются и остаются в стали. Это позволяет полнее использовать легирующие элементы, содержащиеся в отходах, и уменьшить расход ферро­сплавов.

Продолжительность плавки методом переплава меньше, чем на свежей шихте, соответственно выше производительность агрегата, меньше расход электрической энергии. Себестоимость стали, вы­плавленной методом переплава, меньше себестоимости той же стали, выплавленной на свежей шихте.

Однако отсутствие окислительного периода делает невозможным удаление фосфора, поэтому для плавки методом переплава требуется чистая по фосфору шихта. Кроме того, отсутствие кипения ванны не позволяет удалять в течение плавки растворенные газы, что тре­бует принятия дополнительных мер для их удаления.

На плавках методом переплава для ускорения нагрева металла, понижения в нем содержания углерода и растворенных газов ванну часто продувают газообразным кислородом. В результате экзотер­мических реакций кислорода с железом, кремнием и углеродом тем­пература ванны быстро повышается, хром и другие легирующие элементы при этом окисляются незначительно, а выделяющаяся окись углерода оказывает дегазирующее действие. Такую разно­видность технологии переплава называют плавкой с частичным окислением.

Подготовка печи к плавке

Огнеупорная футеровка печи изнашивается и для поддержания ее в рабочем состоянии необходимо регулярно ремонтировать наи­более пострадавшие участки ее. Поэтому после каждой плавки печь тщательно осматривают, подину прощупывают железным штырем, выявляют все поврежденные места и принимают меры по устранению обнаруженных разрушений.

Сразу же после выпуска плавки печь необходимо очистить от остатков шлака и металла. Систематическое накопление остатков шлака на подине приводит к ее зарастанию и уменьшению объема ванны, в результате чего уровень зеркала металла поднимается, а это затрудняет ведение процесса (металл труднее перемешивать, печь нельзя наклонять для схода шлака самотеком) и увеличивает
опасность прорыва металла через откосы или порог рабочего окна. Кроме того, шлак, смешиваясь с заправочными материалами, пони­жает их огнеупорность и способствует размягчению футеровки при высоких температурах.

Наличие остатков металла на подине также недопустимо, особенно при переходе на выплавку стали другой марки или при плохом состоя­нии подины. В случае смены марки выплавляемой стали остатки металла могут явиться причиной непопадания в заданный состав металла, например по никелю, хрому, молибдену и т.д. Наличие остатков не дает также возможности проводить качественный ре­монт подины, так как оно препятствует свариванию заправочных материалов с футеровкой. После расплавления металла заправочный материал всплывает, и это приводит к загущению шлака и дальнейшему разрушению подины.

При значительных повреждениях подины, когда удаление остат­ков металла становится затруднительным, следует очистить задний откос, заправить его и наклонить печь в сторону разливочного пролета.

После застывания металла на заднем откосе печь необходимо поставить в нормальное положение и приступить к очистке. После заправки печи удаляют замороженный металл.

Остатки шлака и металла удаляют металлическими скребками вручную. Это очень тяжелая операция, тем более, что ее выполняют под прямым тепловым излучением футеровки и по возможности быстро, пока шлак и металл не застыли, а футеровка достаточно разогрета для сваривания с заправочным материалом.

В печи сохраняется меньше остатков шлака и металла, если футеровка постоянно поддерживается в хорошем состоянии, откос в районе выпускного отверстия достаточно пологий и хорошо раз­делывается выпускное отверстие.

Для более полного слива шлака перед выпуском плавки его целесообразно разжижать.

В случае сильного зарастания подины для восстановления ее прежних размеров специально назначают плавку стали неответ­ственной марки, выплавляемой с полным окислением. На подину заваливают руду и в окислительный период проводят интенсивное кипение, что приводит к размыву футеровки и восстановлению раз­меров ванны.

Поврежденные участки футеровки после удаления остатков шлака и металла заправляют. Поврежденные места подины и откосов заправляют сухим магнезитовым порошком, а места наибольших повреждений — порошком, смоченным в жидком стекле. Наиболее пригоден для заправки специальный мелкозернистый порошок при размере зерна 0—1,5 мм без включений извести и доломита (белые и серые зерна). В состав заправочных смесей иногда включают раз­молотый бывший в употреблении магнезитовый кирпич. Для заправки печей, в которых выплавляют хромистые стали, в состав заправочных смесей может входить хромистая руда и молотый хромомагнезито­вый кирпич.

После значительного ремонта подины для ее закрепления следует провести плавку без окисления при сравнительно низкой тепловой нагрузке.

Заправку печей небольшой емкости осуществляют, как правило, вручную лопатами, а передний откос — специальной ложкой. Для механизированной заправки средних и крупных печей предложено несколько конструкций заправочных машин. В рабочее простран­ство печи машины опускают краном сверху либо вводят через рабо­чее окно.

Следует, однако, отметить, что механизированной заправке свойствен ряд недостатков и оптимальный способ механизации этого процесса пока не найден. Одни машины (например, дисковые, пнев­матические, разбрасывающие порошок из мульды) не обеспечивают избирательного ремонта отдельных участков, разбрасывая равно­мерно порошок по всему периметру печи. В результате расход маг­незита увеличивается, а поврежденные места приходится дополни­тельно заправлять другими способами, часто даже вручную. Другие (пневматическая, забирающая порошок из бункера) обеспечивают локальность ремонта, но сжатый воздух сильно охлаждает футеровку, особенно там, куда подается заправочный материал и где для его сваривания с футеровкой требуется высокая температура.

После заправки следует тщательно осмотреть стены и свод печи и выполнить необходимый ремонт.

При назначении марки стали для выплавки необходимо учитывать состояние футеровки печи. К концу ее кампании нельзя назначать выплавку стали, осуществляемую с повышенной тепловой нагруз­кой как по температурному режиму, так и по продолжительности.

При значительном расхождении составов предыдущей и предстоя­щей плавок нужно назначить плавку стали промежуточного состава. Выплавку легированной конструкционной стали можно осуществлять начиная с третьей, а стали ответственного назначения — с пятой плавки после полного ремонта стен.

Завалка (загрузка) шихты в печь

На современных электропечах загрузка шихты осуществляется сверху при помощи загрузочных бадей. Старые печи загружают, пользуясь мульдами. В первом случае вся шихта загружается в один-два приема и независимо от емкости печи длительность загрузки составляет 5— 10 мин. Длительность завалки в случае использования мульд зависит от насыпной массы шихты и емкости печи. Завалка мульдами печи емкостью 40 т продолжается 40—50 мин. Для убы­стрения завалки, когда представляется возможным, старые печи реконструируют и переводят на завалку сверху.

Быстрая завалка позволяет сохранить тепло, аккумулированное кладкой печи, в результате чего сокращается продолжительность плавления, уменьшается расход электроэнергии и электродов и уве­личивается стойкость футеровки.

При завалке сверху порядок укладки шихты в бадье предопределяет расположение ее в печи. Для предохранения подины от уда­л и в крупных падающих кусков на дно бадьи желательно загружать небольшое количество мелкого лома. Наиболее крупную шихту догружают вперемежку с шихтой средних размеров в центральную часть бадьи так, чтобы в печи крупные куски оказались непосредственно под электродами. По периферии распределяют куски средих размеров, а сверху засыпают мелочь.

Такая последовательность загрузки бадьи обеспечивает наиболее плотную укладку шихты в печи, что очень важно для стабильного горения дуг. Наличие сверху мелочи обеспечивает в начале плавле­ние быстрое погружение электродов и исключает прямое воздействие излучения дуг на футеровку стен, а присутствие в шихте под элек­тродами крупных кусков замедляет проплавление колодцев и исклю­чает возможность погружения электродов до подины раньше, чем накопится слой жидкого металла, защищающий подину от прямого воздействия дуг.

Для достижения оптимальной укладки шихта должна состоять 35—40% из крупного лома, 40—45% среднего и 15—20% мелкого, причем примерно половину мелочи нужно загружать вниз, а вторую половину -поверх остальной завалки.

При наличии в шихте легирующих элементов их надо располагать таким образом, чтобы обеспечивалась максимальная скорость их плавления и минимальный угар. Тугоплавкие металлы, такие как ферромолибден или ферровольфрам, следует загружать в централь­ную часть бадьи. Легкоплавкие металлы, например никель, в зоне дуг интенсивно испаряются. Для уменьшения потерь их целесообразно загружать ближе к откосам.

Содержание углерода в шихте должно быть на 0,4—0,6% выше нижнего предела в стали заданной марки. Недостающее количество в шихте углерода вводят используя для этого соответствующие присадки углеродсодержащих материалов — чугун, кокс и электрод­ный бой. В результате введения чугуна в металле увеличивается содержание фосфора, поэтому чугуном пользуются только на плавках с полным окислением и дозируют его в количестве не более 20% от массы шихты. Чугун характеризуется низкой температурой плавления, поэтому его загружают вместе с мелким ломом поверх всей завалки. Кокс и электродный бой для лучшего усвоения за­гружают поверх первой порции мелкого лома.

Для раннего образования шлака, предохраняющего металл от окисления, и для дефосфорации в процессе плавления в завалку вводят известь в количестве 2—3%. В зависимости от состояния подины известь загружают либо на подину, либо после на часть ранее загруженной металлической шихты. Для дефосфорации ме­талла уже в период плавления на плавках с полным окислением в завалку дают 1,0— 1,5% железной руды. При зарастании подины руду засыпают непосредственно на подину, в остальных случаях ее загружают в бадью поверх части металлической шихты.

В случае мульдовой завалки последовательность загрузки должна обеспечивать такой же порядок распределения шихты в печи, как и при бадьевой загрузке. С целью сокращения длительности загрузки ее целесообразно осуществлять двумя завалочными машинами.

Плавление шихты

Главная задача этого периода плавки — как можно быстрее перевести металл в жидкое состояние.

Длительность периода плавления зависит от емкости печи, уста­новленной мощности трансформатора, состава выплавляемой стали, электрического режима и ряда других факторов. Абсолютная про­должительность этого периода изменяется от одного до четырех часов, что составляет одну-две трети длительности всей плавки. В большинстве случаев это самый продолжительный период плавки. Учитывая отсутствие каких-либо технологических ограничений в фор­сировании плавления шихты, следует признать, что в сокращении плавления имеются большие резервы увеличения производитель­ности печей. Технически обоснованной является длительность плавле­ния в печах любого тоннажа, не превышающая 1,0—1,5 часов.

Большое тепловосприятие ванны в период плавления позволяет в этот период работать с максимальной мощностью и при максималь­ном напряжении на дуге (в рациональных, конечно, пределах). Лишь в самом начале плавления, когда дуги открыты и расположены высоко (рисунок 1, а), излучение длинных дуг может привести к пере­греву футеровки свода и стен. Поэтому в первые минуты рекоменду­ется применять более низкое напряжение. После образования ко­лодцев дуги оказываются экранированными шихтой, что позволяет перейти к плавлению при максимальных напряжении и мощности.

Работа на самой высокой ступени напряжения в период плавления целесообразна по двум причинам. Во-первых, чем выше напряжение, тем при той же мощности меньше сила тока и тем меньше потери в цепи, т. е. тем выше электрический к.п.д. Во-вторых, чем выше напряжение, тем длиннее дуга и тем на большую поверхность шихты распространяется ее излучение.

Если шихта подобрана и уложена правильно, то расположенная сверху мелкая шихта быстро проплавляется и дуги погружаются в шихту, не оказывая на футеровку заметного воздействия. В этом случае расплавление с самого начала можно вести на максимальной мощности.

Дуги прожигают в твердой шихте колодцы диаметром на 30—40% больше диаметра электродов. В процессе прожигания колодцев тепловосприятие шихты максимально, так как дуга горит непосред­ственно в твердой шихте, а боковое излучение дуг воспринимается стенками колодцев. Через 30—40 мин, считая от начала плавления, электроды опускаются в крайнее нижнее положение — до поверх­ности скопившегося на подине жидкого металла (рисунок 1, б). С этого момента скорость плавления несколько замедляется, так как тепло аккумулируется в основном жидким металлом, он перегревается и в нем растворяется твердая шихта. Лишь небольшая часть тепла дуги передается твердой шихте излучением на стенки колодцев.

Этапы плавления шихты

а — начало плавления, б — проплавление колодца; в — конец плавления

Рисунок 1 – Этапы плавления шихты

Для более быстрого расплавления шихты после прожигания колодцев современные крупные печи оборудуют механизмом вра­щения ванны. Это позволяет прожигать не три, а девять колодцев, в результате чего скорость плавления на вращающихся печах выше, чем на печах со стационарной ванной. Однако усложнение конструк­ции печи, перерывы в ее работе, вызываемые подъемом электродов и свода на время вращения ванны, а также большие тепловые по­тери, связанные с охлаждением свода и электродов, ставят под сом­нение целесообразность вращения ванны.

Ускорение плавления шихты вне зоны действия дуг может быть достигнуто применением газо-кислородных горелок. При их исполь­зовании продолжительность плавления и расход электроэнергии сокращаются примерно на 15—20%, хотя общий расход топлива на плавку несколько увеличивается. Положительный экономический эффект достигается вследствие более низкой стоимости топлива по сравнению со стоимостью электроэнергии и электродов, а также в результате увеличения производительности печи.

Водоохлаждаемые газо-кислородные горелки в рабочее простран­ство вводят либо тангенциально и под углом примерно 15° к горизонту через отверстия в стенах либо через свод (рисунок 2). Тангенци­альное расположение горелок менее удобно, так как они быстро забрызгиваются шлаком. Сводовые горелки в окислительный период используют как фурмы для вдувания кислорода. В период плавле­ния для предотвращения чрезмерного окисления шихты соотноше­ние между кислородом и газом поддерживается в пределах 1,0— 1,5.

Для сокращения периода плавления на некоторых заводах практи­куют предварительный подогрев шихты в бадьях до 400—700°С газо-кислородными горелками. Удельные энергетические затраты на плавку в стоимостном выражении могут быть при этом снижены на 15—25%. Однако этот процесс широкого распространения не получает из-за трудностей его осуществления в крупных высоко­ производительных цехах.

Схема расположения боковых (а) и сводовых (б ) газокислородных горелок

Рисунок 2 – Схема расположения боковых (а) и сводовых (б ) газо-кислородных горелок

Широко пользуются интенсификацией в период плавления при помощи газообразного кислорода, вводимого через водоохлаждае­мую фурму или футерованные трубы (d = 3/4″) непосредственно в жидкий металл. Выделение значительного количества тепла при окислении железа, марганца, кремния, углерода и других примесей способствует быстрому повышению температуры жидкого металла (таблица 1) и растворению в нем оставшейся шихты.

Таблица 1 – Тепловой эффект и расчетное повышение температуры ванны при окислении 1% элемента газообразным кислородом

ТЕПЛОВОЙ ЭФФЕКТ И РАСЧЕТНОЕ ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ ВАННЫ ПРИ ОКИСЛЕНИИ 1% ЭЛЕМЕНТА ГАЗООБРАЗНЫМ КИСЛОРОДОМ

Чем раньше начать продувку, тем больше интенсивность пла­вления, но вместе с тем и больше угар железа и окисляемых элемен­тов. Применение кислорода для интенсификации оправдано, если стоимость кислорода и повышенный угар компенсируются экономией от ускоренного плавления.

В период плавления кислород целесообразно также применять для подрезки шихты. В процессе плавления отдельные куски шихты свариваются между собой, образуя мосты. При растворении нижних кусков может произойти обвал шихты и вызвать поломку электродов. Часть шихты застревает на откосах и не растворяются в жидкой ванне, а ее расплавление требует значительного времени. И в том и в другом случае необходимо шихту периодически обваливать. Обычно это делается с помощью завалочной машины, но при этом печь прихо­дится отключать, поднимать электроды и через рабочее окно вводить на хоботе завалочной машины мульду и, пользуясь ею, обваливать шихту.

Эта операция значительно упрощается при подрезке шихты кисло­родом. Для этого струю кислорода направляют под основание за­стрявших кусков шихты, они оплавляются и шихта погружается в расплавленный металл.

В процессе плавления происходит окисление примесей, вносимых шихтой. Практически полностью окисляются алюминий, титан, кремний, значительное количество хрома, марганца и других примесей. С целью сокращения длительности окислительного периода в период плавления целесообразно создавать условия, благоприят­ные для окисления фосфора. Для этого количество руды и извести в завалку надо рассчитывать таким образом, чтобы к концу периода плавления основность шлака была более 1,6, а содержание закиси железа превышало 12%. При соблюдении этих условий в период плавления окислится более половины внесенного шихтой фосфора.

После полного расплавления шихты и тщательного перемеши­вания ванны отбирают пробу металла на полный химический анализ и на 3/4 скачивают шлак, вместе с которым удаляется значительная часть окислившегося фосфора. В случае получения в первой пробе пониженного содержания углерода шлак скачивают начисто и, поль­зуясь коксом или электродным боем, проводится науглероживание металла. Затем в печь присаживают известь с плавиковым шпатом в количестве 1,5—2,0% от массы металла и после их растворения приступают к окислительному периоду.

Окислительный период

В окислительный период необходимо реализовать следующие основные мероприятия:

  1. понизить содержание фосфора ниже допустимых пределов в готовой стали;
  2. возможно полнее удалить растворенные в металле газы (водород и азот);
  3. нагреть металл до температуры, на 120— 130° С превышающей температуру ликви­дуса;
  4. привести ванну в стандартное по окисленности состояние.

Одновременно окисляются другие примеси: углерод, кремний, мар­ганец, хром и др. Если плавка ведется, минуя восстановительный период, в окислительный период нужно также удалить серу из металла до содержания ниже допустимого предела.

Окисление фосфора осуществляют присадками железной руды с известью. Начинать присадку руды следует после предваритель­ного подогрева металла, чтобы сразу же после введения руды началось окисление углерода и кипение металла. Руду и известь надо давать равномерными порциями, поддерживая энергичное кипение металла. Шлак в этот период должен быть пенистым, жидкоподвиж­ным и самотеком сходить через порог рабочего окна.

Обеспечение самопроизвольного стекания и обновления шлака необходимо для эффективного удаления фосфора. По мере окисления углерода повышается температура плавления металла и уменьшается скорость окисления углерода. Скорость окисления к концу окисли­тельного периода уменьшается почти в два раза: примерно с 0,6% в начале периода до 0,3% С/ч в конце. Для поддержания энергич­ного кипения необходимо повышать температуру металла, что затруд­няет окисление фосфора, и поэтому снижения содержания фосфора в металле можно достигнуть лишь при постоянном обновлении шлака.

Присаживать очередную порцию руды и извести необходимо при уменьшении интенсивности кипения металла, образовавшегося из предыдущей порции руды. Введение крупных порций руды неже­лательно, так как это может вызвать охлаждение металла и кипение будет слабым. Избыток в ванне непрореагировавшей руды при последующем повышении температуры может вызвать очень бурное окисление углерода и привести к выбросу металла и шлака из печи. Во избежание этого руду надо присаживать так, чтобы скорость окисления углерода поддерживалась в пределах 0,4—0,6 % в начале пе­риода и 0,2—0,3 % С/ч в конце.

Для контроля за ходом окислительных процессов регулярно через каждые 5—10 мин отбирают пробы металла, в которых про­веряют содержание фосфора и углерода. При содержании фосфора менее 0,020%, если не оговорено его более низкие концентрации, окисление рудой можно прекратить. Правильно организованный температурный режим окислительного периода, постоянное обновле­ние шлака при поддержании его основности в пределах 2,7—3 и вы­соком содержании в нем закиси железа (15—20%) позволяют безособых затруднений понизить содержание фосфора до 0,010—0,012 % и менее.

Кроме режима фосфора, в окислительный период регламенти­руется режим углерода. Технологическими инструкциями пре­дусматривается, чтобы за период кипения было окислено не менее 0,3% углерода при выплавке высокоуглеродистой стали, содержа­щей 0,6% углерода и более, и не менее 0,5% при выплавке средне­углеродистой и низкоуглеродистой стали. В случае крупных печей эти количества могут быть несколько уменьшены. Окисление такого количества углерода необходимо для дегазации металла. Интенсив­ное кипение ванны, вызванное окислением углерода, является един­ственным эффективным средством снижения содержания азота в элек­тропечи, причем эффективность дегазации возрастает с увеличением скорости окисления углерода.

Поэтому после понижения до необходимых значений концентра­ции фосфора окисление углерода целесообразно интенсифицировать. Очень высокие скорости выгорания углерода позволяет получить продувка металла газообразным кислородом. Так, в печи емкостью 40т и при расходе кислорода 1200 м 3 /ч скорость окисления углерода составляет 3—4% С/ч при содержании его в пределах 0,9— 1,0% и 0,7—0,8% С/ч при содержании 0,20% С, причем надо иметь в виду, что скорость обезуглероживания возрастает с увеличением интен­сивности продувки.

Окисление углерода газообразным кислородом позволяет сокра­тить длительность периода, благодаря чему при расходе кислорода 4—7 м 3 /т на 5—10% увеличивается производительность печей и на 5— 12% снижается расход электроэнергии.

Для уменьшения угара железа продувку ванны кислородом следует начинать после нагрева металла и проводить ее при вклю­ченной печи. После начала окисления углерода вследствие большого теплового эффекта этой реакции температура металла быстро возрастает, поэтому в момент появления пламени печь необ­ходимо отключить.

В процессе продувки отбираются пробы металла, в которых конт­ролируется содержание углерода. К концу продувки содержание углерода должно быть немного ниже нижнего предела для заданной марки, в результате чего с учетом вносимого ферросплавами угле­рода и науглероживания от электродов обеспечивается получение заданного содержания его в металле. Однако, чтобы предотвратить переокисление металла, содержание углерода к концу окисления не должно быть ниже 0,1%, за исключением случая выплавки стали, в которой углерод является нежелательной примесью. Для стали таких марок ГОСТами устанавливается только верхний предел со­ держания углерода.

Режим марганца в окислительный период обычно не регламенти­руется. Реакция окисления марганца в окислительный период близка к равновесию, поэтому нормальный ход плавки с необходи­мым повышением температуры к концу периода сопровождается восстановлением марганца из шлака.

В окислительный период окисляется и хром, причем значитель­ное его количество окисляется еще в процессе плавления. Скачива­ние шлака в период плавления и постепенное его обновление в тече­ние окислительного периода способствуют дальнейшему окислению хрома и потере его со шлаком.

Тугоплавкие окислы хрома сильно понижают текучесть шлака и затрудняют процесс окисления фосфора. Поэтому использование хромистых отходов на плавках с полным окислением нецелесообразно.

И тем не менее иногда с целью использования содержащихся в шихте никеля и молибдена в завалку дают некоторое количество хромо­никелевых и хромоникельмолибденовых отходов в таком количестве, чтобы содержание хрома в первой пробе не превышало 0,4%.

Интенсификация окисления газообразным кислородом позволяет быстро поднять температуру металла до необходимого уровня. Однако при продувке кислородом металл легко и перегреть, что нежелательно, так как перегрев отрицательно влияет на состояние футеровки, ухудшает условия дефосфорации и может привести к увеличению в металле содержания азота. Поэтому при продувке нельзя допускать перегрева ванны, охлаждая ее при необходимости железной рудой.

Достижением нужного содержания фосфора, углерода и необ­ходимой температуры исчерпываются основные задачи окислитель­ного периода. После присадки последней порции руды или оконча­ния продувки кислородом, делают выдержку в течение не менее 10 мин, во время которой отбирают пробу на анализ и замеряют тем­пературу металла. Общая продолжительность окислительного пе­риода составляет 40—70 мин, а в случае применения газообразного кислорода она может быть сокращена до 30 мин.

Длительность окислительного периода определяется в основном скоростью окисления фосфора. На некоторых заводах для ускорения этого процесса вместе с кислородом вводят смесь порошков извести и плавикового шпата. Порошкообразные материалы в зоне реакции снижают перегрев металла и создают благоприятные условия для окисления фосфора, в результате чего длительность окислительного периода может быть дополнительно сокращена.

В окислительный период удаляется 40—60% серы, вносимой шихтой. Успешной десульфурации способствует высокая основность шлака (не менее 2,7—2,8) и его постоянное обновление. Благоприятные условия для удаления серы в окислительный период создаются при введении вместе кислородом порошкообразной извести.

Раскисление. Восстановительный период

По окончании окислительного периода сталь раскисляют. При этом возможны два варианта выполнения этой технологической операции:

  1. глубинное раскисление без наводки восстановитель ного шлака, т. е. без восстановительного периода;
  2. раскисление в восстановительный период.

Глубинное раскисление без скачивания окислительного и наводки восстановительного шлака начали применять в последние годы и толч­ком к развитию этого метода послужило значительное увеличение мощности печных трансформаторов, которая в восстановительный период используется в малой степени. Минуя восстановительный период выплавляют главным образом углеродистую и низколеги­рованную конструкционную сталь.

При выплавке стали под одним шлаком (без наводки восстанови­тельного шлака) после окончания окислительного периода в печь присаживают кусковой 45%-ный или 75%-ный ферросилиций (0,1%) и ферромарганец из расчета получения среднего заданного содержа­ния марганца в металле. Затем при выплавке хромсодержащей стали в печь присаживают феррохром из расчета получения среднего задан­ного содержания хрома в стали. Длительность раскисления в печи составляет 10—20 мин, после чего сталь выпускают в ковш, где ее окончательно раскисляют ферросилицием и алюминием.

Выплавка стали под одним шлаком позволяет сократить дли­тельность плавки и уменьшить расход электроэнергии и раскислителей, а также упростить ведение плавки. Однако при выплавке стали, к которой предъявляются повышенные требования по свой­ствам и в которой необходимо получить пониженное содержание окисных включений, особенно при низком содержании углерода (

Основными задачами восстановительного периода являются:

  1. раскисление металла,
  2. удаление серы,
  3. корректировка хими­ческого состава металла,
  4. регулирование температуры металла,
  5. подготовка к выпуску высокоосновного жидкоподвижного шлака.

В начале восстановительного периода содержание углерода должно быть на 0,03—0,10% меньше нижнего предела в готовой стали. При меньшем содержании углерода металл необходимо науглеродить. Для этого на поверхность металла после скачивания окислительного шлака присаживают кокс или электродный бой и металл перемеши­вают. При этом усваивается примерно 60—70% углерода кокса и 70—80% углерода, вносимого электродным боем.

Науглероживание является нежелательной операцией, так как оно увеличивает продолжительность плавки, а кроме того, нужно иметь в виду, что открытая поверхность металла быстро охлаждается и он поглощает из атмосферы водород и азот, уже не удаляемые в вос­становительный период. Поэтому окислительный период должен быть проведен так, чтобы необходимость науглероживания исклю­чалась.

Восстановительный период начинается наведением известкового шлака из смеси извести, плавикового шпата и шамота в соотношении 5:1:1 в количестве 2,0—3,5% от массы металла. Для быстрого проплавления шлаковой смеси первые 10— 15 мин после включения тока рекомендуется работать на средней ступени напряжения транс­форматора. Остальную часть рафинировки проводят на низшей ступени напряжения, за исключением случаев присадки большого количества ферросплавов. Подводимую мощность регулируют в соот­ветствии с температурой металла.

В течение длительного времени при выплавке легированных ста­лей применяли «классическую» технологию, основанную на диффу­зионном раскислении металла через шлак, когда раскисляющие вещества (кокс, ферросилиций, силикокальций, алюминий) в виде порошков присаживали к шлаку. Углерод, кремний, кальций и алю­миний в шлаке восстанавливают окислы железа, марганца и хрома, и в объеме печи образуется восстановительная атмосфера. Пониже­ние содержания закиси железа в шлаке вызывает переход кислорода из металла в шлак.

Диффузионное раскисление можно проводить под белым или карбидным шлаком. Для получения белого шлака в начале восста­новительного периода шлак обрабатывают порошком кокса, а затем смесью порошков кокса и 75%-ного ферросилиция, причем количество кокса в смеси постепенно уменьшается. После 25—40 мин выдержки шлак светлеет (в нем понижается содержание окислов железа, мар­ганца, хрома). При остывании такой шлак рассыпается в белый по­рошок. Расход кокса на раскисление под белым шлаком составляет 1—2 кг на 1т металла.

При увеличении расхода кокса до 2—3 кг/т количества углерода может хватить не только для восстановления окислов тяжелых металлов и компенсации окисляющего влияния атмосферы, но неко­торая его часть может пойти на восстановление окиси кальция по реакции CaO + 3С = СаС2 + СО.

Образованию карбида кальция способствуют высокие температуры и концентрация в шлаке углерода и окиси кальция, а также и восста­новительная атмосфера. В герметизированной печи образуется карбидный шлак, содержащий более 2% СаС2. Такой шлак при определенных содержании взвешенного углерода и концентрации карбида кальция при охлаждении рассыпается в виде серого или темно-серого порошка.

Выдержка под карбидным шлаком сопровождается значительным науглероживанием металла, поэтому можно раскислять под карбид­ным шлаком только высокоуглеродистые стали. Если выплавляют среднеуглеродистые стали, вместо карбидного шлака наводят слабо­карбидный, содержащий 1,0— 1,5% СаС2, что уменьшает скорость науглероживания металла.

Карбид кальция хорошо смачивает металл, поэтому при выпуске и разливке возможно запутывание карбидного шлака в металле с образованием грубых шлаковых включений. Во избежание этого перед выпуском плавки карбидный шлак необходимо перевести в бе­лый, для чего в нем надо окислить избыточный углерод и карбид кальция. За 20—30 мин до выпуска в печь присаживают шлаковую смесь с повышенным содержанием плавикового шпата и шамота и на некоторое время оставляют открытым рабочее окно. Усиленный приток воздуха окисляет углерод и карбид кальция, в результате чего шлак превращается в белый.

Диффузионный обмен между шлаком и металлом протекает с ма­лой скоростью, поэтому раскисление металла через шлак требует значительного времени, что является крупным недостатком этого способа раскисления.

Технология диффузионного раскисления предусматривает про­текание реакций между раскислителями и закисью железа либо в слое шлака, либо на границе раздела металл—шлак, при котором металл не будет загрязняться продуктами раскисления. Это преиму­щество диффузионного раскисления может быть реализовано при условии, что скорость перехода закиси железа из металла в шлак будет превосходить скорость встречной диффузии раскислителей.

В этом случае раскисление металла должно происходить без уве­личения содержания в нем раскислителей.

Одним из раскислителей является углерод. В начале восстановительного периода содержание кислорода определяется содержанием углерода, но превышает равновесные значения (рисунок 3). Если бы при выдержке под белым и карбидным шлаками раскисление угле­родом происходило в шлаке или на границе раздела металл—шлак, то после раскисления содержание кислорода в металле должно было бы быть меньше равновесного с углеродом. Однако многочисленные экспериментальные данные свидетельствуют о том, что в процессе выдержки под белыми и карбидными шлаками содержание кисло­рода в металле не становится меньше равновесного с углеродом, а лишь приближается к состоянию равновесия (см. рисунок 3). При этом выдержка под белым шлаком сопровождается науглероживанием металла на 0,02—0,04%, под слабокарбидным— на 0,03—0,06%, под карбидным — до 0,1%. Это говорит о том, что при диффузион­ном раскислении не только кислород переходит в шлак, но и углерод из шлака диффундирует в металл, где вступает во взаимодействие с кислородом.

Зависимость содержания кислорода в металле от содержания углерода до (а) и после (б) диффузионного раскисления

Рисунок 3 – Зависимость содержания кислорода в металле от содержания углерода до (а) и после (б) диффузионного раскисления

Диффузионное раскисление другими раскислителями также со­провождается увеличением их содержания в металле, причем со­держание кислорода не уменьшается ниже равновесных с сильными раскислителями. Таким образом, роль диффузионного раскисления сводится к понижению концентрации кислорода до равновесия с угле­родом, а понижение его содержания ниже равновесных даже при раскислении порошками ферросилиция и алюминия происходит в глубине металла, т. е. по существу в результате глубинного рас­кисления, и, следовательно, продукты раскисления также образу­ются в металле.

Роль диффузионного раскисления уменьшается с увеличением емкости печи, так как вместе с этим уменьшается удельная поверх­ность контакта металла со шлаком, что замедляет диффузионный обмен между ними, и поэтому уменьшается значение основного преимущества диффузионного раскисления. Из изложенного следует, что для интенсификации раскисления целесообразно, особенно в крупных печах, раскислители вводить непосредственно в жидкий металл. Этим способом можно за несколько минут удалить из ме­талла кислорода больше, чем за 1,5—2,0ч диффузионного раскис­ления.

Однако из этого не следует, что выдержка под восстановительным шлаком бесполезна. Восстановительный шлак препятствует поступ­лению кислорода из атмосферы в металл, способствует удалению включений — продуктов глубинного раскисления и, что очень важно, способствует десульфурации металла. Поскольку все эти задачи в восстановительный период целесообразно решать комплексно и параллельно, в настоящее время для выплавки металла ответствен­ного назначения наибольшее распространение получила технология, сочетающая преимущества диффузионного и глубинного раскисления.

По этой технологии после скачивания окислительного шлака на голое зеркало металла присаживают металлические раскислители в виде ферромарганца, ферросилиция, силикомарганца, силикохрома, алюминия, сплава АМС и других сплавов. Количество при­садок должно быть таким, чтобы обеспечить содержание марганца на нижнем пределе в стали заданной марки и ввести 0,15—0,20% кремния и примерно 0,5—0,10% алюминия. Затем присаживают шлаковую смесь и после образования жидкого шлака его обрабаты­вают раскислительной смесью. Уже первые порции раскислительной смеси наряду с порошком кокса содержат молотый ферросили­ций; в дальнейшем количество кокса в раскислительных смесях уменьшают.

В результате обработки такими смесями в печи образуется слабо­карбидный или белый шлак, содержащий менее 0,6% FeO и 50—60% СаО при основности 2,5—3,0 и характеризующийся высокой десульфурирующей способностью. Количество кислорода в металле благодаря глубинному раскислению резко уменьшается, что повышает скорость десульфурации. Увеличению скорости десульфурации спо­собствует повышение жидкотекучести шлака при сохранении высо­кой основности его, что достигается присадками плавикового шпата. Плавиковый шпат, кроме того, может оказывать прямое влияние на десульфурацию, образуя с серой CaS и летучее соединение SF6.

Таким образом, в восстановительный период электроплавки создаются исключительно благоприятные условия для удаления серы. Коэффициент распределения серы между шлаком и металлом соста­вляет 15—40, а при наиболее благоприятных условиях достигает 60.

Так как сера удаляется в результате ее диффузии к поверхности раздела металл—шлак, то увеличению скорости десульфурации способствуют перемешивание металла и увеличение поверхности контакта металла со шлаком. Практика эксплуатации печей, обо­рудованных механизмом электромагнитного перемешивания металла, показывает положительное влияние движения металла на скорость удаления серы. Но и при электромагнитном перемешивании распре­деление серы между металлом и шлаком не достигает равновесия, поэтому значительное количество серы (до 50%) переходит из ме­талла в шлак во время выпуска, когда вследствие эмульгирования в ковше поверхность контакта увеличивается во много раз.

Десульфурации металла во время выпуска плавки способствует глубокое раскисление металла и шлака, формирование к моменту выпуска жидкоподвижного высокоосновного шлака и слив металла вместе со шлаком мощной компактной струей. Учитывая это, шлак перед выпуском разжижают присадками плавикового шпата и рас­кисляют порошком алюминия, а за 3—5 мин до выпуска в металли­ческую ванну присаживают алюминий. После раскисления в стали должно оставаться 0,02—0,05% растворенного алюминия. Такое количество растворенного алюминия необходимо для нейтрализации кислорода, поступающего из атмо­сферы во время выпуска и разливки, и для регулирования величины зерна аустенита, так как присутствие в металле избыточного алю­миния делает сталь мелкозернистой. В зависимости от марки стали и необходимости получения зерна определенного размера для окончательного раскисления вводят от 0,4 до 1,2 кг алюминия на 1 т стали.

После раскисления алюминием 70—90% всех включений в стали бывает представлено глиноземом, обусловливающим при прокатке образование строчек включений, ухудшающих свойства стали, осо­бенно в поперечном направлении. Поэтому иногда для окончатель­ного раскисления применяют и другие раскислители: ферротитан, силикокальций и др. При раскислении силикокальцием природа включений — продуктов раскисления резко изменяется: преобла­дающими становятся глобулярные включения, благодаря чему улучшаются свойства стали в поперечном направлении.

Окончательное раскисление алюминием и силикокальцием можно проводить также и в ковше, присаживая их на дно ковша перед сливом или под струю металла.

Одной из главных задач восстановительного периода является доводка металла до заданного химического состава. Поэтому в начале этого периода, сразу после образования шлакового покрова, отби­рают пробу металла на определение содержания углерода, марганца, хрома и никеля. При диффузионно-осадочном раскислении марганец вводится из расчета получения нижнего предела заданного содержа­ния, имея в виду, что некоторое количество марганца может восста­новиться из небольшого количества шлака, сохранившегося после окислительного периода.

Феррохром вводят в печь в начале восстановительного периода. При выплавке высокохромистых марок стали феррохром перед при­садкой необходимо подогреть в нагревательной печи до красного цвета. Это увеличит производительность электропечи, уменьшит расход электроэнергии и будет способствовать повышению стойкости футеровки.

Для корректировки содержания хрома, после некоторой вы­держки, отбирают две следующие пробы металла, что позволяет про­верить правильность взвешивания шихты и уточнить количество необ­ходимых присадок. Корректировку по хрому следует проводить с уче­том содержания углерода, проверяемого в каждой пробе. В цехе, как правило, имеется феррохром разных марок — от безуглеродистого до содержащего 8% С. Использование более дешевого угле­родистого феррохрома выгоднее, поэтому при возможности корректи­ровку следует проводить углеродистым феррохромом. Одновременно с рассмотренной выше корректировкой подбором соответствующей марки феррохрома корректируют и содержание углерода. Корректи­ровку содержания хрома в конце рафинировки на стали низколеги­рованных марок разрешается проводить не более чем на 0,2%, на высокохромистых — не более чем на 0,8% и не позднее чем за 10 мин до выпуска. Усвоение хрома составляет 96—98%.

Никель обладает значительно меньшим сродством к кислороду, чем железо, и поэтому в ванне практически не окисляется. Основ­ную часть никеля, определяемую из расчета получения его на нижнем пределе заданного содержания, дают в завалку. Корректировку по содержанию никеля необходимо проводить как можно раньше, желательно в окислительный период. Вызвано это тем, что электро­литический никель содержит водород, а гранулированный — влагу.

Удалить вносимые никелем газы можно только в процессе кипения ванны, поэтому предварительную корректировку необходимо выпол­нять в окислительный период, а окончательную — не позже чем за 10 мин до выпуска и не более чем на 0,2%. При выплавке стали по ответственным заказам и предварительную и окончательную корректировку желательно проводить только более чистым электро­литическим никелем. Усвоение никеля при выплавке стали состав­ляет 98— 100%.

Практически в ванне печей не окисляется и молибден, поэтому на плавках с окислением ферромолибден дают сообразно нижнему пределу в период кипения. На плавках стали с высоким содержанием молибдена его можно давать в завалку. Взамен ферромолибдена иногда используется порошок молибдата кальция (СаМоО4), который также можно давать в завалку или присаживать в начале окисли­тельного периода. Из молибдата кальция молибден практически полностью восстанавливается углеродом и другими элементами.

Молибден — дорогой металл, поэтому выплавлять молибден­ содержащие стали следует так, чтобы содержание молибдена было ближе к нижнему пределу.

Легирование вольфрамом также следует проводить в начале восстановительного периода, а при высоком заданном содержании W в стали его лучше давать в завалку. Вследствие тугоплавкости ферровольфрама (температура плавления более 2000° С) его раство­рение продолжается довольно долго, поэтому окончательную кор­ректировку необходимо заканчивать не позднее чем за 30 мин до выпуска при введении более 0,20% ферровольфрама и не позднее чем за 20 мин при меньших количествах.

Тяжелые металлы — ферромолибден и ферровольфрам оседают на подину и для их лучшего усвоения металл необходимо часто и тщательно перемешивать. Усвоение вольфрама составляет около 90%.

Ванадий легко окисляется, поэтому феррованадий присаживают в восстановительный период в хорошо раскисленный металл не позд­нее чем за 15 мин до выпуска при введении 0,5% феррованадия и не позднее чем за 30 мин при более значительных присадках.

Очень легко окисляется титан. Ферротитан присаживают в хо­рошо нагретый и хорошо раскисленный металл за 10— 15 мин до выпуска. При выплавке нержавеющей стали с титаном перед при­садкой ферротитана шлак обновляют, раскисляют порошком алю­миния и принимают меры для устранения подсоса в печь атмосфер­ного воздуха. Легирование металлическим титаном или 60%-ным ферротитаном можно проводить в ковше. Усвоение титана составляет около 50%.

Длительность восстановительного периода определяется вре­менем, необходимым для образования раскислительного шлака, раскисления шлака и металла, десульфурации и легирования ме­талла; эта длительность составляет 70— 120 мин. Для увеличения производительности печей эти процессы целесообразно интенсифи­цировать в печи или осуществлять раскисление, обессеривание и легирование вне печи.

Отдельные звенья технологии, которая позволит в будущем отказаться от проведения в печи восстановительного периода и при выплавке стали, к которой предъявляются повышенные требования, уже разработаны и опробованы в производственных масштабах.

В частности, получить низкое содержание серы в металле (0,004—0,008%) можно при продувке металла в конце окислительного пери­ода газом с порошками-десульфураторами. Уменьшить в несколько раз содержание серы можно также во время выпуска плавки в ковш со специальным синтетическим шлаком. Раскисление и легирование металла может быть проведено в ковше во время слива плавки с по­следующей продувкой металла нейтральным газом или в специаль­ных установках, например в установках порционного вакуумиро­вания. На установках внепечного вакуумирования может быть осу­ществлено науглероживание металла порошкообразными карбю­ризаторами и обезуглероживание с помощью окисляющих добавок и без них, раскисление и легирование, рафинирование от газов и неметаллических включений.

Объединение этих звеньев новой технологии в единую техноло­гическую схему позволит превратить дуговую электропечь в агрегат по расплавлению твердой шихты и получению полупродукта, обес­печить максимальную производительность электропечей, высокие экономические показатели и создать оптимальные условия для поточ­ного производства продукции высокого качества.

Выпуск плавки

При классической технологии во время выпуска ещё раз используют раскисляющую и десульфурирующую способность белого печного шлака. Для этого в сталеразливочный ковш по возможности полно сливают шлак, а затем на него выпускают металл. Наклоном печи регулируют время выпуска металла из печи от 5 до 10 минут, при необходимости в ковш дают материалы, содержащие элементы с сильным сродством к кислороду (Al, Ti, Ca и т.д.). После окончания выпуска металла наклоном печи в противоположную сторону через рабочее окно сливают остатки шлака.

Как видно из изложенного выше, классическая технология весьма сложна и требует много времени на реализацию. Общая продолжительность плавки здесь составляет 3-5 часов. В основном это связано с проведением восстановительного периода. В настоящее время задачи глубокой десульфурации, а также раскисления и легирования металла успешно решаются при ковшевой обработке стали. Поэтому современная технология выплавки стали имеет несколько вариантов, существенно отличающихся от классического.

Наиболее распространённая из них – технология без восстановительного периода. Для её реализации лучше всего подходят печи, во-первых, с трансформатором удельной мощностью 0,7-0,8 МВт/т и дополнительными топливно-кислородными горелками, что позволяет максимально форсировать нагрев и плавление лома, во-вторых, с кислородными фурмами, способными вдувать в ванну 0,3—0,8 м 3 /(т-мин) кислорода, а также порошковые материалы, что даёт возможность сократить до минимума окислительный период; в-третьих, с донным выпуском металла, что обеспечивает отсечку окислительного печного шлака.

При такой технологии успешно решаются вопросы обезуглероживания, дефосфорации, а также нагрева металла. Остальное – раскисление и легирование, а также глубокая десульфурация стали – осуществляется в ковше. Наилучшим способом это реализуется в агрегате печь-ковш.

В современных ДСП общая продолжительность плавки достигла 1,0-1,5 ч, а удельный расход электроэнергии – 360-400 кВт-ч/т. Ещё дальше пошли инженеры немецкой фирмы “ФУКС-Системтехник”. Их способ позволяет сделать продолжительность плавки менее одного часа, а удельный расход электроэнергии сократить до 310-330 кВт ч/т.

Своими особенностями отличаются плавки в ДСП при применении в шихте металлизованного сырья или жидкого чугуна.

Однородный гранулометрический и химический состав металлизованного сырья (как правило, это восстановленные окатыши) позволяет организовать дозированную и непрерывную его подачу во время периода плавления. При этом горение дуг более устойчивое, увеличивается полезное использование мощности трансформатора печи, а акустический шум уменьшается. Плавление металлизованного сырья сопровождается образованием жидкоподвижного, пенистого первичного шлака, который непрерывно, самотёком уходит из печи. Это обеспечивает быструю и глубокую дефосфорацию. В отличие от лома металлизованное сырьё отличается низким содержанием серы (до 0,025%) и, особенно, цветных металлов, например, меди (менее 0,005%).

Практика работы дуговых печей (ОЭМК) выявила, что наилучшие технико-экономические показатели достигаются при доле металлизованных окатышей в металлошихте в 40-50%. Дальнейшее увеличение этой доли вызывает некоторое уменьшение производительности.

В металлизованном сырье содержится 2-5% пустой породы, для её офлюсования, а также нормального шлакообразования в печь через свод подают известь, расход которой удваивается против обычного. После полного расплавления проводят короткий (10-15 мин) окислительный период, фактически доводку. Затем металл выпускают в ковш и подвергают внепечной обработке.

Следует отметить, что из-за дополнительного расхода тепла на расплавление пустой породы и флюсов расход электроэнергии увеличивается на 10-15%. Для компенсации этого разрабатываются способы предварительного подогрева металлизованного сырья перед завалкой в печь, подобно подогреву лома в ДСП системы “ФУКС-Системтехник”.

Появление ДСП, приспособленных для интенсивной продувки ванны кислородом, позволило использовать в их шихте жидкий чугун. Заливка чугуна осуществляется примерно в середине периода плавления через специальную заливочную воронку в своде печи. Сразу же после этого начинается продувка ванны кислородом. Представляется интересной, наряду с верхней, подача кислорода с помощью горизонтальных стационарных фурм под уровень ванны. Естественно, что продувка сопровождается нагревом ванны за счёт окисления примесей чугуна и интенсивным образованием пенистого шлака, который самотёком частично уходит из печи. Таким образом обеспечиваются успешные обезуглероживание и дефосфорация металла.

Раскисление и легирование металла также осуществляются в ковше на выпуске и при внепечной обработке.

Полученные результаты свидетельствуют, что продолжительность плавки с применением жидкого чугуна может быть менее одного часа, а удельный расход электрической энергии за счёт физического и химического тепла чугуна может быть снижен до 200 – 240 кВт-ч/т и менее.

Какие виды цветных металлов и сплавов бывают: основные, редкие, легкие, тяжелые – маркировка и категории цветмета

Цветные металлы: список, названия, классификация и использование :

Ведущей отраслью в экономике нашей страны является металлургия. Для успешного ее развития нужно много металла. В данной статье речь пойдет о цветных тяжелых и легких металлах и их использовании.

Классификация цветных металлов

В зависимости от физических свойств и назначения, они подразделяются на такие группы:

  • Легкие цветные металлы. Список этой группы большой: в ее состав входит кальций, стронций, цезий, калий, а также литий. Но в металлургической промышленности чаще всего используются алюминий, титан и магний.
  • Тяжелые металлы пользуются большой популярностью. Это всем известные цинк и олово, медь и свинец, а также никель.
  • Благородные металлы, такие как платина, рутений, палладий, осмий, родий. Золото и серебро широко применяются для изготовления украшений.
  • Редкоземельные металлы – селен и цирконий, германий и лантан, неодим, тербий, самарий и другие.
  • Тугоплавкие металлы – ванадий и вольфрам, тантал и молибден, хром и марганец.
  • Малые металлы, такие как висмут, кобальт, мышьяк, кадмий, ртуть.
  • Сплавы – латунь и бронза.

Легкие металлы

Они имеют широкое распространение в природе. Эти металлы обладают маленькой плотностью. У них высокая химическая активность. Они представляют собой прочные соединения.

Металлургия этих металлов начала развиваться в девятнадцатом веке. Их получают путем электролиза солей в расплавленном виде, электротермии и металлотермии.

Легкие цветные металлы, списоккоторых имеет много пунктов, используются для производства сплавов.

Алюминий

Относится к легким металлам. Имеет серебристый цвет и точку плавления около семисот градусов. В промышленных условиях используется в сплавах. Он применяется везде, где нужен металл. У алюминия плотность низкая, а прочность – высокая. Этот металл легко режется, пилится, сваривается, сверлится, паяется и сгибается.

Сплавы образует с металлами различных свойств, такими как медь, никель, магний, кремний. Они обладают большой прочностью, не ржавеют при неблагоприятных погодных условиях. У алюминия высокая электро- и теплопроводность.

Магний

Он относится к группе легких цветных металлов. Имеет серебристо-белый цвет и пленочное окисное покрытие. Обладает маленькой плотностью, хорошо обрабатывается. Металл устойчив к воздействию горючими веществами: бензином, керосином, минеральными маслами, но подвержен растворению в кислотах. Магний не магнитен. Обладает низкими упругими и литейными свойствами, подвергается коррозии.

Титан

Это легкий металл. Он не магнитен. Имеет серебристый цвет с отливом голубоватого тона. Обладает высокой прочностью и устойчивостью к коррозии. Но у титана маленькая электропроводность и теплопроводность. Теряет механические свойства при температуре 400 градусов, приобретает хрупкость при 540 градусах.

Механические свойства титана повышаются в сплавах с молибденом, марганцем, алюминием, хромом и другими. В зависимости от легирующего металла, сплавы имеют разную прочность, среди них есть и высокопрочные. Такие сплавы применяются в самолетостроении, машиностроении, судостроении. Из них производят ракетную технику, бытовые приборы и многое другое.

Тяжелые металлы

Тяжелые цветные металлы, список которых весьма широк, получают из сульфидных и окисленных полиметаллических руд. В зависимости от их типов, методы получения металлов отличаются по способу и сложности производства, в процессе которого должны полностью извлекаться ценные составляющие сырья.

Металлы этой группы бывают гидрометаллургическими и пирометаллургическими. Полученные любым методом металлы называются черновыми. Они подвергаются процедуре рафинирования. Только после этого их можно использовать в промышленных целях.

Цветные металлы, список которых представлен выше, в промышленности используются не все. В данном случае речь идет о распространенном тяжелом металле – меди. У нее высокая теплопроводность, электропроводность и пластичность.

Сплавы меди нашли широкое применение в такой отрасли промышленности, как машиностроение, а все благодаря тому, что этот тяжелый металл хорошо сплавляется с другими.

Он тоже представляет цветные металлы. Список названий большой. Однако далеко не все тяжелые цветные металлы, к которым относится цинк, используются в промышленности. Этот металл хрупкий.

Но если нагреть его до ста пятидесяти градусов, он будет без проблем коваться и с легкостью прокатываться.

У цинка высокие антикоррозионные свойства, но он поддается разрушению при воздействии щелочью и кислотой.

Свинец

Список цветных металлов будет неполным без свинца. Он серого цвета с проблеском голубого оттенка. Температура плавления составляет триста двадцать семь градусов. Он тяжелый и мягкий. Хорошо куется молотком, при этом не твердеет. Из него выливают различные формы. Устойчив к воздействию кислот: соляной, серной, уксусной, азотной.

Латуни

Это сплавы из меди и цинка с добавлением марганца, свинца, алюминия и других металлов. Стоимость латуни меньше, чем меди, а прочность, вязкость и коррозионная стойкость – выше. У латуни хорошие литейные свойства. Из нее производят детали путем штамповки, раскатки, вытяжки, вальцовки. Из этого металла делают гильзы для снарядов и многое другое.

Использование цветных металлов

Цветными называют не только сами металлы, но и их сплавы. Исключение составляет так называемый “чермет”: железо и, соответственно, его сплавы. В странах Европы цветные металлы носят название нежелезистых.

Цветные металлы, список которых немаленький, нашли широкое применение в разных отраслях во всем мире, в том числе и в России, где являются основной специализацией. Производятся и добываются на территориях всех регионов страны.

Легкие и тяжелые цветные металлы, список которых представлен большим разнообразием наименований, составляют отрасль промышленности под названием «Металлургия». Это понятие включает в себя добычу, обогащение руд, выплавку как металлов, так и их сплавов.

В настоящее время отрасль цветной металлургии получила широкое распространение. Качество цветных металлов очень высокое, они отличаются долговечностью и практичностью, применяются в строительной индустрии: ими отделывают здания и сооружения. Из них производят профильный металл, проволоку, ленты, полосы, фольгу, листы, прутки различной формы.

Цветные металлы – это какие? Классификация и их свойства :

Все существующие металлы подразделяются на чёрные и цветные. К первой категории относится железо и сплавы на его основе.

В современном мире цветные металлы – это наиболее ценный материал, используемый в производстве.

Благодаря своим преимуществам, они находят широкое применение в тех отраслях промышленности, где крайне важна высокая степень устойчивости к агрессивным условиям окружающей среды.

Понятие

Цветные металлы – это вещества, в состав которых не входит железо. Используются, как правило, в виде сплавов. Благодаря своим свойствам, они имеют большую популярность в ведущих отраслях промышленности: машиностроительной, ракетной, авиационной, медицинской, электронной, приборостроительной и пр.

Цветные металлы – это, зачастую, различные виды проката, предназначенные для последующего изготовления продукции. Вопреки своему названию, они не всегда имеют яркие оттенки и сияющий блеск. Тем не менее, все цветные металлы являются ценным материалом.

Чёткой классификации не существует, чаще всего их условно подразделяют на следующие группы:

  • тяжёлые;
  • лёгкие;
  • малые;
  • легирующие;
  • благородные;
  • редкие.

Каждая группа содержит множество наименований веществ, имеющих различную стоимость. Например, в пункте приёма цветного металла килограмм медного лома покупают в среднем за 300 рублей, а серебряного – 7-30 тыс. рублей (в зависимости от его категории).

Добыча и обработка

Получение ценных веществ – трудоёмкий и экономически затратный процесс. Их содержание в земной коре незначительно и в чистом виде они встречаются крайне редко.

После добычи руда отправляется на завод цветных металлов для переработки. Несмотря на сложность процессов обогащения и последующего изготовления заготовок, по ряду свойств все виды нежелезных материалов не имеют аналогов, чем и обусловлена их популярность.

Способ обработки цветных металлов зависит от вещества, из которого они состоят. К основным технологиям относятся:

  • прессование;
  • штампование;
  • прокатка;
  • волочение;
  • ковка.

Свойства

Цветные металлы – это вещества, обладающие ценными преимуществами:

  • высокой степенью теплопроводности;
  • небольшой плотностью;
  • невысокой температурой плавления;
  • коррозионной стойкостью.

В зависимости от вида сплава значения показателей различаются, тем не менее, данные свойства очень важны в производственных процессах ведущих отраслей промышленности.

Тяжёлые цветные металлы

В эту группу входят:

  • медь,
  • свинец,
  • цинк,
  • никель,
  • олово.

Медь – это металл золотисто-розового оттенка, имеющий высокий показатель пластичности. Её главное свойство – электропроводность, за счёт которой она используется, главным образом, в приборостроении и радиоэлектронике. Кроме того, медь имеет замечательную коррозионную стойкость и легко поддаётся обработке. В сочетании с цинком образует латуни, с иными элементами – бронзы.

Свинец – это токсичный металл серого цвета. Несмотря на своё свойство, он крайне востребован в автомобильной, оружейной и медицинской отраслях промышленности.

Свинец имеет небольшую температуру плавления (327°С), он податлив и легко прокатывается в тончайшие листы.

Его соединения добавляют в топливо для улучшения качественных характеристик последнего, но одновременно при эксплуатации транспорта выхлопные газы существенно загрязняют окружающую среду.

Цинк в чистом виде – это металл сине-белого оттенка. При взаимодействии с воздухом его поверхность тускнеет за счёт появления оксидной плёнки. По объёму использования в ведущих отраслях промышленности цинк занимает 4 место.

Никель – металл серебристо-белого цвета. Пластичный, за счёт чего упрощается процесс обработки. Является ферромагнетиком. Зачастую, никель используют в виде сплавов со сталью, железом, хромом, золотом, серебром, магнием и пр. В чистом виде он служит материалом для изготовления труб, листов, спиралей и т.д.

Олово – металл белого или серого цвета, темнеющий при переходе в порошкообразное состояние. Имеет невысокую температуру плавления (232°С) и хорошую пластичность даже в холодном виде. В соединении с висмутом и кадмием олово используется для производства надёжных крепёжных элементов.

Лёгкие цветные металлы

Примеры веществ, относящихся к данной группе:

Алюминий – лидер по добыче и объемам производства во всём мире. Обладает высокой электропроводимостью, уменьшающейся за счёт добавления различных примесей. Трудно поддаётся сварке, но легко обрабатывается другими способами.

Сплавы из алюминия находят широкое применение в авиационной, ракетной, машиностроительной, химической отраслях промышленности. Характеристики материала в сочетании с невысокой стоимостью делают его одним из самых популярных.

К примеру, в пункте приёма цветных металлов килограмм алюминия покупают за 35 – 90 рублей.

Магний – вещество серебристо-белого цвета. Оксидная плёнка металла довольно стойкая к агрессивным воздействиям окружающей среды, её разрушение происходит при нагреве до 600°С. При этой же температуре с ошеломительной скоростью сгорает и магний. Основное применение он находит в военной промышленности и при производстве пиротехнических изделий. В виде сплавов – в автомобилестроении и авиации.

Титан – весьма тугоплавкое вещество, обладающее повышенной прочностью и устойчивостью к деформации. Его особенность – парамагнитное свойство. В чистом виде применяется для изготовления различных заготовок, в виде сплавов – для производства деталей и механизмов повышенной прочности и износостойкости.

Малые цветные металлы

К ним относятся:

Сурьма – серебристо-белый металл, имеющий синеватый оттенок. Крайне хрупкое вещество, измельчить которое можно даже пальцами рук. Используется в виде сплавов, существенно увеличивая твёрдость соединённого с ней металла. Кроме промышленного применения, сурьма пользуется популярностью и в медицинской отрасли – она эффективна для лечения воспалительных заболеваний слизистой оболочки глаз.

Ртуть – металл, имеющий жидкое агрегатное состояние. Много лет применяется в медицинской отрасли (в термометрах) и передовых технологиях (в датчиках положения, ионных двигателях).

Кадмий – вещество белого цвета с ярким металлическим блеском. Наряду с повышенной твёрдостью легко режется ножом. По своим свойствам близок к ртути и цинку. В чистом виде ядовит для любых живых существ.

Легирующие цветные металлы

Примерами веществ данной группы являются:

  • вольфрам,
  • молибден,
  • ванадий,
  • кобальт.

Вольфрам – металл серебристо-белого цвета, внешне напоминающий платину. Является одним из самых тугоплавких и плотных веществ. Используется при производстве режущих инструментов (в т.ч. медицинских), боеприпасов, ювелирных изделий, деталей самолетов и ракет.

Молибден – мягкое вещество серебристого цвета, не встречающееся в природе в чистом виде. По показателю прочности немного уступает вольфраму, но легче поддаётся обработке. Основное применение находит в авиационной и ракетной отраслях промышленности.

Ванадий – серебристо-белый металл, отличающийся высокой пластичностью. В чистом виде используется редко, его основное предназначение – повышение коррозионной стойкости и улучшение механических свойств стали, применяемой в автомобилестроении.

Кобальт – вещество серебристого цвета с желтоватым или синеватым оттенком. Сплавы на его основе используются для производства инструментов, деталей медицинского оборудования.

Благородные цветные металлы

К ним относятся:

Золото – химически стойкий металл. Процесс окисления не запускается даже при расплавленном его состоянии. Растворить металл способна только смесь из соляной и азотной кислот («царская водка»). Обладает высокими тягучими показателями, хорошо поддаётся обработке. На бирже цветных металлов золото ценится высоко – цена за 1 грамм составляет 2450 рублей.

Серебро – ковкий и пластичный металл. Имеет очень высокие показатели тепло- и электропроводимости. Несмотря на свою пластичность, он весьма тугоплавкий. Не окисляется под воздействием кислорода.

Платина – среди ювелиров ценится превыше всего, используется в чистом виде. Имеет замечательные антикоррозийные свойства и высокую стойкость к любым химическим реактивам и деформациям. В приёмном пункте цветных металлов 1 грамм лома платины покупают за 1600 рублей.

Редкие цветные металлы

Примеры веществ, входящих в данную группу:

Ниобий – металл серого цвета с ярким стальным блеском. Обладает парамагнитными свойствами, имеет очень высокий показатель тугоплавкости. Широко применяется в авиационной промышленности и радиотехнике.

Тантал – вещество серебристого цвета, имеющее высокую твёрдость и плотность. Несмотря на это, легко поддаётся обработке. Применяется в металлургической, химической и ядерной отраслях промышленности.

В заключение

И чёрные, и цветные металлы – крайне востребованный материал. Они находят широкое применение в большинстве отраслей промышленности: машиностроительной, авиационной, ракетной, ядерной, военной, строительной, медицинской, металлургической, ювелирной, приборостроительной, электротехнической, химической и пр. Вместе с тем цветные металлы ценятся выше ввиду своих свойств.

Цветные металлы – свойства, группы, применение

Цветные металлы — особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Сюда входят олово, медь, цинк, никель, серебро, золото.

Металлы называются цветными, потому что каждый из них имеет определенный окрас.

Они отличаются прочностью и долговечностью, поскольку формируют на своей поверхности защитную оксидную пленку и проявляют устойчивость к негативным факторам внешней среды.

В начале XX века насчитывалось около 20 наименований нежелезных металлов, а сегодня их количество уже превышает 70. Добычей, обогащением руд и выплавкой таких материалов занимается цветная металлургия.

Способ производства — высокотемпературная плавка.

За каждым изделием стоит долгая и кропотливая работа — металлы подвергаются механической обработке и проходят через ковку, сварку, прессование, штамповку, грунтование и прочие процессы.

Свойства

Цветные металлы обладают высокой тепло– и электропроводностью, коррозионной стойкостью, стабильностью в температурном диапазоне и инертностью к воздействию агрессивной среды. В отличие от железа, они не реагируют на влагу и кислород, растворяют газы при нагревании (кроме интертных) и с легкостью взаимодействуют с ними.

Группы

Ученые подразделяют цветные металлы на несколько групп:

  • Тяжелые. Олово, медь, никель, цинк, свинец и т.п. Добываются из сульфидных и окисленных полиметаллических руд. Мировое производство металлов данной категории достигает нескольких миллионов тонн в год.
  • Легкие. Алюминий, титан, магний, натрий, калий, кальций, бериллий, стронций, барий и другие элементы этой группы имеют самую низкую удельную массу среди остальных нежелезных металлов.
  • Благородные. Золото, серебро, платина, рутений, родий, палладий, осмий и иридий входят в число редких драгоценных металлов и отличаются повышенной стойкостью к окислению и коррозии.
  • Малые. Представители группы — ртуть, кобальт, мышьяк, сурьма, висмут и т.п. Добываются в небольшом количестве вместе с тяжелыми металлами.
  • Тугоплавкие. Известны как самые износостойкие металлы. К ним относится цирконий, ванадий, хром, вольфрам, молибден и другие элементы с высокой плотностью и температурой плавления.
  • Редкоземельные. Представлены 17 металлами серебристо–белого цвета: гольмий, тулий, скандий, самарий, европий, диспрозий, лютеций, прометий и т.д. Обладают одинаковыми химическими свойствами.
  • Рассеянные. Рубидий, таллий, галлий, индий, скандий, германий, рений, гафний, селен и т.п. В виде отдельных элементов в природе не встречаются. Добываются из полезных ископаемых и руд других металлов.
  • Радиоактивные. Уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий и другие элементы, полученные в результате ядерных реакций. Такие металлы испускают нейтроны, протоны, альфа– и бетачастицы или гамма–кванты.

Применение

В последние годы спрос на цветные металлы резко увеличился. Они влияют на развитие многих отраслей промышленности и широко применяются в авиа– и машиностроении, радиоэлектронике, ракетной и атомной технике, сфере высоких технологий, а также в быту.

Нежелезные металлы — незаменимое сырье в производстве металлопроката, крупных конструкций и небольших изделий.

Вы можете заказать цветные металлы и сплавы на нашем сайте. На странице каталога представлен широкий ассортимент товаров с подробным описанием и ценами. Стоимость за 1 кг зависит от вида материала и варьируется от 135 до 2200 рублей. Денежные средства принимаем на расчетный счет. Подробнее об условиях покупки цветного металла в Москве и регионах России читайте здесь.

Цветные металлы и сплавы: ключевые характеристики и сферы применение, маркировка

Цветные металлы — это все существующие металлы за исключением железа и его сплавов (чугуна и стали — они считаются черными). Сплавы цветных металлов в основном применяют в качестве конструкционных материалов для разных работ. Чтобы понимать их назначение, следует уметь правильно расшифровывать маркировку сплавов.

Единой системы по маркировке цветных металлов и их сплавов не существует. Однако всегда они маркируются буквами и цифрами, где буквы обозначают принадлежность материала к той или иной группе, а цифры в разных группах материалов или сплавов могут обозначать разные вещи, например:

  • если это чистый металл, то степень его чистоты;
  • количество легирующих элементов;
  • номер сплава и т. д.

Маркировка меди и сплавов на ее основе

Когда речь идет о технической меди, то маркировка содержит букву М. Далее указываются цифры, обозначающие степень ее чистоты. Например, медь М3 включает в себя больше примесей по сравнению с материалом М000. Буквы в конце означают следующее:

  • Б-безкислородный материал;
  • Р — раскисленный;
  • К-катодный.

Медь в чистом виде часто применяется в качестве проводникового материала в электротехнических целях. Материал хорошо поддается пайке, деформации и свариванию, единственный минус — плохо поддается резке.

В медных сплавах маркировка имеет буквенно-цифровую систему, по которой можно определить их химический состав. Так, легирующие элементы указаны своими начальными буквами, например:

  • К-кремний;
  • Ф-фосфор;
  • Б-бериллий;
  • О-олово и т. д.

Латунь

Латунью называют сплав меди и цинка. Они подразделяются на такие виды:

  • двухкомпонентные (простые) — включают в себя преимущественно медь и цинк, а также примеси в незначительном количестве;
  • многокомпонентные (специальные) — помимо основных элементов есть дополнительные легирующие.

Маркировка простой латуни включает в себя букву «Л», обозначающую тип сплава, а также двузначное число, которое означает среднее количество меди в составе.

Двухкомпонентные сплавы хорошо поддаются давлению и могут иметь такие формы, как:

  • трубки и трубы с разным сечением;
  • полосы;
  • листы;
  • прутки с разным профилем;
  • проволоки.

Если изделия имеют большое внутреннее напряжение, то они склонны к растрескиванию. А если их долго хранить на открытом воздухе, то могут появиться поперечные и продольные трещины. Чтобы такого не случилось, снимите внутреннее напряжения, проведя отжиг при температуре до 300 градусов.

Маркировка многокомпонентной латуни после буквы «Л» содержит буквы, обозначающие легирующие элементы в составе (помимо цинка). Далее идет ряд цифр через дефис, первая цифра — это среднее количество меди (в %), а затем — каждого легирующего элемента в порядке, соответствующем буквенному обозначению. Порядок букв и цифр зависит от того, какого элемента сколько содержится.

Первыми идут те, которых больше, далее указываются элементы по нисходящей. Литейные латуни маркируют буквами как ЛЦ (вторая буква — это цинк), затем идет число, обозначающее процентное количество содержания цинка. Далее маркировка идет, как и в других случаях. Такие виды материалов применяют при производстве втулок, судостроительных материалов, подшипников, арматуры и вкладышей.

Бронза

Под бронзой понимается сочетание меди с другими элементами, цинк при этом не выступает основным компонентом. Бронза бывает деформируемой и литейной. Маркировка такого материала начинается с буквосочетания «Бр».

В литейных видах после этих букв идут буквы с цифрами, означающие элементы и их процентное содержание в сплаве. Остальное подразумевается как медь. В некоторых случаях на маркировке в конце стоит буква «Л», указывающая на то, что материал является литейным.

Бронза имеет отличные литейные свойства и используется для фасонного литья. Еще ее применяют в качестве антифрикционного и коррозионно-устойчивого материала при производстве:

  • червячных колес;
  • ободков;
  • втулок;
  • зубчатых колес;
  • арматуры;
  • седла клапана и т. д.

Помимо перечисленных особенностей, стоит отметить, что все медные сплавы отличаются высокой устойчивостью к низким температурам.

Характеристики алюминия и алюминиевых сплавов

Алюминий может выпускаться как катанка, слитки, чушки и многое другое, а также как деформируемый полуфабрикат (профили, прутки, листы и многое другое). По степени наличия примесей материал может иметь три вида чистоты:

  • особую;
  • высокую;
  • техническую.

Первичный алюминий маркируют буквой «А», а также числом, обозначающим количество примесей в нем.

Данный материал хорошо поддается деформации, но режется плохо. Посредством прокатки может использоваться для производства фольги.

Алюминиевые сплавы бывают деформируемыми и литейными.

Маркировка литейных алюминиевых суррогатов включает в себя их основной состав. Преимущественно она начинается с буквы «А», которая указывает на алюминий как основной материал.

Затем стоят буквы и числа, в зависимости от других элементов и их процентного содержания в сплаве. Некоторые начинаются с букв «АЛ», что означает литейный сплав алюминия, затем идет цифра, соответствующая номеру материала.

Если в начале стоит буква «В», то это указывает на высокую прочность.

Алюминий и его сплавы имеют широкий спектр использования. Так, технический алюминий может применяться в электротехнике как проводник тока вместо меди. А литейные сплавы часто используют в пищевой и холодильной сфере при производстве деталей сложной формы, обладающих устойчивостью к коррозии и небольшой плотностью. Например, это рычаги, поршни компрессоров и многое другое.

А деформируемые алюминиевые суррогаты в этой же сфере применяются при производстве деталей посредством обработки давлением. Это заклепки, емкости и прочее.

Ключевое преимущество алюминиевых материалов — высокая хладостойкость.

Титан и титановые сплавы

Титан и сплавы из него маркируются согласно существующим ГОСТ буквами и цифрами. Закономерностей при маркировке не существует. Однако ключевая особенность в этом случае — это обязательное присутствие буквы «Т». Числа обозначают условный номер титанового сплава.

Технический титан может маркироваться как ВТ1−0 или ВТ1−00. Все остальное означает титановые сплавы и имеет другие маркировки, которые обозначаются по-разному, и все их перечислить не удастся.

Ключевое преимущество титана и материалов на его основе — это отличное сочетание таких свойств, как:

  • относительно низкая плотность;
  • очень высокая устойчивость к коррозии;
  • высокая механическая прочность.

Но есть у них и недостатки — это дефицитность и дороговизна. По этой причине применение этого материала в холодильной и пищевой промышленности ограничено. Титановые сплавы преимущество применяются в таких отраслях:

  • судостроение;
  • ракетостроение;
  • авиационное строительство;
  • химическое машиностроение;
  • транспортное машиностроение.

Материалы могут применяться при высоких температурах до 500 градусов. Изделия на основе титановых материалов производятся методом обработки под давлением, а также посредством литья. По составу литейные сплавы соответствуют деформируемым, но при маркировке в конце указываются буквой «Л».

Магний и сплавы: маркировка и описание

Технический магний обладает не самыми лучшими свойствами, поэтому его не используют как конструкционный материал. А вот магниевые сплавы в соответствии со стандартами подразделяются на литейные и деформируемые.

В соответствии с ГОСТ литейные маркируются как «МЛ», а также цифрой, обозначающей их условный номер. В некоторых моделях после цифр идут такие строчные буквенные обозначения:

  • «пч» — повышенной чистоты;
  • «он» — материал общего назначения.

А деформируемые магниевые сплавы маркируются буквами «МА», а также цифрой, соответствующей условному номеру материала. После числа тоже может идти обозначение «пч».

Магниевые материалы имеют отличное сочетание таких свойств, как:

  • низкая плотность;
  • высокая устойчивость к коррозии;
  • относительно высокая прочность;
  • хорошие технологические качества.

На основе магниевых сплавов производят детали простой и сложной формы, обладающие высокой устойчивостью к коррозии. Например:

  • арматуру;
  • горловины;
  • насосные корпусы;
  • бензиновые баки;
  • барабаны тормозных колес;
  • штурвалы;
  • фермы и т. д.

Свинец и олово в чистом виде и сплавы

Свинец в чистом виде в холодильной или пищевой промышленности почти не применяется, а олово в пищевой отрасли используется как покрытие пищевой тары.

При его маркировке «О» означает олово, цифры же — его условный номер. С повышением номера количество примесей повышается. Буквосочетание «пч» указывает на повышенную чистоту материала.

В пищевой промышленности с целью лужения консервной жести используется олово, маркируемое как О1 и О2.

В зависимости от назначения свинцовые или оловянные сплавы подразделяются на две категории:

Баббиты представляют собой сложные сочетания из свинца и олова, дополнительно в них присутствуют медь, сурьма и прочее. Их маркируют буквой «Б», а также числом, указывающим на процентное соотношение олова в составе. Помимо буквы «Б» могут быть еще буквы, обозначающие особые добавки, например:

  • Н — никелевый баббит;
  • С — свинцовый баббит и прочие.

Полный химический состав установить только по марке баббита невозможно. В отдельных случаях даже количество олова не указывается, хотя в марке БН его присутствует порядка 10 процентов. Есть баббиты и без олова (в частности, свинцово-кальциевые).

Данный материал признан лучшим антифрикционным и используется преимущественно в подшипниках скольжения.

Вторая категория — припои. Они в зависимости от своих признаков делятся по следующим признакам:

  • по температуре расплавления;
  • по ключевому компоненту;
  • по методу плавки и другим особенностям.

В частности, по температуре расплавления припои бывают следующих типов:

  • особо легкоплавкие (температура плавления составляет около 145 градусов);
  • легкоплавкие (от 145 до 450 градусов соответственно);
  • среднеплавкие (от 450 до 1100 градусов);
  • высокоплавкие (1100−1850 градусов);
  • тугоплавкие (температура от 1850 градусов и выше).

Первые две категории используются с целью низкотемпературной пайки, а прочие для высокотемпературной соответственно.

По своему ключевому компоненту припои бывают таких видов:

  • оловянными;
  • алюминиевыми;
  • кадмиевыми;
  • галлиевыми;
  • свинцовыми;
  • цинковыми и т. д.

Цветные металлы и их сплавы могут иметь разное назначение и разные технические характеристики. Определить их особенности можно по нанесенной маркировке, которую нужно уметь расшифровывать.

Лом цветных металлов – категории и виды

Лом металлов подразделяют на лом черных металлов, лом цветных металлов, в т.ч. и лом редких металлов и лом драгоценных металлов, требующих особого обращения.

Лом цветмета может быть подразделен по типу металла или по характеристикам, например алюминиевый лом, лом медный, титановый лом, лом свинца, лом магниевый или же по категориям полупроводниковый лом, лом медных сплавов, лом редких металлов.

Так же его можно разделить по группам — медная группа лома, свинцовая группа лома и алюминиевая группа лома. Подробная схема классификации лома цветных металлов приведена на сайте ruslomnews.com

Классификация лома цветных металлов:

Наименование группы лома цветного металла Категории лома цветных металлов Характеристики лома цветных металлов Процент засора, базовый процент
МЕДНАЯ ГРУППА ЛОМА Микс медь Медный микс, это вид лома цветных металлов, который состоит преимущественно из меди, любых размеров, форм, в любом состоянии, допускаются следы коррозии и окисла, допускаются примеси изделий латуни — не более половины процента от общего веса, краски, лаков. Например, все домашние медные изделия лампы, элементы нагревательных приборов, трубки, провода, детали приборов, медные батареи, старые медные газовые колонки и луженая медь. Минимальный или базовый засор0,5%— этот процент может быть изменен в зависимости от качеств а- на лом медных радиаторов засор ставят от 25%, на газколонки 1%, луженая медь 6 %
Кусок Медь Кусковая медь это различный медный лом толщина которого свыше 2мм, а размер не менее 5х5 см, в данной категории не разрешены остатки краски и лака, клеммы, наконечники, следы пайки и изоляции. Разрешен измененный цвет пленки и следы термической обработки. Базовый засор не ставится
Блеск Медь Уже из названия понятны требования к этому виду лома меди — это отсутствие следов коррозии, затемнений, без следов грязи, лака, краски, термической обработки, масла и бумаги. Так же не должно быть остатков наконечников, клемм, различной пайки, оплавки – в общем, это медный кабель яркого, блестящего цвета с жилами от 1,5 до 5мм. Минимальный засор не ставится
Медь Тонкий блеск Тонкий блеск – вид медного лома из проводников толщиной 0,5-1,5мм длиной от 30 см, которые уложены жгутом, требования такие же как и у Блеск-меди. Минимальный засор не ставится
Механическая Медь Подвид медной группы лома, включающей в себя жилы от 0,5мм, трансформаторные шины любой толщины и проводники уложенные жгутами длиной от 30см, все они должны быть очищены механическим путем, без засоров в виде клемм, лаков, красок, без следов коррозии, без оплавленных концов, без остатков изоляции. Разрешается потемнение поверхностной пленки. Минимальный засор не ставится
Медь Масло Это медный кабель механически очищенный с толщиной каждой жилы свыше 2мм. Требования к чистоте лома такие же как и выше – без окислов, следов краски, лака, полуды, бумаги, золы, грязи, без клемм и оплавленных концов, без следов изоляции, в масле. Минимальный засор от 2%, может быть увеличен до 10% по результату оценки чистоты и внешнему виду лома.
Медь Отожженная Это лом медных проводников, прошедшие термическую обработку, каждая жила от 1 мм, не разрешены остатки масла, наконечников, изоляции, полуды. Не допустимы изменения цвета в результате коррозии. Базовый засор на отожженную медь выставляется от 0,5%
Микс бронзы Бронза микс – это лом в составе которого меди свыше 70%. Как правило приемка в два этапа, сначала отдают на химический анализ по акту ответ.хранения, а затем, после результатов экспертизы уже происходит непосредственно сама приемка Базовый засор на покрашенный бронзовый лом 1%
Латунь микс Этот вид медесодержащего лома состоит из любых бронзовых и латунных сплавов, изделий и деталей с допустимыми следами термообработки, разрешены следы краски, лака, полуд. Как правило это различные латунные сантехнические изделия и их лом, различные латунные трубки. Базовый засор на латунный микс от 1% и может быть увеличен по результату оценки чистоты и внешнему виду лома.
Латунные радиаторы Вкратце это батареи отопления с медными пластинами, имеющими в своей конструкции латунные трубки. Разрешен следы пайки. Не допускаются следы черных металлов. Минимальный засор на радиаторы из латуни выставляется от 1%, может быть увеличен до 4% по результату оценки чистоты и внешнему виду лома.
Алюминиевая группа, лом цветного металла, имеющего в составе алюминий Микс Это лом цветного металла, имеющего в своем составе алюминий. Сюда относятся любые изделия за минусом цинкосодержащих. Разрешены остатки пластика, креплений, железа, главное, что их вес не должен быть выше 5% от общей массы сдаваемого алюминиевого лома Базовый засор на алюминиевый микс от 2% и может быть увеличен по результату оценки чистоты и внешнему виду лома.
Профиль Уже из названия понятно, что сюда относятся алюминиевые изделия, из сплавов марки АД. Требования намного выше, чем в предыдущей категории алюминиевого лома, так например разрешены следы краски, но запрещены любые составляющие, т.е. никаких деревянных, пластиковых крепежей ручек Минимальный засор ставится от 2% вне зависимости от качества и внешнего вида. Однако, на пластиковые термовставки засор выставляется минимум 17%
Силумин Категория Алюминий силумин – характеризуется в первую очередь по методу изготовления, это отливка. Сюда относятся все станины, изделия, конструкции, изготовленные этим методом. Разрешены остатки пластика, креплений, железа, главное, что их вес не должен быть выше 5% от общей массы сдаваемого алюминиевого лома Базовый засор на алюминиевый лом категории силумин ставится 2-5% по результату оценки чистоты и внешнему виду лома.
Электротехнический Часто еще именуют категорию Электротех – это кабеля и провода из алюминия, их необходимо разделать механическим способом от оплетки, клемм, наконечников, очистить от следов краски и других включений. Разрешены следы масла, затемнения. лом алюминиевого проводника из кабеля, разделанного механическим способом. Не допускается наличие клемм (наконечников), остатков изоляции, краски, неметаллических включений. Минимальный засор на электротехнический алюминиевый лом не ставится. 2 — 5% в зависимости от чистоты и внешнего вида.
Пищевой Иногда можно встретить название этой категории как бытовой алюминиевый лом, как правило это различная посуда, сушилки, ложки, тарелки, предметы обихода и интерьера, главное требование они должны быть изготовлены методом давления и гибки, но не отливки как в категории силумин, т.е. те же домашние казаны сюда не относятся. Пищевой алюминиевый лом не должен иметь в своем составе железо, дерево, бумагу, тефлоновое покрытие, так же нужно удалить крепежи и пластик. Засор ставится 2% и не зависит от чистоты и внешнего вида
Шина Лом алюминиевой шины это проводники, применяемые при монтаже кабеля. Его нужно очистить механически от оплетки, железа и алюминиевых сплавов, удалить все клеммы. Разрешено потемнение, маслянные следы, остатки краски. Засор до 2%, базовый не выставляется
Цинк Цинковые сплавы, ЦАМ Можно его отнести к категориям алюминиевого лома, но в целом, лучше отдельно характеризовать. Сюда относятся цинксодержащие сплавы и изделия из них, например детали смесителей, ручки от старых холодильников, карбюраторы. Нет жестких требований по приему ЦАМ, можно и следы пластика, и других неотъемлемых частей конструкции, главное что бы их вес не превышал 5 % от общего веса к цинкового лома. Засор 2 — 5% в зависимости от чистоты и внешнего вида. Минимальный 2 %.
Свинцовая группа Аккумуляторные батареи (АКБ) К свинцовой группе лома относятся классические батарейки и аккумуляторы допускается протекший электролит или вовсе без него. Щелочные акб принимаются поштучно. Минимальный засор не ставится
Оплетка У многих кабелей имеется свинцовая оплетка, она так же может стать предметом сдачи лома. Эта свинцовая оплетка должна быть разделана механически, но требования не строгие на ней могут быть засоры в виде бумаги, битума, масла. Минимального засора нет, на чистую оплетку как правило нет засора, если есть следы масла тогда засор 3%, смола 5% смола+бумага или картон 8%. В зависимости от степени загрязнения засор может быть увеличен до 15%
Переплав Лом цинксодержащий в категории переплав, примерно тоже самое, что и микс, нет требований к качеству и чистоте лома, он может быть с пластмассой, древесиной, включениями из других металлов. Минимальный засор на Переплав не ставится, все зависит от чистоты и качества сдаваемого лома.

Какие бывают виды и типы металлов и их сплавов

В строительстве, промышленности и других сферах жизни человека часто используются различные виды металлов. Они отличаются между собой свойствами, по которым их отбирают и применяют в той или иной области. Материалы получают разнообразными способами. Некоторые разновидности металлов соединяют вместе, чтобы получить сплавы, приобретающие уникальные физические и химические свойства.

Характеристики и признаки

Металлы представляют собой группу элементов в виде простых веществ, имеющих характерные металлические свойства. В природе они присутствуют в виде руд или соединений. Изучением характеристик этих материалов занимаются такие науки, как химия, физика и металловедение.

Металлы обладают совокупностью различных свойств. По механическим определяют их способность сопротивляться деформации и разрушению. Технологические помогают определить податливость материалов к различным видам обработки. Химические свойства показывают их взаимодействие с разными веществами, а физические говорят об их поведении в тепловом, гравитационном или электромагнитном полях.

Металлы классифицируют по следующим свойствам:

  • Твёрдость — устойчивость материала к проникновению другого.
  • Прочность — сохранение формы, структуры и размера после воздействия динамической, статической и знакопеременной нагрузки.
  • Упругость — изменение формы без нарушения целостности при деформации и возможность возвращения к первоначальному виду.
  • Пластичность — удерживание полученной формы и целостности под воздействием сил.
  • Износостойкость — сохранение наружной и внутренней целостности под воздействием продолжительного трения.
  • Вязкость — удерживание целостности под увеличивающимся физическим воздействием.
  • Усталость — число и период циклических воздействий, выдерживаемых металлом без изменения целостности.
  • Жароустойчивость — стойкость к высоким температурам.

Первостепенным признаком металлов выступает отрицательный коэффициент проводимости электричества, который при понижении температуры повышается, а при повышении — частично или полностью теряется.

Второстепенными признаками материалов являются металлический блеск и высокая температура плавления.

Кроме того, некоторые типы металлов, являющихся соединениями, могут быть восстановителями при окислительно-восстановительных реакциях.

Группа с железом и его сплавами

Чёрным металлам свойственны внушительная плотность, большая температура плавления и тёмно-серый окрас. К этой группе в основном относят железо с его сплавами. Для придания последним специфических свойств используют легирующие компоненты.

Рекомендуем: Основные виды отходов и их классификация

Подгруппы чёрных видов металлов:

  • Железные — железо, кобальт, марганец, никель. Обычно их берут за основу или как добавку к сплавам.
  • Тугоплавкие — вольфрам, молибден, титан, хром. Они плавятся при температуре, превышающей уровень плавления железа. Из тугоплавких разновидностей получают легированные стали.
  • Редкоземельные — лантан, неодим, церий. Они имеют родственные химические свойства, но различаются по физическим параметрам. Используются как присадка к сплавам.
  • Урановые (актиноиды) — актиний, нептуний, плутоний, торий, уран. Широко используются в атомной энергетике.
  • Щёлочноземельные — кальций, литий, натрий. В свободном виде не применяются.

Металлы чёрной группы представлены сплавами железа с разным содержанием углерода и содержанием дополнительных химических элементов: кремнием, серой или фосфором. Популярными материалами выступают сталь и чугун. В стали содержится до 2% углерода.

Ей характерна хорошая пластичность и высокие технологические показатели. В чугуне содержание углерода может достигать 5%.

Свойства сплава могут отличаться с различными химическими элементами: с содержанием серы и фосфора повышается хрупкость, а с хромом и никелем чугун становится стойким к высоким температурам и коррозии.

Цветные разновидности

Цветные металлы более востребованы, чем чёрные, поскольку большая часть из них представляет собой сырье для производства металлопроката. Эта группа материалов отличается широкой сферой применения: они используются в металлургии, машиностроении, радиоэлектронике, сфере высоких технологий и других областях.

Классификация по физическим параметрам:

  • Тяжёлые — кадмий, никель, олово, ртуть, свинец, цинк. В природных условиях они образуются в прочных соединениях.
  • Лёгкие — алюминий, магний, стронций, титан и другие. Характеризуются невысокой температурой плавления.
  • Благородные — золото, платина, родий, серебро. Для них свойственна повышенная стойкость к коррозии.

Материалы этой группы характеризуются внушительным атомным весом и плотностью, превышающей показатель у железа.

Рекомендуем: Утилизация медицинских отходов класса А

Большим спросом пользуется медь, которая выступает проводником электрического тока.

Она отличается розовато-красным оттенком, маленьким удельным сопротивлением, хорошей теплопроводностью, небольшой плотностью, прекрасной пластичностью и устойчивостью к коррозии. В сфере техники используют сплавы меди: бронзу (с добавлением алюминия, никеля или олова) и латунь (с цинком).

Бронзу применяют в производстве мембран, круглых и плоских пружин, червячных пар и разной арматуры. Из латуни изготавливают ленты, листы, проволоку, трубы, втулки, подшипники.

Группа тяжёлых металлов выступает одной из главных причин загрязнения окружающей среды. Токсичные вещества поступают в океаны через сточные воды с предприятий отрасли промышленности. Некоторые разновидности тяжёлой группы могут накапливаться в живых организмах.

Ртуть относится к высокотоксичным металлам для людей. При сжигании угля на электростанциях её соединения переходят в атмосферу, а затем преобразуются в осадки и попадают в водоёмы. Обитатели пресноводных и морских систем накапливают большое количество опасного вещества, что приводит к отравлениям или смерти людей.

Кадмий считается рассеянным и достаточно редким элементом, способным попадать в океан через сточные воды с металлургических предприятий. Это вещество в малом количестве есть в человеческом организме, но при высоком показателе он разрушает костную ткань и приводит к анемии.

Свинец в рассеянном состоянии присутствует почти везде. При избытке металла в организме человека наблюдаются проблемы со здоровьем.

Мягкие виды

Алюминий серебристо-белого цвета характеризуется лёгкостью, высокой устойчивостью к коррозии, хорошей электропроводностью и пластичностью. Характеристики материала сделали его полезным в самолётостроении, электропромышленности и пищевом производстве. Алюминиевые сплавы применяются в сфере машиностроения.

Магнию свойственна низкая коррозийная устойчивость, зато лёгкий материал незаменим в технической области. В сплавах с этим металлом используют алюминий, марганец и цинк, которые хорошо режутся и отличаются высокой прочностью. Магниевые сплавы используют в производстве корпусов для фотоаппаратов, двигателей и других приборов.

Титан применяют в машиностроении, ракетной отрасли и химической промышленности. Сплавы с содержанием этого вещества характеризуются небольшой плотностью, отличными механическими свойствами, коррозийной устойчивостью и податливостью обработке давлением.

Благородные материалы

Некоторые разновидности металлов редко встречаются в природе и отличаются трудоёмкими способами добычи. Металлы благородной группы — это:

  • Золото.
  • Серебро.
  • Платина.
  • Родий.

Рекомендуем: Характеристики, свойства и применение разных видов фторопласта

Люди узнали о золоте ещё в эпоху каменного века. Самый дорогой металл в мире можно встретить в природе в виде самородков, в которых присутствует небольшое количество примесей. Также он встречается в сплавах с серебром.

Серебро идёт вторым по ценности после золота. В природе оно обычно встречается в качестве серебряной руды. Серебру характерны мягкость, пластичность, тепло- и электропроводность.

Платина, открытая в середине XX века, выступает редким материалом, который можно отыскать только в залежах различных сплавов. Её довольно трудно добывать. Ценность металла заключается в том, что он не подвергается воздействию кислот. При нагревании платина не изменяется в окраске и не окисляется.

Родий тоже относится к благородным металлам. Он обладает серебристым цветом с голубым отливом. Родий отличает устойчивость к химическим воздействиям и перепадам температур, но хрупкий металл портится под механическим воздействием.

Классификация по твёрдости

Металлы также делят на твёрдые и мягкие.

Самый твёрдый из чистейших материалов в мире — это хром. Он относится к тугоплавким разновидностям и отлично поддаётся механической обработке. Другим твёрдым элементом выступает вольфрам.

Он характеризуется высокой температурой плавления, теплоустойчивостью и гибкостью. Из него выковывают различные детали и изготавливают небольшие элементы, необходимые для осветительных приборов. Вольфрам часто присутствует в тяжёлых сплавах.

Твёрдые металлы сложно не только добывать, но и просто найти на планете. В основном их содержат упавшие на Землю метеориты.

К самым мягким металлам относят калий, натрий, рубидий и цезий. Также в этой группе состоят золото, серебро, медь и алюминий. Золото присутствует в морских комплексах, осколках гранитов и человеческом организме. Внешние факторы способны разрушить ценный металл.

Мягкое серебро применяют в изготовлении посуды и ювелирных украшений. Натрий широко используют практически в любой промышленной отрасли.

Ртуть, выступающую самым мягким металлом в мире, применяют сельскохозяйственной и химической промышленности, а также электротехнике

Источник https://metallolome.ru/tehnologiya-vyplavki-stali-v-osnovnyh/

Источник https://golden-mask-md.ru/utilizatsiya/kakie-vidy-tsvetnyh-metallov-i-splavov-byvayut-osnovnye-redkie-legkie-tyazhelye-markirovka-i-kategorii-tsvetmeta.html

Источник

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: