Описание опор скользящих для трубопроводов и их виды

Содержание

Описание опор скользящих для трубопроводов и их виды

Подвижные опорные конструкции — составной элемент любой технологической линии гражданского или промышленного назначения. Их применяют для сохранения положения звеньев в соответствии с требованиями проектной документации, компенсации нагрузки на трубы и для защиты от деформирования при резких изменениях температуры рабочей среды.

Скользящие опоры используют при прокладке наружных коммуникаций, чтобы их элементы могли перемещаться в установленных пределах в вертикальном и горизонтальном направлении. Это предотвращает стирание поверхности о землю, которое происходит в двух случаях: при воздействии сильных вибраций в процессе транспортировки рабочей среды; при изменениях температуры окружающего воздуха.

Опоры для трубопроводов: варианты использования

Опоры для трубопроводов: варианты использования

Основная функция опор для трубопроводов состоит в креплении коммуникации в определенном положении. Также они препятствуют деформации труб под действием температур и вибраций. Дело в том, что колебания часто возникают при транспортировке рабочей среды по системе.

Крайне важно уделить предельное внимание процессу установки, так как от опорных элементов зависит надежность коммуникаций. Если будут допущены ошибки, они просто не справятся с возложенными на них задачами.

Сразу скажем, что данные изделия используются в самых разных сферах, различаются по виду и назначению. Так, без них не обходится монтаж коммуникаций:

  • на предприятиях;
  • в ЖКХ;
  • на АЭС;
  • на ТЭС;
  • в газовой и нефтяной сферах.

Если речь идет о газопроводе, то к опорам предъявляются особенно серьезные требования, в том числе, когда трубопровод идет через неблагоприятные, с климатической точки зрения, регионы. Не менее важно, чтобы опорная конструкция защищала трубы от повреждений в наиболее уязвимых местах, то есть в местах крепления.

Терминология ГОСТ 22130 определяет опоры как конструктивный элемент трубопровода, то есть их нельзя назвать переходной конструкцией между трубами и фундаментами.

Как мы уже говорили, опорные элементы используются при прокладке коммуникаций в самых различных отраслях. Необходимые изделия выбирают в зависимости от их назначения таким образом, чтобы они позволяли передавать осевые, поперечные, вертикальные нагрузки, крутящиеся моменты на почву или несущие конструкции.

Особенности и назначение

Опора для труб используется для надежного удержания и закрепления магистрали, при этом не позволяет материалу деформироваться при воздействии температуры, а также эти крепления гасят вибрацию. Опоры стальных технологических трубопроводов или теплоснабжения во многом определяют его надежность в процессе эксплуатации.

Поэтому к выбору и установке выдвигаются повышенные требования и учитываться общепринятые правила, прописанные в ряде документации, имеется специальная таблица на допустимое расстояние между неподвижными или на иные крепления (к примеру — СНиП на опоры металлические для трубопроводов).

Металлические крепления используются в разных отраслях:

  • жилищно-коммунальное хозяйство;
  • атомные и теплоэлектростанции;
  • промышленные предприятия;
  • нефте- и газопроводы;
  • в быту — когда требуется проложить трубопровод теплоснабжения на даче.

Крепления могут принимать на себя такие нагрузки:

  • крутящий момент;
  • вибрации;
  • распорные усилия, вызванные давлением в магистрали;
  • тепловое расширение элементов;
  • поперечные, осевые и вертикальные нагрузки.

Предназначение трубопроводных опор

Предназначение трубопроводных опор

Добиться герметичности и эксплуатационной безопасности системы удается лишь при соблюдении сразу двух параметров: выбора труб высокого качества и применения дополнительного оборудования, то есть опор для технологических трубопроводов.

В соответствии с документацией, речь идет не об отдельной строительной детали, а о конструктивном элементе коммуникации.

Сразу назовем полезные функции данной составляющей трубопровода:

  • Защита трубы от повреждений в месте соприкосновения с конструкцией.
  • Обеспечение правильного расположения труб.
  • Распределение нагрузки по всей длине конструкции и ее передача земле.
  • Устранение вибраций, снижение напряжения в системе.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

За опорами для фиксации труб закрепилось народное название «подвески», однако этот термин подходит не для каждого типа крепления.

Дело в том, что все существующие на сегодняшний день опорные конструкции делят на типы, исходя из:

  • неподвижности/подвижности;
  • способа монтажа.

Если говорить о способе установки, то подобные изделия могут быть:

  • подвесные;
  • обычные.

Подвесные модели крепятся к потолочным перекрытиям, плитам и иными способами. Они считаются подвижными опорами для трубопровода, то есть могут перемещаться в двух направлениях: поперек или вдоль оси конструкции. Тогда как у неподвижных иная задача – они жестко закрепляют трубу в определенном положении.

Для чего нужны подвижные модели?

  • Они снижают коэффициент напряжения в стенках системы.
  • Передают на опорную конструкцию усилие опорной реакции трубопровода, при этом не происходит изменения положения той точки, в которой осуществляется передача.

Производство

Железобетонные опорные подушки производятся по Серии 3.006.1-2.87. Они могут иметь форму квадратной или прямоугольной плиты.

Размеры

Существует семь стандартных типоразмеров опорных подушек. Размеры сечения колеблются от 200х200 до 750х850 мм, толщина может быть 90 или 140 мм. Вес изделий варьируется от 10 до 230 кг. Очевидно, что подушки большой массы монтируют с помощью подъемной техники. Для этого изделия снабжены монтажными петлями.

Опорная подушка ОП

Конструкция опорной подушки ОП

На верхней поверхности опорной подушки расположена закладная деталь в виде прямоугольной металлической пластины. При монтаже теплотрассы подушку располагают таким образом, чтобы закладная деталь была ориентирована вдоль направления трубопровода.

Материалы

Опорные подушки изготавливаются из тяжелого бетона класса B15. Для большинства регионов, в которых предполагается эксплуатация изделий, бетону придается класс водостойкости W4 и класс морозостойкости F200. Для дополнительной защиты от различных видов коррозии в состав смеси добавляются специальные присадки.

Армирование производится сварными каркасами и сетками, изготовленными из стальных (класс А1 и А3) стержней и холоднотянутой проволоки (класс В1). Все стальные элементы подушки, включая строповочные петли и закладную деталь, обрабатываются антикоррозийными веществами.

Изготовление

Процесс производства опорных подушек аналогичен изготовлению большинства железобетонных изделий.

  1. Сначала сооружается металлическая опалубка.
  2. Отдельно сваривается стальной армирующий каркас и фиксируется в опалубке.
  3. В смесительном бункере замешивается бетонная смесь и подается в форму с установленным арматурным каркасом.
  4. С помощью специального оборудование опалубка с залитой бетонной смесью подвергается вибрации, за счет чего смесь равномерно распределяется по форме и уплотняется. Этот процесс называется виброформованием.
  5. Форма с уплотненной смесью обрабатывается термически (сушится).
  6. По достижению определенного уровня отпускной прочности готовая опорная подушка извлекается из опалубки и отправляется на приемку.

Проверка качества

Готовое изделие проверяется на ряд показателей, в число которых входят:

  • Соответствие заявленным геометрическим размерам.
  • Наличие на поверхности подушки трещин, наплывов, сколов, раковин, оголения арматуры.
  • Наличие пустот в теле подушки.
  • Толщина защитного слоя бетона между арматурным каркасом и поверхностью изделия.

Если отклонение по хотя бы одному из вышеперечисленных показателей превышает норму, подушка отбраковывается и отправляется на переработку. Успешно прошедшие процедуру проверки качества изделия маркируются и отправляются на склад.

Маркировка

Условное обозначение изделия содержит в себе данные о типе продукции и его габаритах. Рассмотрим расшифровку маркировки на примере подушки ОП-1

  • ОП – тип изделия (опорная подушка)
  • 1 – вариант типоразмера подушки (200х200х90 мм)

Иногда маркировка может включать буквенный индекс, указывающий на особенности модификации.

Маркировка должна наноситься на одну из граней изделия водоотталкивающей краской отчетливыми символами. Вместе с шифром может быть указана дата выпуска партии и название завода-производителя.

Хранение и транспортировка

Под хранение опорных подушек отводится место с ровной твердой поверхностью, достаточно просторное для беспрепятственного маневрирования погрузочной техники. Изделия сортируются по номенклатуре и дате изготовления.

Подушки должны храниться в горизонтальном положении в штабелях высотой до 2,5 метров. Желательно укладывать их на деревянные поддоны. В таком же виде происходит и транспортировка. Перед перевозкой штабели должны надежно закрепляться на грузовой платформе транспорта. При погрузочных работах важно соблюдать технику безопасности, предотвращать падение и удары опорных подушек, не выгружать их «навалом».

Типы опор для трубопроводов

1. Корпусные опоры.

Корпусные опоры

Чтобы соединить элементы конструкции в пространстве, нередко применяют коробчатый корпус. Его изготавливают из листовой стали либо сваривают из отдельных элементов. Корпусные опоры монтируются на балке, имеют ребра жесткости, дополняются подушками, хомутами и бугелями.

При использовании корпуса труба поднимается на 100–200 мм, за счет чего ее удобно крепить и обслуживать в процессе эксплуатации. Если сравнить стоимость гнутого уголка и сортамента металлопроката, то покупка первого оказывается более выгодной и сокращает себестоимость всей конструкции.

2. Бескорпусные опоры.

Это традиционная модель, которая представляет собой ложемент из листовой стали, изогнутый в соответствии с наружной формой и диаметром трубопровода. Чаще всего этот элемент называют «подушкой». Также он может быть снабжен круглым, полосовым или ленточным хомутом и опорной пластиной, в которой предусмотрены отверстия для фиксации.

Конструкция проста, на ее изготовление уходит минимальный объем материалов, а сама она состоит из совсем небольшого количества частей. По этой причине бескорпусную модель называют самой доступной по цене из используемых при строительстве трубопровода. Для таких опорных элементов есть маркировки Т11, ХБ, ОПБ.

3. Трубчатые опоры.

Трубчатые опоры

Если говорить о конструкции данного элемента, то перед нами вертикально расположенный патрубок, приваренный к плите с отверстиями для монтажа. Чтобы увеличить площадь контакта опорного патрубка с трубопроводом, на его верхнем торце делают седлообразный рез лазером или фрезой, который по форме соответствует основной трубе.

При выпуске подобных моделей отталкиваются от стандарта ОСТ 36-146-88. Данная разновидность подходит для трубопроводов, имеющих диаметр в пределах 57–630 мм и температуру среды до +450 °С. Всего на данный момент существует четыре варианта исполнения: А1, Б1, А2, Б2. На таких изделиях ставится маркировка ТР, при их производстве используются нержавейка, конструкционная и углеродистая сталь.

4. Тавровые опоры.

Тавровые элементы могут иметь разную конструкцию и изготавливаться двух типов:

  • Приварные. В этом случае кусок тавра устанавливают на единственную полку, по торцам приваривают пластины, в их верхней части делается радиусный срез в соответствии с диаметром трубы для более качественной фиксации трубопровода.
  • Хомутовые. Речь идет о полосовых или ленточных хомутах, которые привариваются поверх куска металлопроката, при этом в его полке обязательно должны быть предусмотрены отверстия для креплений.

Эти виды тавровых опорных конструкций маркируются как ТП и ТХ. Могут выбираться различные способы соединения элементов трубопровода, таким образом достигается полная неподвижность узла либо несколько степеней свободы соединения.

5. Хомутовые опоры.

Хомутовые опоры

Они встречаются при использовании как подвижных, так и неподвижных способов соединения. Тогда могут использоваться такие типы крепления:

  • прутковый хомут;
  • полосный хомут;
  • ленточный хомут;
  • плоский хомут;
  • бугельный хомут;
  • крепление на корпусе;
  • с бескорпусными опорными конструкциями;
  • на приварные и скользящие опоры для трубопроводов;
  • хомут используется как направляющий элемент.

Хомут крепко обхватывает трубу со всех сторон, вместе с ним можно использовать прокладки из диэлектрических и антифрикционных материалов. Также при этом способе крепления может достигаться одна степень подвижности трубопровода вдоль его оси.

Классической моделью называют перевернутую U-образную конструкцию с ребрами жесткости или без них.

Хомутовые элементы используются для трубопроводов диаметром 57–377 мм, тогда как бугельный тип подходит для типоразмеров 377–1420 мм. Стоит отметить, что сборочные единицы могут маркироваться по-разному, это связано с тем, что при их производстве используется несколько стандартов.

6. Приварные опоры.

Скользящие и подвижные опорные конструкции жестко крепятся только к основанию/стойкам либо сразу к основанию и трубе. Приварные опорные конструкции бывают следующих модификаций:

  • скользящая направляющая;
  • скользящая неподвижная;
  • стальная;
  • неподвижная;
  • скользящая;
  • уголковая;
  • на балке с проушинами.

Для их производства берут прокатный и гнутый уголок, тавр, швеллер, трубы или изогнутые, сварные корпуса.

7. Опоры вертикальных трубопроводов.

По ОСТ 36-17-85 изготавливают опоры технологических вертикальных трубопроводов и обвязку технологических линий. Чаще всего речь идет о полосовом, прутковом или бугельном хомуте, который крепится на уголке либо в гнутом корпусе.

В документации такие конструкции принято обозначать как ВП, обычно это неподвижные модели. В данном случае основными характеристиками считаются материал, диаметр, строительная длина, температура и давление рабочей среды.

8. Бугельные опоры.

Бугельные опоры

Бугель – это не что иное, как разновидность хомута, дополненная специальными крепежными элементами или шпильками. Бугельные модели делятся на типы по конструкции сборочной единицы и бывают:

  • трубчатые;
  • полосовые;
  • корпусные;
  • штампованные;
  • штампосварные.

Установка данного элемента производится таким образом: труба укладывается на подушку или ложемент с отверстиями под шпильки, после чего сверху на резьбовые соединения притягивается бугель. Чтобы проще зажать трубу, могут использоваться специальные механизмы, лапки, траверс, хомуты или балки.

9. Катковые опоры.

Конструкция данной модели выделяется на общем фоне благодаря таким характеристикам:

  • предусмотрены две и более опорные площадки;
  • установка производится между опорами подшипников;
  • допускается осевое смещение трубопровода на заданную величину;
  • допускается смещение труб в бок на 50 мм.

Возможно изготовление одно- и двухуровневых элементов, с одним катком и несколькими блоками, а также предприятия производят обоймы для трубопроводов энергетических объектов, стальные и пружинные модели. Элементы качения позволяют значительно понизить уровень трения, а значит, и скорость износа элементов всей конструкции. В результате возрастает продолжительность эксплуатации, а сборочные единицы легче подлежат ремонту.

10. Боковые опоры.

Конструкция данного элемента включает в себя пластину и ложемент, который обязательно снабжен несколькими ребрами жесткости для усиления. Данная модель отличается от приварной только расположением в пространстве, ведь ее крепят на вертикальную поверхность, за счет чего она компенсирует боковые нагрузки, но не воспринимает вертикальных усилий.

Такие элементы маркируются как Т10 и подходят для труб диаметром 194–1 420 мм.

11. Лобовые опоры.

Лобовые опоры

Если рассматривать расположение лобовых моделей относительно потока рабочей среды и тела труб, то они устанавливаются в поперечной проекции. Данные изделия принято делить на виды исходя из материала изготовления и конструкции:

  • щитовые производятся из железобетона, нередко имеют по несколько ребер жесткости;
  • упорные представляют собой пару упоров в вертикальной либо горизонтальной плоскости с обеих сторон трубопровода, также это могут быть четыре упора со всех сторон.

Двухупорные лобовые элементы устанавливают, если речь идет о малых осевых нагрузках, четырехупорные необходимы для серьезных нагрузок. При необходимости вся конструкция может быть усилена полукольцами и ребрами жесткости.

12. Неподвижные опоры.

Эта разновидность конструкций необходима, если требуется исключить любую подвижность коммуникаций относительно опор и фундаментов. Производители предлагают такие варианты исполнения, предназначенные для разных условий эксплуатации:

  • «мертвые»;
  • для труб в теплоизоляции ППУ;
  • лобовые и боковые упорные;
  • бугельные и хомутовые;
  • корпусные и бескорпусные;
  • для вертикальных коробов;
  • упорные усиленные;
  • щитовые железобетонные;
  • сварные и стальные.

Для обозначения данных элементов трубопровода используют аббревиатуру НОП. Такая разновидность подходит для установки с трубами диаметром 32–1 420 мм и предназначена для условий с повышенными эксплуатационными нагрузками.

13. Подвижные опоры.

Если требуется добиться одной и более степеней подвижности трубопровода относительно фундамента или несущей конструкции, используют различные подвижные модели:

  • хомутовые ОПХ;
  • приварные ОПП;
  • бескорпусные ОПБ.

Правила изготовления подобных опор для трубопроводов устанавливаются ГОСТом 14911-82, ОСТами 36-94-83 и 36-146-88, кроме того, учитываются ТУ отдельных предприятий, альбомы чертежей Т-ММ-26-05, прочая документация.

14. Скользящие опоры.

Эта разновидность подвижных элементов обеспечивает одну степень свободы в осевом направлении. В данном случае существуют следующие варианты исполнения:

  • стальные и приварные;
  • подкладные и в футляре для труб в теплоизоляции ППУ;
  • для трубопроводов тепловых и атомных станций;
  • с плоским хомутом и скобой;
  • скользящие неподвижные и направляющие нескольких видов;
  • диэлектрические и бугельные;
  • хомутовые и бескорпусные.

Чтобы противостоять быстрому износу труб и элементов системы, применяют антифрикционные прокладки, катки и блоки.

Скользящие опоры

15. Регулируемые опоры.

Их выбирают, если необходимо точное позиционирование отдельных участков трубопровода по вертикали. Сразу скажем, что такие элементы конструкции обязательно имеют передвижные клиновые упоры. Сборочные единицы снабжают маркировкой ОР, а при их изготовлении используется стандарт ТУ 5263-003-93646692. Еще один важный элемент такой опорной конструкции – это ложемент. Он приподнимается и опускается при перемещении клиновых упоров, которые крепятся к пластине за счет болтовых соединений.

16. Диэлектрические опоры.

Такие элементы необходимы, чтобы защитить трубопровод от блуждающих и наведенных токов. Для этого используется прокладка из любого диэлектрического материала, например, из паронита, имеющего антифрикционные качества.

17. Опоры для арматуры.

ОСТ 36-17-85 устанавливает нормы производства конструкций под установку трубопроводной арматуры ОКА. С технической точки зрения, это четыре ребра жесткости, которые крестообразно свариваются между собой и монтируются на опорную пластину. В своей верхней части ребра жесткости повторяют внешний контур устанавливаемой трубопроводной арматуры.

Вам будет интересно  Виды компенсаторов для трубопровода, для чего нужны устройства: Обзор Видео

18. Разгрузочные опоры.

Данная конструкция необходима, чтобы компенсировать гидроудары, вибрационные и механические нагрузки, которых не избежать при работе насосного, компрессорного оборудования. Такой элемент состоит из патрубка и имеет несколько степеней свободы относительно фундамента. При его производстве опираются на СНиП 3.05.05-84, используется маркировка ГПА.

Виды и отличия

Если рассмотреть классификацию опор по конструкции, можно выделить такие виды изделий:

  • Пружинные крепления трубопроводов. Необходимы для амортизации нагрузок на конструкцию. Зачастую комбинируются с конструкциями других типов. Опоры и хомутовые подвески могут регулироваться по высоте, служат для фиксации к потолочным балкам.
  • Изделия для крепления вертикальных трубопроводов и щитовые опоры, как правило, крепят к перекрытиям или на металлические балки. Щитовые изделия необходимы для проведения магистрали сквозь стену на небольшое расстояние.
  • Элементы крутоизогнутых отводов используются там, где имеется изгиб труб. При этом один вид рассчитан на гнутые отводы, второй – на сварные.
  • Хомутовые скользящие корпусные крепления могут иметь круглый или плоский хомут. Первые используются для фиксации стальных изделий, другие – для стальных и ППУ труб.
  • Приварные неподвижные корпусные изделия. Достаточно просто изготавливаются из стали, стоят недорого, можно получить разные неподвижные конструкции: от коробки до сложных элементов, сделанных под конкретные потребности. Фиксация происходит при помощи сварки через определенное расстояние.
  • Бескорпусные опоры – по сути, хомуты. При жестком закреплении – это неподвижные хомутовые опоры, при неплотном притяжении к трубе – скользящие (подвижные) опоры.

Следует отметить, что все виды, благодаря сочетанию между собой, могут представлять подвижные и неподвижные крепления для трубопроводов.

Неподвижные

Изделия неподвижного типа позволяют удержать сдвиги трубопровода в поперечном или продольном направлении. Как раз неподвижные опоры позволят выполнить наиболее надежное закрепление, не давая возможности трубопроводу перемещаться.

Они используются при формировании и подземной, и наземной систем.

При бесканальной подземной прокладке используются изделия с полиэтиленовой (или ППУ) оболочкой для качественной гидроизоляции. Надземные системы подразумевают использование гидроизоляции из оцинкованной стали.

Неподвижная опора включает такие элементы:

  • стальная труба;
  • стальной горячекатаный лист;
  • термолента и оцинкованная оболочка;
  • пенополиуретан (ППУ);
  • центратор и полиэтиленовая оболочка.

Для таких изделий используется только прочная сталь – расчет регламентирует таблица из ГОСТ для опор трубопроводов 14911-82. Можно выделить три типа стальных листов:

  • стандартного качества;
  • низколегированные;
  • качественные конструкционные.

При этом качество отделки может быть обычным или повышенным.

Центраторы представляют собой приспособление, позволяющее упростить центрирование торцов труб при монтаже. Есть их два вида: наружные и внутренние. Наружные, соответственно, выполняют центровку снаружи.

  • с гидродомкратом;
  • эксцентриковые;
  • звенные.

Для изготовления последнего типа нужна морозостойкая сталь. Конструкция – связанные между собой звенья, которые благодаря упорному винту центрируют трубы диаметром от 57 мм до 2,224 м.

Эксцентриковые же центраторы могут использоваться для изделий любого диаметра. С гидродомкратом используются для центровки деформированных или тяжелых труб.

Внутренние центраторы приходится перемещать при помощи грузоподъемной техники, поскольку они массивны. Однако их преимущество состоит в использовании сварки изнутри, благодаря чему можно добиться высокого качества швов.

Неподвижные опоры применяются в северных регионах, где происходят большие колебания температур.

Скользящие

Скользящая (подвижная) опора для трубопроводов широко используется при наземном способе прокладки трубопроводов. Главная задача конструкции – обеспечение допустимого движения труб по вертикальной и горизонтальной оси, а также хомутовые опоры защищают трубопровод от стирания.

Такие подвижные опоры применяются в тех случаях, когда расчет подразумевает частые и большие изменения температур, а значит, имеет место сужение и расширение материала.

Такие подвески заботятся об устойчивости и неподвижности всей системы, компенсируют изменения, вызванные деформациями. Конструкция неподвижной опоры такова:

  • основание – швеллер или уголок;
  • металлические держатели;
  • гайки;
  • прокладки;
  • болты.

ГОСТ для скользящей опоры трубопроводов ОСТ 24.125.156-01 регламентирует параметры составных частей.

Можно выделить такие подвижные виды среди конструкций этого типа:

  • постоянного усилия;
  • упругие;
  • жесткие.
  • крепления скольжения;
  • жесткие подвески;
  • направляющие крепления.

Первые не позволяют трубе перемещаться вертикально вниз. Если расчет использует жесткие подвески, система будет наиболее подвижной. Направляющие крепления лимитируют движение по горизонтали в определенном направлении или вниз.

Чем больше нагрузка на упругую опору, тем выше будет смещение трубы. Скользящие крепления постоянного усилия способны выносить перманентную нагрузку.

Как правило, подвижную опору предварительно красят грунт-эмалью или просто грунтовкой в несколько слоев. Иногда наносится цинковое или порошковое (ППУ) покрытие.

Зачастую для изготовления таких элементов используется углеродистая сталь, для низкотемпературного применения – низколегированная.

Можно выделить такие типы скользящих опор, делая расчет на их конструкцию:

  • шариковая;
  • роликовая;
  • на кронштейнах;
  • диэлектрическая;
  • скользящая хомутовая опора для трубопроводов.

Роликовые опоры позволяют снизить трение между основой и поверхностью трубопровода при его движении. Диэлектрические элементы применяются для низкоуглеродистых или углеродистых стальных труб. Изоляция выполняется из ППУ или смеси порошковых частиц, асбеста и каучука.

Шариковые опоры применяются, если предполагается нестандартное крепление, например, на тепловых электростанциях. Опорное кольцо для трубопроводов дает возможность трубам перемещаться по перечной и продольной оси.

Изделия характеризуются долговечностью, которая, конечно, определяется материалом изготовления.

Расстояние между подвижными креплениями трубопроводов должно быть предусмотрено при проектировании системы. Расчет выполняется индивидуально: зависит от материала, диаметра, длины труб, свойств покрытия (ППУ) опор, параметров транспортируемой среды, требуемой высоты размещения линии.

Использование опор (видео)

О проектировании и расчете

Все работы по обустройству опор для труб должны проводиться в соответствии с требованиями проекта. Иначе действия способны привести к возникновению аварийной ситуации. Расстояния между опорами стальных трубопроводов не должны превышать расчетные данные.

Элементы должны устанавливаться плотно к трубопроводу, поэтому шаг креплений трубопроводов должен быть минимальным. Для получения данных может использоваться таблица расстояния между опорами трубопроводов.

Эти данные рассчитываются на основанные полученных параметров по прочности, прогибу, зависят от диаметра труб, особенностей теплоносителя и способа прокладки трубопровода.

Опоры для крепления трубопроводов устанавливаются на дне каналов, но без препятствия стоку воды. Иногда возводятся фундаменты под опоры трубопроводов, поэтому их расчет также необходим.

Железобетонные опоры трубопроводов требуют подготовки основания для монтажа. Неподвижные изделия зачастую устанавливаются возле запорной арматуры и у ответвлений ППУ трубопровода.

Расчет опоры трубопроводов — это необходимая мера при проектировании линии. Процедура выполняется по внешним усилиям и моментам. Последние определяются при расчете трубопровода на компенсацию тепловых изменений с учетом силы трения, внутреннего давления и усилия от компенсаторов .

Кроме того, следует учитывать нагрузки, вызванные весом конструкции, транспортируемого вещества, пыли, льда и так далее. Также нужно брать во внимание динамические, ветровые нагрузки.

Поскольку в каждом случае расчет будет индивидуальным, приведем в качестве примера немного усредненных цифр (для стальных труб):

  • для трубы ДУ 15, неизолированной/изолированной — 2.5/1.5 м;
  • ДУ 25, неизолированной/изолированной — 3.5/2 м;
  • ДУ 50 — 5/3 м;
  • ДУ 100 — 6/4.5 м;
  • ДУ 150 — 8/6 м.

Приведенные выше цифры являются максимальными.

Допустимые нагрузки определяются с учетом температуры в двадцать градусов. Остальные случаи подразумевают использование специального коэффициента.

Что касается стоимости, то цена опоры трубопроводов с ППУ покрытием начинается с отметки в 100-200 рублей (за направляющую конструкцию).

Цена скользящей опоры для трубопроводов – от 300 рублей.

Стоимость выполнения работ по установке опор трубопроводов с ППУ покрытием — от 500 рублей за 1 конструкцию (также актуально для линий небольшого диаметра и с учетом того, что не требуется выполнять работу на большой высоте).

Современная наука по расчетам на прочность пока не может рассчитывать реальные трубопроводы. Поэтому при использовании самых современных программных комплексов приходится иметь дело не с реальной конструкцией трубопровода, а с его компьютерной моделью — расчетной схемой. Неопытный расчетчик обычно видит свою задачу в том, чтобы по возможности точнее воспроизвести чертеж реального трубопровода на экране компьютера. При этом упускается из виду, что между чертежом трубопровода и его расчетной схемой существует большая разница. Расчетная схема — это конструкция трубопровода, освобожденная от несущественных с точки зрения оценки прочности особенностей. Для одной и той же конструкции можно выбрать несколько расчетных схем, в зависимости от того, какая сторона работы трубопровода интересует проектировщика. Применение расчетной схемы является необходимостью, поскольку полный учет всех свойств реальной конструкции невозможен.

Например, отпор грунта перемещениям трубопровода вдоль и поперек его оси моделируется упругими связями, жесткость которых зависит от величины и направления перемещения закрепляемой точки на оси трубопровода, свойств грунта, глубины заложения и ряда других факторов. Причем, зависимости эти нелинейные и определяются на основании экспериментальных исследований. Наиболее изученными на сегодня являются свойства песка . Этим по-видимому и объясняются требования к бесканальной прокладке тепловых сетей в траншее – подстилающий слой и засыпка должны выполняться утрамбованным песком. В иной грунтовой среде результаты могут оказаться не достоверными.

В программной системе Старт

сплошная грунтовая среда моделируется (и это еще одна схематизация реальности) расставленными на достаточно близком расстоянии друг от друга упругими опорами , , . Если участок расположен в горизонтальной или почти горизонтальной плоскости (угол наклона к горизонту не более 10°-12°), то ставится опора с тремя связями (рис.14а), причем связь вдоль оси трубы моделирует силу трения. Если же участок имеет угол наклона от 12° до 90°, то силой трения вдоль оси трубы можно пренебречь, а грунт моделировать двумя упругими связями, препятствующими перемещениям поперек оси трубы (рис.14б). Связи можно вообще не накладывать, если длина наклонного участка мала по сравнению с протяженностью трубопровода, поскольку ее влияние на распределение усилий будет пренебрежимо мало. Как видим, компьютерная модель представляет собой некоторое приближение к действительности, которое учитывает только наиболее существенные факторы, влияющие на распределение усилий в трубопроводе.

Для правильного выбора расчетной схемы нужен определенный опыт. Ниже рассмотрены отдельные характерные примеры.

Пример 1. На рисунке 15 показан трубопровод бесканальной прокладки, который частично проходит в канале. Если в точках А и Б отсутствуют боковые (поперек оси трассы) перемещения, то расчетная схема будет соответствовать показанной на рис. 15б – по всей длине участка в канале стоят скользящие опоры. Если же боковые перемещения на входе-выходе из канала могут иметь место и для их предотвращения ставится ограничитель (например, круглое отверстие с гильзой), то возможны два варианта:

Когда конструкция ограничителя не препятствует повороту сечений трубопровода в горизонтальной плоскости (короткая гильза), имеем расчетную схему, показанную на рис. 15в – две направляющие опоры в точках А и Б. Схема работы направляющей опоры, обеспечивающей свободу перемещений вдоль оси трубы, показана на рис. 15в;

Когда конструкция ограничителя такому повороту препятствует (например, длина гильзы больше диаметра трубопровода), вместо направляющих опор ставятся нестандартные крепления с двухсторонней жесткой угловой связью в горизонтальной плоскости (рис. 15г). Наконец, если участок АБ расположен на длинной прямой трассе и имеет сравнительно малую протяженность, его вообще можно не учитывать, рассматривая точно также, как подземные участки за пределами границ канала.

Пример 2.При реконструкции тепловой сети часть трубопровода с ППУ – изоляцией проходит в старом канале, который засыпается песком (рис. 16а). При отсутствии боковых перемещений на входе – выходе из канала, весь трубопровод можно рассчитывать как защемленный в грунте (рис. 16б). Разница будет только в расчетной глубине заложения: слева и справа от отрезка АБ она будет равна h
1
(от поверхности земли до оси трубы)
,
а между точками А и Б –
h2
(от оси трубы до низа плиты перекрытия канала), так как вес грунта выше перекрытия канала на трубу не передается.

Описанная модель корректна применительно к решению задачи оценки прочности. Если же участок АБ проверяется устойчивость – возможность потери прямолинейной формы равновесия в результате осевого сжатия, то нужно дополнительно учитывать не только вес грунта, лежащего над каналом, но и вес плит перекрытия канала.

Пример 3. Трубопровод проложен в футляре под дорогой. Поскольку все нагрузки от транспорта, вышележащего грунта и т.п., воспринимаются футляром, а напряжения от веса трубопровода, проложенного в футляре, не могу привести к его разрушению в виду практически непрерывного опирания, участок АБ можно рассматривать как невесомый (рис.17а).

На входе – выходе достаточно приложить горизонтальные силы трения Р
тр
, собранные с половины длины
L
Такая схема, хотя и отличается от реальной, но она учитывает наиболее существенные особенности упругой работы и обеспечивает некоторый запас прочности по отношению к участкам трубопровода, защемленным в грунте. Если на концах футляра ставятся диафрагмы для предотвращения боковых перемещений от примыкающих подземных участков, то это моделируется направляющими опорами (рис.17б). Другими вариантами компьютерной модели для этого случая могут служить расчетные схемы, показанные на рисунках 15б и 15в. Правда такое усложнение, по нашему мнению, не будет окупаться точностью получаемых результатов расчета.

Пример 4. Врезка в существующий трубопровод бесканальной прокладки АГ (рис. 18), который был смонтирован с предварительной растяжкой (стартовый компенсатор в точке Б). Распространенной ошибкой проектировщиков в этом случае является совместный расчет старого и нового участка теплопровода с включением в расчетную модель стартового компенсатора. Это верно только в случае, если растяжка участка АГ с помощью предварительного подогрева осуществляется заново.

Рис. 18. Схема врезки в существующий трубопровод

Если же врезка ответвления производится без перекладки существующей трассы, то точка В останется неподвижной и трубопровод от точки А до точки Г будет постоянно находиться в напряженном (растянутом) состоянии. Пусть с помощью предварительного нагрева трубопровод первоначально был растянут на величину Δ, мм

(деформация стартового компенсатора в момент его замыкания). Равномерное по всей длине растяжение можно смоделировать смещениями неподвижных опор в точках А и Г, причем эти смещения должны быть одинаковы по величине


,
мм
и направлены в противоположные стороны вдоль оси участка АГ (на рисунке показаны красными стрелками) .

Таким образом, применение любой программной системы по расчету прочности трубопроводов не избавляет специалистов от необходимости много и серьезно думать над тем, как правильно воспринимать реальную конструкцию и как выбирать для нее компьютерную модель для оценки прочности.

При монтаже санитарно-технических устройств необходимо обеспечивать: а) плотность соединений труб между собой, с арматурой и приборами; б) прочность креплений элементов систем; в) прямолинейность прокладки и отсутствие изломов участков трубопроводов; г) исправное действие арматуры, оборудования, предохранительных приспособлений и контрольно-измерительных приборов; д) возможность удаления воздуха и спуска воды из систем; е) соблюдение проектных уклонов трубопроводов; ж) надежное закрепление ограждений приводов у насосов и вентиляторов. Трубы перед монтажом необходимо проверять на отсутствие засоров; временно оставляемые открытыми концы их следует закрывать инвентарными пробками. Разборные соединения на трубопроводах выполняют в местах присоединения их к арматуре и там, где это необходимо по местным условиям. Все разборные соединения трубопроводов, а также арматура, ревизии и прочистки должны находиться в доступных для обслуживания местах. Разборные соединения не допускается располагать в толще стен, перегородок, перекрытий и в других строительных конструкциях зданий. В местах размещения разборных соединений, арматуры, ревизий и прочисток при скрытой прокладке трубопроводов необходимо устраивать люки для доступа. На стояках и ответвлениях расстояние от магистрали до арматуры на них принимают не более 120 мм, Отклонение от вертикальных трубопроводов не должно превышать 2 мм на 1 м высоты трубопровода. При прокладке в бороздах или шахтах трубопроводы не должны примыкать вплотную к поверхности строительных частей здания. Трубопроводы, нагревательные приборы и калориферы при температуре теплоносителя выше 105° С должны отстоять от сгораемых конструкций здания на расстоянии не менее 100 мм или эти конструкции должны иметь несгораемую тепловую изоляцию. Крепление трубопроводов на деревянных пробках не допускается. Места соединения (стыки) трубопроводов не допускается располагать на опорах. Конструкции подвесок, креплений и подвижных опор должны допускать свободное перемещение трубопроводов при изменении температуры теплоносителя и окружающей среды. Расстояние между опорами для стальных трубопроводов на горизонтальных участках принимают в соответствии с данными табл. 177, если в проекте нет специальных указаний.

Таблица 177. РАССТОЯНИЕ МЕЖДУ ОПОРАМИ СТАЛЬНЫХ ТРУБОПРОВОДОВ

В жилых и общественных зданиях стояки из стальных труб прокладывают при высоте этажа до 3 м без креплений, а при высоте этажа более 3 м — с установкой креплений на половине высоты этажа. В производственных зданиях стояки крепят через каждые 3 м. Крепления горизонтальных чугунных канализационных труб устраивают через 2 м, а для стояков — одно крепление на этаж, но не более 3 м между креплениями. Крепления чугунных труб располагают под раструбами. Стальные трубопроводы с теплоносителем, имеющим температуру 40-105° С, в местах пересечения ими перекрытий, стен и перегородок необходимо заключать в гильзы для свободного перемещения труб при температурных изменениях. При температуре теплоносителя выше 105° С трубопроводы, проходящие через сгораемые или трудносгораемые конструкции, заключают в гильзы из несгораемого материала. Зазор между гильзой и трубой должен быть не менее 15 мм при заполнении его асбестом и не менее 100 мм без заполнения. Гильзы должны выступать на 20-30 мм выше отметки чистого пола. Края гильз необходимо располагать заподлицо с поверхностями стен, перегородок и потолков. На стояках однотрубных систем отопления со смещенными замыкающими участками гильзы в перекрытиях не ставят. При этом расстояние от стояка до нагревательного прибора в проточных (без замыкающих участков) системах отопления или до смещенного замыкающего участка должно быть не менее 180 мм. Места проходов трубопроводов через брандмауэры следует уплотнять несгораемым материалом (асбестом). Трубопроводы холодной воды в местах прохода через деревянные строительные кон¬струкции необходимо обертывать рубероидом. Санитарные и нагревательные приборы устанавливают по отвесу и уровню. Однотипные санитарные и нагревательные приборы и арматура, расположенные в пределах одного помещения, должны быть установлены единообразно и на одной высоте. При размещении баков для горячей воды на деревянных конструкциях в местах соприкосновения металла с деревом следует устанавливать прокладки из асбестового картона толщиной 5 мм. Санитарно-технические кабины устанавливают на выведенное по уровню основание. Перед установкой кабин проверяют, чтобы верх канализационного стояка нижележащей кабины и подготовленного основания находились в одной плоскости. Оси канализационных стояков смежных этажей должны совпадать. Вентиляционные каналы кабин необходимо присоединять до укладки плит перекрытия данного этажа. Наружный осмотр, а также гидравлическое испытание трубопроводов при скрытой прокладке производят до их закрытия, а изолируемых трубопроводов — до нанесения изоляции. Системы отопления и системы водоснабжения перед вводом в эксплуатацию необходимо тщательно промыть водой. Внутренние системы водопровода и системы отопления в зимних условиях присоединяют к наружным сетям непосредственно перед пуском систем.

Вам будет интересно  Группы технических устройств НАКС

Трубопровод не всегда прокладывают под землей. Порой, особенно если речь идет о крупных магистралях, этот вариант оказывается невыгодным. А чтобы удерживать трубопровод в заданном проектном положении или даже переместить систему при необходимости, применяются специальные опоры, расположенные на точно рассчитанном расстоянии друг от друга.

Как устроена опора неподвижная для трубопроводов

Как устроена опора неподвижная для трубопроводов

Неподвижные конструкции необходимы в тех случаях, когда требуется жесткое крепление системы. Таким образом удается не допустить ее сдвигов в любом из возможных направлений.

Неподвижные элементы применяются при монтаже трубопроводов, которые устанавливаются такими способами:

  • наружным;
  • внутренним (под землей).

Во время монтажа участков системы опорные конструкции фиксируются за счет железобетонных каркасов. Нужно понимать, что последние находятся друг от друга на разном расстоянии, разделяя коммуникации на сегменты. Протяженность сегмента связана с особенностями установленных на нем специальных компенсаторов.

Во время как наружной, так и подземной прокладки коммуникаций активно используют неподвижные элементы. Если же для прокладки под землей используется бесканальный метод, выбирают опоры с качественной гидроизоляцией. Обычно роль последней играет полиэтиленовая оболочка. Когда речь идет о наружном монтаже, отдают предпочтение оцинкованному гидроизолятору.

При неподвижном способе монтажа используются такие элементы:

  • стальная труба;
  • стальной лист, полученный способом горячей прокатки;
  • пенополиуретан (ППУ);
  • термостойкая лента;
  • оцинкованная оболочка;
  • центратор;
  • оболочка из полиэтилена.

Для изготовления неподвижных стальных опор для трубопроводов берут самые прочные и надежные марки этого металла.

Используемые в этом случае листы стали могут быть трех видов – все зависит от качества:

  • обыкновенный;
  • низколегированный;
  • конструкционный (считается самым качественным).

Центратор представляет собой элемент, который позволяет упростить отцентровку торцов труб перед соединением элементов трубопровода. Сегодня центраторы выбирают двух видов:

  • наружные;
  • внутренние.

В соответствии с названием, наружные производят отцентровку с наружной стороны трубы и могут быть:

  • звенными;
  • эксцентриковыми;
  • гидродомкратными.

Первые необходимы для отцентровки труб с сечением в пределах 57–2 224 мм. В отличие от других моделей, они имеют повышенную устойчивость к низким температурам, поскольку при их изготовлении используют морозоустойчивую сталь. Эксцентриковые центраторы могут использоваться при работе с трубами, имеющими любые сечения. Последняя разновидность применяется исключительно при отцентровке труб с очень большим весом либо при наличии на них деформаций. Подобные устройства сообщают усилие, равное 12 т.

Эксцентриковые центраторы

Если говорить о внутренних центраторах, то их отличает одна немаловажная особенность: они позволяют осуществлять продолжительную сварку труб изнутри. В результате качество швов значительно повышается. Однако у этих изделий есть и минусы, главный из которых – большой вес, то есть их транспортировка невозможна без специальной техники.

Неподвижные опорные конструкции для трубопроводов используются при строительстве:

  • магистральных газо- или нефтепроводов;
  • разного рода коммуникаций на предприятиях;
  • трубопроводов на АЭС и ТЭС.

Кроме того, именно неподвижные элементы применяют при строительстве коммуникаций в регионах с низкими температурами, таким образом увеличивая продолжительность службы всей конструкции.

Данные элементы устанавливаются в системах, используемых в совершенно разных сферах. Они делят всю систему на отдельные сегменты, в которых устанавливаются компенсаторы сильфонного типа. Последние призваны защитить трубопровод от деформации, возможной при снижении температуры окружающей среды.

Неподвижные опоры стальных технологических трубопроводов приваривают к платформам и при помощи крепежей монтируют к трубе. Чтобы добиться наибольшей надежности, вплотную к торцам хомута также приваривают металлические пластины.

Особенности элементов скользящего типа

Скользящие элементы для трубопроводов частично фиксируют его, препятствуя возникновению в нем напряжений из-за перепадов температур. Если эти элементы будут неподвижными, возникающие напряжения могут привести к повреждению магистрали. Тем не менее, скользящие элементы приваривают к трубе, и они скользят по ее основе. Такой механизм позволяет снизить трение при постоянных смещениях трубы, вызванных:

  • температурными усадками;
  • меняющимся внутри трубы давлением;
  • вибрационными явлениями.

Если не крепить к трубе скользящий элемент, то при смещениях в зазоры между ними будут попадать пыль, грязь, песок. Со временем абразивное воздействие этих частиц может вызвать разрушение стенок трубы.

Таблица размеров скользящих опор для трубопроводов ППУ в стальной оцинкованной оболочке

Таблица размеров скользящих опор для трубопроводов ППУ в стальной оцинкованной оболочке

Чем хороши скользящие опоры под трубопроводы

Чем хороши скользящие опоры под трубопроводы

Скользящие модели необходимы, если коммуникации проходят по поверхности земли. Таким образом обеспечивается свободное перемещение трубопровода в горизонтальной и вертикальной плоскостях. Также подобные приспособления оберегают всю конструкцию от преждевременного истирания.

Без скользящих элементов не обойтись при монтаже систем, испытывающих нагрузки во время сезонных перепадов температур, ведь в это время трубы расширяются и сужаются сразу в двух плоскостях.

За счет скользящих моделей удается добиться устойчивости коммуникаций, уравновесить их перемещение в пространстве, происходящее при изменении температур.

Скользящая модель включает в себя такие составляющие:

  • основание, роль которого нередко играет уголок;
  • полукруглый металлический держатель для трубы;
  • прокладка;
  • крепежные элементы, то есть гайки и болты.

Подвижные модели выпускают трех видов:

  • жесткие;
  • упругие;
  • конструкции постоянного усилия.

Жесткие модели, в свою очередь, бывают:

  • направляющими;
  • жесткими подвесками;
  • опорами скольжения.

Первые не позволяют коммуникации смещаться вниз и в горизонтальном направлении. Подвески второго типа позволяют добиться наибольшей подвижности всей конструкции. Тогда как последняя разновидность исключает перемещение трубы вниз в вертикальном направлении. Опоры упругого типа могут похвастаться подобной жесткостью лишь при условии, что труба смещается вертикально. Тогда работает такая закономерность: чем выше нагрузка на опорный элемент, тем дальше смещается труба. Отметим, что опора постоянного усилия справляется с любой нагрузкой вне зависимости от смещения коммуникации.

Модели опор трубопроводов

Чтобы защитить данный элемент системы от ржавчины, его грунтуют в несколько слоев. Либо он может покрываться грунтовой эмалью. Но самую высокую степень защиты от коррозии обеспечивает порошковое покрытие или оцинковка.

Обычно в качестве материала для изготовления подобных изделий выбирают прочную углеродистую сталь. Но ее приходится заменять на низколегированные сорта, когда становится известно, что трубопровод будет эксплуатироваться в условиях больших скачков температур.

При классификации скользящих опор для трубопроводов учитывается не цена, а их конструкция, поэтому выделяют такие типы:

  • на кронштейнах (крепежные элементы);
  • хомутовый;
  • шариковый;
  • диэлектрический;
  • катковый (роликовый).

За счет использованных в ней катков роликовая конструкция позволяет снизить силу трения между ее основой и верхней частью. Отметим, что трение образуется при движении трубопровода.

Диэлектрические скользящие элементы выбирают для труб, при изготовлении которых использованы:

  • углеродистая сталь;
  • низкоуглеродистая сталь.

Подобные конструкции требуют изоляции из специального материала – листового паронита, в состав которого входят:

  • каучук;
  • асбест;
  • дополнительные порошковые добавки.

Для изготовления шариковых скользящих элементов используют сталь, при этом они считаются специфическим крепежом. Дело в том, что с их помощью труба может двигаться сразу в двух направлениях: продольном и поперечном. Поэтому такие модели чаще всего устанавливают на электростанциях и теплотрассах.

Обычно приспособления скользящего типа изолируют от металлических кожухов при помощи гидроизоляции. А внутреннюю поверхность трубы и гидроизоляционный материал смазывают специальной графитовой смазкой, которая предотвращает трение. Далее приваривают и надежно затягивают хомуты. Немаловажно, что при монтаже подобных конструкций можно обойтись без спецтехники, за счет чего вся работа занимает гораздо меньше времени.

Принцип устройства

Скользящая опора для трубопроводов отличается достаточно простой конструкцией. В качестве стационарного основания для нее используют швеллер. К нему крепится с помощью сварки, соединительных гаек несущая часть со скользящими элементами.

Прочное соединение частей можно обеспечить и бетонной заливкой. На расчетную высоту трубопровода выставляется стойка опоры. Более точно ее уровень дополнительно регулируется подвижными элементами, которые затем закрепляются болтами.

Принцип устройства скользящей опоры

Устройство скользящей опоры

Труба фиксируется в пространстве полукруглым держателем. Скользящая опора, в которой она плотно не закрепляется, а свободно перемещается вдоль оси, называется направляющей. Основными узлами полукруглого держателя являются:

  • опорный элемент округлой формы, соответствующей размеру трубы;
  • фиксирующий узел со специальными захватами.

Фиксация трубы в скользящей опоре

Фиксация трубы в скользящей опоре

Те части скользящей опоры, которые соприкасаются с поверхностью трубы, оборудуются упругими прокладками. При существующих стандартах скользящие установки должны выдерживать максимальную нагрузку, равную весу трубопровода вместе с перемещаемым субстратом. Технологические характеристики внутри трубы могут достигать:

  • давления – до 16 МПа;
  • температуры — +450 градусов.

В связи с такими нагрузками опоры должны обладать высокими показателями прочности. Поэтому их основные элементы изготавливают из металла.

Расстояние между опорами трубопроводов

Расстояние между опорами трубопроводов

Однако мало знать типы опор для трубопроводов и купить все необходимые элементы. Для грамотного строительства нужно четко представлять себе расстояние между данными конструкциями, ведь только в этом случае система будет исправно работать. Дистанция устанавливается согласно требованиям, указанными в соответствующей документации, а также на основе информации о сфере эксплуатации трубопровода, его весе, возможном прогибе во время службы.

Расчет значений производят на основе данных из таблицы «Проектирование тепловых сетей» А. А. Николаева. Так, для горизонтального размещения таблица предлагает следующий расчет: при минимальном диаметре трубы 20 мм и максимальной температуре рабочей среды +60 ˚С опоры должны быть удалены друг от друга на 60 см. Здесь работает правило: чем больше диаметр трубы, тем больший используется шаг.

Такой же принцип расчета используется, если планируется вертикальное размещение. Допустим, магистраль имеет диаметр 40 мм и температуру +20 ˚С, тогда длина одного сегмента составляет 138 см. Если же температура сети доходит до +70 ˚С, то протяженность сегмента сокращается до 113 см.

При расстановке неподвижных металлических опор учитываются схематические характеристики тепловых коммуникаций. Обычно такие конструкции устанавливают возле ответвлений магистрали, запорной арматуры и на прямых участках, при этом учитываются свойства установленных там компенсаторов.

Расчет расстояния между неподвижными элементами системы производят таким образом:

L = 0,9 × ∆L / (a × (t-tpo)), где

  • ∆L – способность компенсатора, в мм (берут значения из таблицы);
  • а – коэффициент линейного расширения стальных стенок при температурных колебаниях, в мм/м˚С;
  • L – длина отрезка трубопровода, для которого производится вычисление, в м;
  • t – расчет температуры рабочей среды при монтаже, в ˚С;
  • tро – температура окружающей среды;
  • 0,9 – значение погрешности (равно 10%).

Чтобы рассчитать расстояние между скользящими креплениями, необходимо представлять себе сферу использования всей системы. Дело в том, что, например, для холодного трубопровода этот шаг будет больше, чем для коммуникаций, по которым течет горячая вода.

Назначение опорных конструкций

Опоры являются важной частью всей конструкции трубопровода и выполняют функцию его фиксации в расчетном положении. Кроме того, они способствуют равномерному распределению нагрузок, вызванных большой массой систем теплоснабжения или магистральных транспортировочных трубопроводов.

Чаще всего их составные части изготовлены из металла, обладающего высоким удельным весом. Дополнительную весовую нагрузку создает транспортировка технологических продуктов:

  • питьевой воды;
  • технических растворов или суспензий;
  • горячей воды или пара в теплотрассах.

Назначение опор для трубопроводов

Следует учитывать и тепловое воздействие перемещаемой среды, которое вызывает линейное расширение материала труб. Например, при прохождении водяного пара увеличение их линейных размеров достигает 1,2 мм на каждый погонный метр. Нельзя исключать и воздействие:

  • сезонных температурных колебаний;
  • интенсивных атмосферных осадков;
  • сильных ветров;
  • вибрационных явлений, возникающих при прокачке жидкостей, и приводящих к отклонению трубы от заданного расположения.

Опоры трубопроводов: нормативы и стандарты

На данный момент на государственном уровне разработаны стандарты для двух категорий таких изделий:

  • ГОСТ 14911-82 «Детали стальных трубопроводов. Опоры подвижные. Типы и основные размеры». Распространяется он на подвижные конструкции из стали марок ОПБ (бескорпусные), ОПХ (хомутовые), ОПП (подвижнее приварные);
  • ГОСТ 16127-78 «Детали стальных трубопроводов. Подвески. Типы и основные размеры». Он распространяется на подвески с обозначением ПМ, ПГ, ПМВ, ПГВ.

Если говорить об отраслевых стандартах на сборочные единицы для крепления трубы газопроводов, то в Москве их в 2,5 раза больше:

  • ОСТ 108.275.24 – трубопроводы АЭС и ТЭС;
  • ОСТ 24.125.154 – трубопроводы АЭС и ТЭС из высоколегированных и специальных сталей;
  • ОСТ 36-94 – подвижные элементы технологических магистралей;
  • ОСТ 36-104 – стальные конструкции для систем, работающих со средами, которым свойственны низкие температуры;
  • ОСТ 36-146 – серии КН, ВП, ТО, ХБ, УП, ШП, ТП, КХ, КП, ТХ, ТП для диаметров 57 – 1420 мм.

Также есть три нижестоящих относительно ГОСТа стандарта ТУ. Они используются при производстве описанных нами моделей:

  • ТУ 1468-012-04698606 – подвижные элементы технологической обвязки, используемые при давлении 10 МПа, температуре от -70 °С до +450 °С, диаметрах труб 18–1620 мм;
  • ТУ 1468-002-92040088 – подвеска, опоры и блок модули для трубопроводов 32 МПа, DN 15–1600 мм;
  • ТУ 1468-001-00151756 – скользящие элементы для диаметров 100–1400 мм, температуры от -70 °С, давления 10 МПа.

Также существует две серии сборочных единиц этого типа:

  • 903-10: 4-й выпуск – для конструкций, монтируемых неподвижно, 5-й выпуск – для подвижных модификаций, 6-й выпуск – для подвесок;
  • 903-13: выпуск 6-95 – подвески, выпуск 7-95 – неподвижные элементы, выпуск 8-95 – подвижные.

Альбом чертежей Т-ММ-26-05 включает в себя варианты исполнения подвижных и мертвых конструкций ПС, ОНС и ОСС. В документации НТС 65-06 можно найти рабочие чертежи и технический регламент, предназначенные для изготовления ПО и НПО.

Где купить железобетонные опорные подушки ОП

Компания «СтройПромЖБИ» с 2009 года занимается производством железобетонных изделий для различных сфер строительства. В наш ассортимент входят также и опорные подушки. Купить их у нас можно по одним из самых выгодных цен в России.

Наш завод находится в Тульской области, откуда мы отправляем продукцию в Московскую, Владимирскую, Орловскую, Калужскую и другие области страны. Для обсуждения сотрудничества свяжитесь с нами любым удобным способов, представленных на странице «Контакты».

Эксплуатация компенсаторов

Компенсаторы применяются в строительстве, где расчетная наружная температура не опускается ниже -400С. При этом сейсмичность района строительства может достигать 9-ти баллов. Компенсаторы могут применяться, если содержание хлоридов в воде не больше 200 мг/кг. Устанавливаются они на прямолинейных участках трубопровода между неподвижных опор. Причем осуществляется установка только одного компенсатора, который присоединяется к трубопроводу сваркой. Компенсатор сильфонный КСО станавливается только у одной из неподвижных опор. А на бесканальных подземных трубопроводах компенсатор устанавливается на середине участка, который ограничен двумя опорами. Перед компенсатором и после него устанавливаются направляющие опоры, которые позволяют избежать радиального перемещения трубопровода. Бесканальная прокладка не подразумевает установку направляющих опор. Стоит отметить, что при установке сильфонных компенсаторов нельзя примять подвесные опоры.

Принцип действия

За исключением узлов ТУ 1468-001-00151756 большинство конструктивных исполнений опор трубопроводов могут быть и подвижными, и неподвижными. Основной проблемой длинномерной конструкции из стальных изделий остается линейное расширение конструкционного материала.

Поэтому под трубы устанавливаются, по большей части, подвижные опоры, компенсирующие вертикальные и боковые нагрузки:

  • вспучивание грунта;
  • осыпание почвы на отдельных участках;
  • просадка грунтов с низким расчетным сопротивлением;
  • снеговые и ветровые нагрузки;
  • сейсмическая активность региона;
  • напор воды при затоплении поймы или прохождении путепровода по дну водоема.

В узловых точках монтируются неподвижные опоры, обеспечивающие запас прочности всего трубопровода в целом. Чем большие вертикальные нагрузки испытывают скользящие опоры, тем выше сила трения при продольном смещении труб и износ, соответственно. В расчетах принимают следующие значения сил трения:

  • сталь/фторопласт – 0,1;
  • сталь/сталь – 0,3;
  • сталь/бетон – 0,5.

В отдельных случаях коэффициент трения стали по стали может достигать 0,7 единиц. Перекос башмаков относительно опорных поверхностей приводит к резкому увеличению контактных напряжений.

В большинстве скользящих опор происходит трение поверхности труб об отдельные элементы сборочной единицы. Исключением являются опоры под сварку (приварку) и с прокладками из полимерных материалов. В первом случае сварка позволяет сместить акценты, трутся друг о друга детали самой опоры, труба подобных нагрузок не испытывает. Во втором варианте изнашиваются прокладки, являющиеся расходными элементами.

Вам будет интересно  Краски для защиты труб от ржавчины

Принцип действия

Не секрет, что трубопроводная система может оказывать большую нагрузку на пролеты и опорные инженерные сооружения. Подобное воздействие объясняется большим весом фитингов, соединительной арматуры, труб и других элементов, представляющих собой составную часть систем теплоснабжения, а также магистральных и технологических транспортировочных линий.

В большинстве случаев трубы выполняют из металла, что необходимо для обеспечения максимальной надёжности конструкции. Однако применение подобного материала существенно увеличивает её размеры. А если в трубе оказываются технологические продукты, в качестве которых используется жидкий теплоноситель (если речь идёт о тепломагистралях), вес погонного метра трубы стремительно возрастает. Нагрузка становится максимальной при прокачке жидких веществ, включая воду для питья и ГВС, воду с антифризом теплотрасс, технологические растворы, суспензии.

Кроме статистических нагрузок, эксплуатация системы сопровождается тепловым изменением линейных размеров и диаметров комплектующего. Это объясняется сезонными колебаниями температурного режима и климатическими факторами. Также особое влияние на трубопровод оказывает сам транспортируемый продукт, который заполняет всё внутреннее пространства. Для понимания, горячий пар может удлинять один погонный метр паропровода на 1,2 миллиметра, в результате чего происходит продольное смещение некоторых участков системы.

Также на трубы влияют крутящие моменты, поперечные и осевые нагрузки при прокачке жидкого вещества. Транспортировку осложняют порывы ветра, гидроудары, вибрации и прочие неприятные происшествия.

Преимущества

Популярность скользящих опор обусловлена многими преимуществами и конструктивными особенностями. Среди них:

  • отсутствие сложностей в монтаже;
  • большой срок службы, независимо от условий эксплуатации;
  • надёжная и прочная конструкция, выдерживающая максимальные нагрузки;
  • наличие всевозможных типоразмеров, что расширяет возможности для поиска подходящего решения под конкретный случай.

Опора представляет собой одну из самых незаменимых составляющих любой системы теплоснабжения. Её отсутствие существенно снижает продолжительность эксплуатации трубопровода и повышает риск всевозможных повреждений под воздействием отдельных факторов.

При выборе подходящего решения для индивидуального случая не забывайте, что хорошая конструкция максимально точно сохраняет базовое положение трубы на опорном листе, предотвращая агрессивное воздействие ветра или сейсмических толчков. Также она гарантирует опирание трубы любого веса и диаметра с минимальным напряжением стенок. В результате это исключает вероятность появления вмятин или повреждений. У опор скользящего типа высокая несущая способность при относительно невысоких ресурсных затратах.

На рынке предлагается большой ассортимент стандартизированных исполнений, которые расширяют возможности выбора и позволяют найти любую модификацию, которая идеально подойдёт под ваши условия.

Выбирая тип исполнения опорной конструкции, специалисты обращают внимание и на расчетные показатели предполагаемых усилий, и на процесс взаимодействия между комплектующими. В большинстве случаев проектировщики отдают предпочтение башмакам опор с антифрикционным покрытием (фторопластом), которые опираются на опорную подушку (в её качестве может быть использована бетонная плита). Такое решение положительно сказывается на скольжении обычного сочетания «сталь-бетон», обеспечивая коэффициент трения 0,5. Есть смысл применить опоры каткового или шарикового типа с коэффициентом трения 0,1.

Качественная скользящая конструкция может защитить магистральные трубопроводы от непредвиденных повреждений и нагрузок, компенсируя температурные расширения, вертикальные и поперечные нагрузки, а также сглаживая крутящий момент и нивелируя другие физические воздействия. В результате клиенту обеспечивается колоссальная экономия финансов на ремонтные работы, а вероятность любых неприятных «сюрпризов» сокращается.

Учитывая подобные характеристики, скользящие опоры являются незаменимой частью любого современного трубопровода. Стоимость изделий бывает разной и варьируется от нескольких сотен рублей до десятков тысяч. Здесь всё зависит от массы, длины, размеров, конструктивных и эксплуатационных свойств, а также некоторых других аспектов.

Что касается сфер применения, они действительно очень обширные и при этом постоянно расширяются. Чаще всего скользящая опора применяется в:

Опоры газопровода

Газопроводы могут размещаться внутри зданий и снаружи.В обоих случаях их нужно фиксировать в определенном положении,которое указано при проектировании.Для этого служат опоры.

Существует две разновидности опор- подвижная ( скользящая ) и неподвижная . Подвижная опора просто фиксирует газопровод в плановом положении,позволяя ему двигаться свободно при температурных деформациях.Неподвижная опора жестко закрепляет газопровод в точке установки этой опоры.Для внутренних газопроводов применяют скользящие опоры,т.к. температура внутри здания относительно постоянная.Снаружи перепады температур могут быть значительными в зависимости от времени года и климатической зоны.Для того,чтобы наружный газопровод не «порвало»от температурных деформаций, при проектировании проводится расчет компенсации температурных линейных удлиннений трубопровода,при котором и определяются места установки скользящих и неподвижных опор в зависимости от конфигурации газопровода. Функции опор газопровода:

  • зафиксировать магистраль в эксплуатационном положении;
  • выдержать вес трубы, сильные порывы ветра, перепады температур.

Для прокладки промышленных газовых сетей высокого и среднего давления применяют сложные разновидности опорных конструкций.

Для просмотра изображений нажмите на них.

Хомутовые опоры газопровода на эстакаде Массивные опоры газопровода большого диаметра Хомутовые ооры надземного газопровода на двойной металлической стойке

Для магистралей низкого давления, подающих газ в частные дома, требования к опорным конструкциям меньше-часто используются опоры в виде металлической стойки с платформой,где газопровод крепится хомутом.

Важна жесткая фиксация конструкций в грунте – для этого применяется бетонирование стоек в выкопанных ямах определенной глубины – создание фундамента опор газопровода. Для расчета глубины заделки стоек в бетон , в зависимости от высоты и диаметра газовой трубы, применяют чертежи типовой опоры газопровода по Серии 5.905-18.05 Узлы и детали крепления газопроводов.Вып.1, в которых указаны узлы и варианты крепления надземных газопроводов.Для просмотра изображений нажмите на них.

Если опора на стойке,то на верхнюю часть стойки приваривают опорную платформу. К платформе газопровод может крепиться:

  • круглым хомутом из металлического прута
  • плоским хомутом из стальной полосы.

Между хомутом и опорной платформой оставляют зазор около 1,5 мм. Прокладка из листа, установленная между трубой и опорой помогает защитить конструкцию от коррозии.Необходимо также учитывать расположение сварочных стыков не более 5 см от опоры.

Расстояние между опорными стойками зависит от диаметра труб. Можно воспользоваться такой таблицей:

Диаметр трубы, ммРасстояние между опорами, м
252,5
323,2
403,9
574,9
766,4
896,9
1088,3
1339,6
15910,4

Но для точного определения расстояний между опорами и местоположения неподвижных опор проводится расчет компенсации газопровода. Этот расчет делают при проектировании на основе специальных формул и таблиц.

Конструкции опор.

Рассмотрим какие бывают конструкции опор.

Опоры корпусные хомутовые. Бывают подвижными и неподвижными, хомуты бывают круглыми (пруток) или плоскими (из полосы металла), хомуты, усиленные ребрами жесткости называются бугельные.

  • Опоры бескорпусные. Тоже бывают подвижные и неподвижные. По конструкции- это «подушка» из листовой стали, изогнутая по диаметру трубопровода. Трубу держат хомуты- круглые или из полосы. Простота и дешевизна такой опоры вывела ее в первый ряд при строительстве газопроводов.

Трубчатые опоры газопроводов. Опора трубчатая-это вертикальная труба, закрепленная на плите с отверстиями для монтажа.Для увеличения площади контакта опоры с трубопроводом, вверху делают седлообразный вырез,соответствующий диаметру лежащего на опоре газопровода.

  • Тавровые опоры газопроводов – опора представляет собой тавр, хомут крепится к верхней части тавра посредством сварки, труба устанавливается на хомут.

  • Подвески выполняются согласно ГОСТ16127-70.

Подвески используются для крепления газопроводов внутри помещений к строительным конструкциям и для наружных газопроводов с креплением к металлическим конструкциям эстакад или других несущих элементов.

Можно ли использовать опоры газопровода при строительстве забора

При монтаже газопровода в частном секторе, у многих возникает искушение построить забор, используя опоры газопровода в качестве столбов для забора.Есть 2 причины по которым от этой затеи следует отказаться:

1.Газопроводы относятся к категории опасных производственных объектов в соответствии с законодательством Российской Федерации.
В целях обеспечения сохранности системы газоснабжения и создания нормальных условий ее работы, предотвращения аварий и несчастных случаев, предусматривается организация «охранной зоны» действующего газопровода, разработанная на основании «Правил охраны газораспределительных сетей», утвержденных Постановлением Правительства РФ от 20.11.2000г. № 878.
Контроль за соблюдением этих правил возлагается на территориальные предприятия по эксплуатации газового хозяйства.
Вдоль трассы наружных газопровода устанавливается охранная зона, в виде участка земной поверхности, ограниченной условными линиями, проходящими на расстоянии 2,0м по обе стороны газопровода.

В охранной зоне запрещается:

  • перемещать, повреждать, засыпать и уничтожать опознавательные знаки, КИП и другие устройства газораспределительных сетей;
  • устраивать свалки и склады, разливать растворы кислот, солей, щелочей и других химически активных веществ
  • огораживать и перегораживать охранные зоны,
  • препятствовать доступу персонала эксплуатационных организаций к газораспределительным сетям, проведению обслуживания и устранению повреждений газораспределительных сетей;
  • разводить огонь и размещать источники огня;
  • рыть погреба, копать и обрабатывать почву сельскохозяйственными и мелиоративными орудиями и механизмами на глубину более 0,3 метра;;
  • набрасывать, приставлять и привязывать к опорам и надземным газопроводам,ограждениям и зданиям газораспределительных сетей посторонние предметы,лестницы, влезать на них
  • самовольно подключаться к газораспределительным сетям.

2.Хозяйственная деятельность в охранных зонах газораспределительных сетей осуществляется на основании письменного разрешения эксплуатационной организации этих сетей.При обращении туда с просьбой о строительстве забора на опорах газопровода, вы получите отрицательный ответ.В случае постройки забора без разрешения-на ваш страх и риск- вся ответственность за возможное повреждение газопровода и финансовые убытки лягут на вас.

Ограждение опор от наезда автотранспорта

В документе СП 42-102-2004, пункт 5.7 сказано: При проектировании надземного газопровода необходимо предусматривать технические решения, защищающие газопровод от наезда автотранспорта.

Когда существует реальная опасность повредить опору газопровода при наезде автотранспорта,то применяют различные типы ограждений- в зависимости от конфигурации газопровода.Для просмотра изображений нажмите на них.

Типы ограждений от наезда автотранспорта
Примеры чертежей ограждений

Монтаж опор газопровода

Подготовительные работы

Монтаж опор газопровода-это сложный технологический процесс,входящий в состав монтажа надземного газопровода.

В соответствии с СП-48.13330.2019.Организация строительства перед началом монтажа необходимо получить:

  • проектную документацию
  • разрешение на выполнение строительно-монтажных работ
  • укомплектовать бригады монтажников стальных конструкций, ознакомить их с проектом и технологией производства работ
  • установить временные инвентарные и бытовые помещения для хранения строительных материалов, инструмента, инвентаря, обогрева рабочих, приёма пищи, сушки и хранения рабочей одежды, санузлов и т.п.
  • подготовить к производству работ машины, механизмы и оборудования и доставить их на объект

Вот некоторые из машин и механизмов,необходимых при монтаже. Для просмотра изображений нажмите на них.

Окрасочный аппарат Электростанция Сварочный генератор
глубинный вибратор Бурильно-сваебойная машина газовая горелка инжекторная

Технология выполнения работ

До начала монтажа опор должны быть полностью закончены подготовительные работы:

— выполнена геодезическая разбивка местоположения опор;

— на промышленной площадке строительной организации изготовлены опоры;

— устроены временные подъездные дороги для автотранспорта и подготовлены площадки для складирования конструкций и работы крана;

— готовые опоры перевезены и складированы на приобъектном складе;

— в зону монтажа опор доставлены необходимые монтажные средства, приспособления и инструменты.

Геодезическую разбивку мест устройства опор производят от точки врезки в существующий стальной газопровод.

Разбивку котлованов под опоры начинают с нахождения и закрепления центра первой опоры,затем дают направление на центры соседних опор и закрепляют их колышками, обозначая центры будущих скважин под опоры. Створы осей опор геодезист переносит на верхнюю кромку обноски и закрепляет их рисками.

Далее проводят бетонирование и установку стоек согласно технологической карты,в которой подробно расписаны все этапы монтажа,материалы и оборудование.

При изготовлении стальных опор выполняют следующие технологические операции:

— газовая резка трубы ручным газовым резаком . В качестве горючего газа при кислородной резке труб применяется ацетилен.

— разметка линии резки осуществляют мелом с помощью шаблона, чтобы исключить образование «косого стыка»;

— зачистка зоны реза шириной 50-100 мм от окалины, ржавчины, пыли, масляных и жирных пятен концов трубы и сегментов при помощи электрошлифмашинки.
— к нижнему концу опоры приваривают при помощи электродов и сварочного генератора стальной лист определенного размера. Катет сварных швов принимают по наименьшей толщине свариваемых элементов, т.е. трубы;

— к верхнему концу опоры приваривают при помощи электродов и сварочного генератора стальной швеллер (для неподвижных опор) или стальной лист (остальные опоры). Катет сварных швов принимают по наименьшей толщине свариваемых элементов, т.е. трубы;

Опоры трудопроводов

Каждый из трубопроводов нуждается в опорах, которые будут удерживать сами трубы. Такие конструкции должны выдерживать не просто вес трубы, но и массу вещества, которое транспортируется по такой системе. К таким изделиям предъявляется большое количество требований. В случае несоблюдения хотя бы одного из них могут возникнуть аварийные ситуации, на устранение которых понадобится немало времени.

Стальные опоры имеют огромное значение при эксплуатации трубопровода, ведь именно от них зависит надежность всей конструкции. Поэтому к изготовлению таких изделий необходимо подходить очень внимательно, ведь любая погрешность может повлечь за собой негативные последствия. К ним выдвигается целая масса требований. При производстве современных опор для различных трубопроводов необходимо четко придерживаться норм, прописанных в ГОСТе.

Сложные опоры трубопровода в грунте

Опоры в горячем цинке

Типовая хомутовая опора трубопровода

Разновидности опор трубопроводов

На сегодняшний день такие опоры можно поделить на две основные группы:

  • подвижные;
  • неподвижные.

Судя с названия можно догадаться, что неподвижные опоры надежно фиксируют трубу в определенном положении. Такие изделия используются практически для любых типов систем. Неподвижная хомутовая опора не просто принимает всю нагрузку системы на себя, но вместе с этим она крепко фиксирует саму трубу.

Что же касается подвижных конструкций, то они не препятствуют продольному перемещению трубы, однако вместе с этим обеспечивают высокую надежность относительно вертикальных нагрузок. Скользящая опора для трубопровода может выдерживать огромные нагрузки, потому нередко используется при прокладке газо-, водопровода или других систем. При изготовлении таких конструкций используется металл высшего качества, который в дальнейшем иногда подвергается термообработке. Это необходимо для снятия избыточного напряжения, а также для обеспечения стойкости материала. Благодаря этому такая опора для фиксации трубопровода сможет прослужить не один десяток лет.

Какие материалы используются при изготовлении опор трубопроводов

При изготовлении таких конструкций используется только качественный металл, который может выдержать не только вес трубы, но вместе с этим и массу вещества транспортируемого по ней. В большинстве случае для этого применяют сортовой прокат стандартного качества. Но это касается только тех конструкций, к которым не выдвигаются особые требования. Помимо обычного сортового проката также при изготовлении опор трубопроводов могут использоваться и другие материалы. Всё зависит от условий, в которых в дальнейшем будет эксплуатироваться конструкция. К таким условиям можно отнести высокую температуру веществ, которые транспортируются по самой трубе (горячая вода, отопление, паропроводы). Для эксплуатации конструкции при очень низких температурах сталь обычного качества будет непригодной.

В указанных выше случаях при производстве опор трубопроводов используют следующие виды стали:

  • нержавеющая;
  • легированная;
  • жаропрочная.

Фото Хомутовая опора из листа 10 мм

Хомутовая опора из листа 10 мм цена от 5 500 руб. Заказать

Фото Регулируемая опора в горячем цинке

Регулируемая опора в горячем цинке цена от 11 200 руб. Заказать

Фото Большая опора для трубы диаметром 950 мм

Большая опора для трубы диаметром 950 мм цена от 89 500 руб. Заказать

Фото Скользящие опоры с цинкованием

Скользящие опоры с цинкованием цена от 73 000 руб./т Заказать

Фото Опоры из гнутого прутка

Опоры из гнутого прутка цена от 67 000 руб./т Заказать

Фото Хомуты с выставочными образцами труб

Хомуты с выставочными образцами труб цена от 3 500 руб. Заказать

Фото Опоры для теплотрассы

Опоры для теплотрассы цена от 10 600 руб. Заказать

Фото Хомуты для трубы диаметром 400 мм (без покраски)

Хомуты для трубы диаметром 400 мм (без покраски) цена от 5 900 руб. Заказать

Производство опор

Производство опор для больших трубопроводов — очень ответственный процесс, который требует максимальной концентрации. При этом необходимо сначала выбрать наиболее подходящую марку стали, после чего приступить непосредственно к изготовлению опоры. Выбор металла зависит от того, в каких условиях будет эксплуатироваться данное изделие.

Процесс изготовления опор состоит из множества операций. Только при качественном выполнении каждой из них в итоге вы сможете получить надежную металлическую конструкцию, которая способна выдержать большие нагрузки. Поэтому контроль каждого из процессов просто необходим. Для производства хомутовых и скользящих опор для трубопроводов понадобятся:

  • квалифицированные работники;
  • качественное сырье;
  • современное оборудование для сварки и резки металла.

Только в этом случае вы сможете получить на выходе изделие высокого качества.

Хомут

Изготовление опор для трубопроводов — сложный производственный цикл, который нуждается не только в грамотном выполнении всех операций, но и в контроле качества на каждом отдельном этапе. Материалы, которые используются при производстве, должны иметь высокую стойкость к коррозии. Поэтому многие хомутовые и скользящие опоры для современных трубопроводов производят из стали, которая имеет специальное покрытие. Оно способно не просто защитить от коррозии, но и существенно увеличивает срок эксплуатации самого изделия. Технологический процесс состоит из следующих операций:

  • раскрой металла;
  • резка металла с применением специального оборудования. Современные предприятия при этом используют лазерную резку, которая имеет массу преимуществ;
  • сварка металла.

Опора хомутовая, а именно сам хомут, изготавливается на автоматизированном прессе, который гарантирует высокую точность этого элемента изделия. Это, пожалуй, единственный вид опор трудопроводов, который наши производственные возможности не позволяют изготовить, во всех остальных случаях вы можете смело обращаться к нам — к вашим услугам опыт и внимательное отношение к заказу. Звоните!

Источник https://instanko.ru/elektroinstrument/skolzyashchaya-opora.html

Источник https://faritgaz.ru/gazoprovody/opory-gazoprovoda

Источник https://itpmet.ru/metalloizdeliya/opori-truboprovodov