ГОСТ ISO 10684-2015 Изделия крепежные. Покрытия, нанесенные методом горячего цинкования

Содержание

ГОСТ ISO 10684-2015 Изделия крепежные. Покрытия, нанесенные методом горячего цинкования

Текст ГОСТ ISO 10684-2015 Изделия крепежные. Покрытия, нанесенные методом горячего цинкования

ГОСТ ISO 10684-2015

ПОКРЫТИЯ, НАНЕСЕННЫЕ МЕТОДОМ ГОРЯЧЕГО ЦИНКОВАНИЯ

Fasteners. Hot dip galvanized coatings

МКС 21.060.01
25.220.40*
ОКП 16 0000
______________
* По данным официального сайта Росстандарт
ОКС 21.060.10, здесь и далее по тексту. —
.

Дата введения 2018-01-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Центральный ордена Трудового Красного Знамени Научно-исследовательский автомобильный и автомоторный институт «НАМИ» (ФГУП «НАМИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 сентября 2015 г. N 80-П)

За принятие стандарта голосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 мая 2016 г. N 402-ст межгосударственный стандарт ГОСТ ISO 10684-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2018 г.

5 Настоящий стандарт идентичен международному стандарту ISO 10684:2004* «Изделия крепежные. Покрытия, нанесенные методом горячего цинкования» («Fasteners — Hot dip galvanized coatings», IDT), включая техническую поправку к нему ISO 10684:2004/Cor.1:2008.
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт . — .

Международный стандарт разработан техническим комитетом ISO/TC 2 «Изделия крепежные», подкомитетом SC 1 «Механические свойства крепежных изделий».

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты» (по состоянию на 1 января текущего года), а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт устанавливает требования к материалу, процессу, размерам и некоторым характеристикам покрытия, выполненного методом горячего цинкования стальных крепежных изделий с резьбой с крупным шагом от М8 до М64 и классов прочности до 10.9 включительно для болтов, винтов, шпилек (далее болтов) и для гаек до класса прочности 12. Не рекомендуется наносить покрытие горячим цинкованием на крепежные детали с резьбой менее М8 и/или с шагом менее 1,25 мм.

Примечание — Испытательные нагрузки и соответствующие напряжения гаек М8 и М10 с завышенной резьбой, а также разрушающие и испытательные нагрузки болтов М8 и М10 с заниженной резьбой установлены ниже значений, приведенных в ISO 898-2 и ISO 898-1 соответственно, и указаны в приложении А.

Данный стандарт, в первую очередь, касается метода горячего цинкования с центрифугированием стальных крепежных изделий с резьбой, но также может применяться для других стальных деталей с резьбой.

Положения, установленные в данном стандарте, могут применяться также для стальных деталей без резьбы, например, к шайбам.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы*. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).
________________
* Таблицу соответствия национальных стандартов международным см. по ссылке. — .

ISO 898-1 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки с установленными классами прочности. Резьба с крупным и мелким шагом)

ISO 898-2 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистой и легированной стали. Часть 2. Гайки установленного класса прочности. Крупная и мелкая резьба)

ISO 965-1 ISO general purpose metric screw threads — Tolerances — Part 1: Principles and basic data (Резьбы ISO метрические общего назначения. Часть 1. Принципы и основные данные)

ISO 965-2 ISO general purpose metric screw threads — Tolerances — Part 2: Limits of sizes for general purpose external and internal screw threads — Medium quality (Резьбы метрические ISO общего назначения. Допуски. Часть 2. Предельные размеры резьб для болтов и гаек общего назначения. Средний класс точности)

ISO 965-3 ISO general purpose metric screw threads — Tolerances — Part 3: Deviations for constructional screw threads (Резьбы метрические ISO общего назначения. Допуски. Часть 3. Отклонения для конструкционных резьб)

ISO 965-4 ISO general purpose metric screw threads — Tolerances — Part 4: Limits of sizes for hot-dip galvanized external screw threads to mate with internal screw threads tapped with tolerance position H or G after galvanizing (Резьбы метрические ISO общего назначения. Допуски. Часть 4. Предельные размеры для оцинкованных методом горячего цинкования наружных винтовых резьб для сборки с внутренними винтовыми резьбами, нарезанными метчиком для положения поля допуска Н или G после гальванизации)

ISO 965-5 ISO general purpose metric screw threads — Tolerances — Part 5: Limits of sizes for internal screw threads to mate with hot-dip galvanized external screw threads with maximum size of tolerance position h before galvanizing (Резьбы метрические ISO общего назначения. Допуски. Часть 5: Предельные размеры внутренних резьб, сопрягаемых с горячеоцинкованными наружными резьбами, соответствующими до нанесения покрытия полям допусков с основными отклонениями до h включительно)

ISO 1460 Metallic coatings — Hot dip galvanized coatings on ferrous materials — Gravimetric determination of the mass per unit area (Покрытия металлические. Покрытия, полученные горячим цинкованием на черных металлах. Определение массы на единицу площади. Гравиметрический метод)

ISO 1461 Hot dip galvanized coatings on fabricated iron and steel articles — Specifications and test methods (Покрытия, нанесенные методом горячего цинкования на изделия из чугуна и стали. Технические требования и методы испытания)

ISO 2064 Metallic and other inorganic coatings — Definitions and conventions concerning the measurement of thickness (Покрытия металлические и другие неорганические покрытия. Определения и понятия, относящиеся к измерению толщины)

ISO 2178 Non-magnetic coatings on magnetic substrates — Measurement of coating thickness — Magnetic method (Покрытия немагнитные на магнитных подложках. Измерение толщины покрытия. Магнитный метод)

ISO 8991 Designation system for fasteners (Система обозначения крепежных изделий)

3 Термины и определения

В данном стандарте применяются, наряду со следующими терминами и определениями, термины и определения по ISO 2064 (в частности, определение площади поверхности, мест измерений, местной толщины слоя, минимальной местной толщины слоя и средней толщины слоя).

3.1 часть партии изделий (bath): Количество идентичных деталей в одной корзине, которые одновременно очищаются, протравливаются, обрабатываются флюсом и покрываются методом горячего цинкования.

3.2 партия изделий (production run): Совокупность частей одной и той же производственной партии, которые обрабатываются последовательно, а именно: очищаются, протравливаются, обрабатываются флюсом и покрываются методом горячего цинкования без изменений температуры и состава компонентов при выполнении процесса.

3.3 средняя толщина покрытия в партии (batch average thickness): Расчетная средняя толщина покрытия при допущении равномерного распределения покрытия по поверхности всех деталей в партии.

3.4 отжиг покрытия (baking): Термическая обработка деталей в течение установленного времени при заданной температуре для уменьшения риска водородного охрупчивания.

3.5 отжиг для снятия напряжений (stress relief): Термическая обработка деталей в течение установленного времени при заданной температуре для снятия внутренних напряжений после холодной деформации.

3.6 горячее цинкование крепежных деталей (hot dip galvanizing of fasteners): Процесс, при котором стальные крепежные изделия покрывают цинком при погружении в ванну с расплавленным цинком, в результате чего на поверхности деталей образуется покрытие из сплава цинк-железо или покрытие из сплава цинк-железо и цинка.

Примечание — Этот процесс включает также удаление избытка цинка путем обработки деталей в центрифуге или равноценным методом.

4 Требования к материалам

4.1 Основной материал деталей

4.1.1 Химический состав

Для горячего цинкования пригодны материалы по ISO 898-1 и ISO 898-2, кроме материалов, в которых общее содержание фосфора и кремния находится между 0,03% и 0,13%; в этом случае рекомендовано высокотемпературное цинкование (от 530°С до 560°С).

4.1.2 Состояние поверхности

Перед погружением в расплавленный цинк поверхность крепежных изделий должна быть чистой и не иметь загрязнений, которые затрудняли бы цинкование.

Цинк, применяемый для этого процесса, должен соответствовать ISO 1461.

5 Процесс горячего цинкования и меры предосторожности

5.1 Отжиг для снятия напряжений

Для крепежных изделий, подвергнутых сильному деформационному упрочнению, может потребоваться отжиг для снятия напряжений, проводимый перед очисткой в кислотной ванне и горячим цинкованием.

5.2 Очистка и травление

Изделия необходимо очистить. В ходе этого процесса может происходить насыщение стали водородом. Водород не может полностью удаляться посредством эффузии в ванне цинкования и вследствие этого может привести к хрупкому разрушению. Если нет иных договоренностей, детали после термической обработки до твердости 320 HV или деформационного упрочнения, необходимо очищать с помощью ингибированной кислоты, щелочи или механическим способом. Продолжительность погружения в ингибированную кислоту зависит от поверхности в состоянии поставки и должна быть минимально необходимой.

Примечание — Ингибированная кислота — это кислота, в которую добавлен соответствующий ингибитор для снижения коррозионного воздействия на сталь и снижения насыщения водородом.

5.3 Отжиг покрытия

В случае проведения отжига, его выполняют перед активированием поверхности.

5.4 Обработка флюсом

Детали должны быть обработаны флюсом и, при необходимости, просушены.

5.5 Горячее цинкование

Цинкование при стандартной температуре проводится при температуре ванны от 455°С до 480°С. Цинкование при высокой температуре применяется для создания более гладкого и тонкого покрытия и проводится при температуре от 530°С до 560°С. При высокотемпературном цинковании поверхность покрытия матовая.

Для болтов класса прочности 10.9 с размерами резьбы М27 и выше для избежания микротрещин высокотемпературное цинкование не проводится.

Цинкование нельзя проводить при температуре ванны от 480°С до 530°С.

5.6 Обработка в центрифуге и охлаждение

Изделия необходимо обработать в центрифуге сразу после извлечения из ванны цинкования и, в зависимости от их размеров, охладить в воде или на воздухе.

5.7 Особые требования к гайкам

Резьбы гаек и другие внутренние резьбы должны нарезаться на изделиях с нанесенным цинковым покрытием. Повторное нарезание резьбы метчиком не допускается.

5.8 Последующая обработка

Дополнительная обработка горячеоцинкованных изделий в большинстве случаев не требуется. По требованию заказчика может применяться последующая обработка, как например, хроматирование или фосфатирование для уменьшения возможности образования «белой» ржавчины или для облегчения последующего нанесения краски.

6 Требования к допускам на резьбу и дополнительной маркировке

6.1 Общие положения

Предельные размеры метрических резьб ISO болтов от М10 до М64 до и после нанесения покрытия приведены в ISO 965-1-ISO 965-5. Все другие размеры и допуски крепежных деталей являются действительными до горячего цинкования. Предельные размеры для внутренней и наружной резьбы М8 с допусками 6АХ и 6AZ для внутренней резьбы и 6AZ для наружной резьбы установлены в приложении В.

Примечание — Допуск на резьбу горячеоцинкованной детали нельзя проверять удалением покрытия и последующей проверкой резьбы калибрами, так как во время горячего цинкования сталь с поверхности детали растворяется.

6.2 Требования и меры предосторожности при сопряжении горячеоцинкованных резьбовых крепежных изделий

6.2.1 Общие положения

Раздел является действительным для деталей с допусками на резьбы по ISO 965-1 — ISO 965-5 и с маркировкой по ISO 898-1 и ISO 898-2. Маркировка, установленная в 6.2.2 и 6.2.3, должна осуществляться в дополнение к маркировке по ISO 898-1 и ISO 898-2.

При нанесении покрытия методом горячего цинкования образуется цинковое покрытие большой толщины (всегда свыше 40 мкм). Чтобы учесть такую толщину слоя покрытия, резьбы должны изготавливаться со специальными предельными размерами.

Существует два различных способа достижения требуемых основных отклонений (зазор в резьбе) на крепежных изделиях для слоя цинка, нанесенного методом горячего цинкования.

При первом способе (см. 6.2.2) применяются гайки с завышенной резьбой, имеющие поле допуска 6AZ или 6АХ после нанесения покрытия, для сопряжения с болтами и винтами с резьбой, имеющей основное отклонение g или h до нанесения покрытия.

При втором способе (см. 6.2.3) применяются болты с заниженной резьбой, имеющие поле допуска 6az до нанесения покрытия для сопряжения с гайками с резьбой, имеющей основное отклонение Н или G после нанесения покрытия.

Гайки с завышенной резьбой (маркированные буквами Z или X) не должны сопрягаться с болтами, имеющими заниженную резьбу (маркированными буквой U), потому что такие сопряжения ведут с большой вероятностью к срыву резьбы.

Сопряжение горячеоцинкованных гаек с резьбой, имеющей основное отклонение Н или G после нанесения покрытия с горячеоцинкованными болтами с резьбой, имеющей основное отклонение g или h до нанесения покрытия приводит к заеданиию и несвинчиваемости резьбы.

6.2.2 Гайки с завышенной резьбой поля допуска 6AZ или 6АХ после нанесения покрытия.

Резьба гаек и внутренняя резьба должна нарезаться после горячего цинкования с завышением, соответствующим полю допуска 6AZ или 6АХ по ISO 965-5 в том случае, если сопрягаемые болты или наружные резьбы были изготовлены с основным отклонением g или h по ISO 965-1 -ISO 965-3 до горячего цинкования.

Гайки с завышенной резьбой должны маркироваться непосредственно после маркировки класса прочности буквой Z для поля допуска 6AZ или буквой X для поля допуска 6АХ (рисунок 1).

Рисунок 1 — Пример маркировки горячеоцинкованных гаек с завышенной резьбой поля допуска 6AZ после нанесения покрытия

Рисунок 1 — Пример маркировки горячеоцинкованных гаек с завышенной резьбой поля допуска 6AZ после нанесения покрытия

Для исключения перекрытия резьб с цинковым покрытием толщина покрытия сопрягаемых болтов или наружных резьб не должна превышать одной четвертой части минимального зазора резьбового соединения. Эти значения приведены в таблице 1 как справочные.

Таблица 1 — Основные отклонения и верхние ограничения толщины покрытия для сопряжений с гайками, имеющими завышенную резьбу

Номина-
льный диаметр резьбы, мм

Основное отклонение, мкм

Минимальный зазор и максимальная толщина покрытия для резьбовых сопряжений (для справок), мкм

Покрытие болтов цинком для увеличения их ресурса: способы и альтернативы

Болты с покрытием MODENGY 1014 Оцинкованные болты Покрытие болтов цинком: способы, виды и альтернативы Цинковое покрытие болтов. Основные методы нанесения цинка

В последнее время перед производителями высокопрочного крепежа стоит серьезная задача, которая заключается в увеличении срока эксплуатации изделий и придания им особых свойств. Для реализации этой задачи используются самые различные решения, в том числе и использование специальных сортов стали. Но существует и более простое, но не менее эффективное решение, которое не требует больших затрат, но в тоже время гарантирует максимально качественный эффект. Это решение – нанесение на поверхность изделия защитного покрытия, чаще всего цинкового. Высокопрочный крепеж, покрытый слоем цинка, не теряет своих свойств, но при этом срок его службы значительно увеличивается. Даже в условиях производства с агрессивными средами или в морской воде срок службы оцинкованных метизов может достигать 30 лет.

Технологии цинкования и требования к качеству

Современные технологии цинкования достаточно многочисленны. Самым распространенным и наименее трудоемким является гальваническое цинкование. Несмотря на то, что технологии этой много десятилетий, она успешно используется по сей день и позволяет получать стойкое качественное покрытие. С развитием промышленного производства появились и более сложные способы, такие как механическое, термодиффузионное, горячее и цинкламельное цинкование изделий.

Механизм защиты крепежа цинком очень прост – в активной среде, например в морской или насыщенной минеральными солями воде, цинк работает как анод практически со всеми распространенными металлами, исключая магний и алюминий. Поэтому цинк взаимодействует с агрессивной средой, а сталь, являясь в этом случае катодом, надежно защищена, пока на ней есть слой цинка. Вопреки распространенному мнению о том, что основной характеристикой цинкового покрытия является его толщина, эксперты оценивают качество цинкования крепежа, взяв за основу срок эксплуатации детали с покрытием в годах. В лабораторных условиях крепеж проходит проверку при помощи специального оборудования, которое имитирует климатическое или любое другое воздействие в ускоренном темпе. Таким образом, экспертиза дает возможность очень оперативно оценить долговечность оцинкованного крепежа, не прибегая к многолетним испытаниям.

Для крепежа различного назначения допустимая долговечность покрытия может серьезно отличаться. Если у деталей, имеющих декоративное покрытие, началом коррозии считается момент, когда на поверхности осталось 10-15% цинкового покрытия, то для высокопрочного крепежа, применяемого в строительстве и машиностроении, эта критическая величина равна 50%.

Другие способы защиты болтов

Альтернативным методом защиты крепежных изделий являются антифрикционные твердосмазочные покрытия MODENGY. На болты наносятся материалы на основе тефлона MODENGY 1011 и MODENGY 1014.

Болты с покрытием MODENGY 1014

Рис. 2. Болты с покрытием MODENGY 1014
Преимущества покрытия MODENGY 1014:

  • Более внушительные результаты испытания в соляном тумане по стандарту DIN EN ISO 9227 – от 672 часов защиты от воздействия коррозии
  • Работает в широком температурном режиме от -75 до +255 °С
  • Стабилизирует коэффициент закручивания
  • Придает изделиям декоративный внешний вид
  • Снижает трение в резьбе
  • Позволяет избежать заедания, прикипания и возникновения задиров
  • Высокая химическая устойчивость
  • Возможность многократно собирать и разбирать резьбовые соединения (цинковое покрытие позволяет произвести однократное закручивание)

Гальваническое цинкование

Гальваническое цинкование – это ни что иное как процесс электролиза. Для нанесения защитного слоя таким способом в ванну погружают изделия и цинковые пластины, на которые подается постоянный ток. Под воздействием тока цинк, являющийся анодом, растворяется и его молекулы оседают на изделиях из стали, выполняющих роль катода. При гальваническом цинковании толщина защитного слоя может составлять от 5 до 25 мкм. Гальванический способ позволяет получить равномерное качественное покрытие даже на изделиях сложной конфигурации. К недостаткам этого способа можно отнести так называемую «водородную хрупкость», которую приобретает крепеж, что несколько ограничивает использование гальванических ванн при оцинковании высокопрочного крепежа. Кроме этого, такой способ наносит существенный вред окружающей среде, так как получаемые отходы очень токсичны.

Горячее цинкование

При горячем цинковании специально подготовленные изделия погружают в ванну с расплавленным цинком в специальном вращающемся барабане. Перемещение деталей внутри барабана обеспечивает равномерное распределение цинка по поверхности. После того, как слой цинка покроет крепеж, барабан извлекают из ванны с расплавленным цинком и начинают вращать с большой скоростью. Возникающая в этот момент центробежная сила позволяет избавиться от излишков цинка. Главным достоинством этого метода является высокое качество антикоррозийного покрытия – при погружении детали в расплав, цинк заполняет все поры изделия, обеспечивая максимальную защиту. Оцинкованный горячим способом крепеж применяют в самых ответственных конструкциях, таких как опоры мостов, мачты антенн мобильной связи, опоры ЛЭП. К сожалению, одним из главных недостатков способа, который не дает применять его повсеместно, является дороговизна технологии. Себестоимость изделий, прошедших горячее цинкование, на 40% выше, чем у деталей, оцинкованных гальваническим методом.

Методы нанесения цинковых покрытий на крепежные изделия

1. Горячее цинкование

Это наиболее крупномасштабный способ нанесения цинковых покрытий на сталь. Покрытие наносится кратков­ременным погружением предварительно обезжиренных, протравленных либо механически очищенных крепежных изделий из черных металлов в ванну с рас­плавленным цинком (

500-520°С). Перед погружением в рас­плав цинка изделия подвергаются флюсованию и подготовительному разогреву. После извлечения из расплава изделия подвергают центрифугированию для удаления излишков цинка и охлаждению.

В России данный вид покрытия применительно к крепежу практически не распространен. Это обуславливается целым рядом факторов. Во-первых — с практической точки зрения он не выгоден производителям отечественного крепежа по причине достаточно сложной технологии и экологической небезопасности. Во-вторых — установка линии горячего цинкования метизов имеет слишком большой срок окупаемости и попросту не выгодна на отдельно взятом метизном заводе. А те немногие линии, появляющиеся сейчас на отечественных специализированных цинковальных предприятиях, абсолютно не предназначены для цинкования крепежа, так как их основное назначение — нанесение горячецинковых покрытий на мелкие элементы металлоконструкций. Поэтому крепеж, оцинкованный подобным способом, абсолютно не пригоден для использования: полнейшее несоответствие ГОСТам, неравномерность покрытия, наплывы, неконтролируемая толщина и т.д.

Однако во всем мире, в Европе, в первую очередь, при монтаже металлических конструкций горячеоцинкованный крепеж получил широчайшее распространение. По антикоррозионным свойствам он уступает лишь нержавеющему. Уникальность данного покрытия заключается в его способности создавать двойной антикоррозионный барьер — непосредственно в качестве оболочки и благодаря катодному восстановлению стали даже в случае повреждения цинкового слоя.

При монтаже металлоконструкций самым слабым участком являются, несомненно, их стыковые соединения, выполненные с использованием крепежных изделий. Основные нагрузки при изменениях температуры, внешних воздействий приходятся именно на места соединений. Поэтому жесточайшие требования, предъявляемые к данному виду крепежа, полностью оправданы. На сегодняшний день для этих целей используется отечественный крепеж без покрытия весьма удручающего качества. Кроме того, при монтаже металлоконструкций организация, его осуществляющая, несет колоссальные затраты, связанные с предварительной очисткой крепежа, обезжириванием, дробеструйной обработкой стыковых соединений, грунтовкой, покраской. Кроме экономической стороны при выполнении данных работ есть и огромная экологическая составляющаяя. Все вышеперечисленные работы наносят огромный вред экологии.

В последнее время проектировщики сооружений с использованием металлических конструкций стали рекомендовать к использованию высокопрочный крепеж, оцинкованный термодиффузионным методом. Он, несомненно, лучше метизов без покрытия, однако из-за несовершенства технологии и специфики самого покрытия его качество весьма далеко от требований заказчиков. Кроме того, крепеж с термодиффузионным покрытием не может использоваться без дополнительного лакокрасочного поверхностного слоя, так как на его поверхности не создается однородной цинковой оксидной пленки, выполняющей основную защиту от коррозии, как в случае с горячеоцинкованным крепежом. Но самое главное – данный вид покрытия подвержен межкрисаллитной коррозии, что при определенных условиях ведет к разрушению самого изделия.

Все вышеперечисленные проблемы полностью исключены при использовании горячеоцинкованного крепежа. Во-первых — крепежные изделия, оцинкованные горячим способом не нуждаются ни в какой дополнительной обработке. Срок эксплуатации данного крепежа без дополнительной защиты (покраски и т.д.) составляет 50-120 лет в зависимости от условий окружающей среды.

Его более высокая стоимость по сравнению с крепежом без покрытия полностью себя оправдывает и приносит дополнительную экономию еще на этапе сборки металлоконструкций.

Получаемое покрытие неоднородно по составу. На гра­нице цинк-сталь покрытие представляет собой слой интерме­таллидных соединений цинка с железом (диффузионный слой — FeZn7 и FeZn3). Вер­хний слой покрытия состоит из чистого цинка.

Толщина и качество получаемого покрытия зависят от температу­ры расплава, продолжительности погружения, скорости из­влечения из ванны и последующих операций удаления из­лишков расплава цинка.

На металлоконструкции цинк наносят толщиной 20-150 мкм, что достаточно для многолетней защиты от атмосферной коррозии. Этим способом можно покрывать изделия больших размеров, например, строительные металлоконструкции.

Слой покрытия, наносимый на метизные (крепежные) изделия, составляет, как правило, 20-70 мкм. При нанесении покрытия большей толщины изменяются физико-технические характеристики изделий, прежде всего, в местах сопряжения (болт-гайка), такие как: коэффициент закручивания, разрыв пары болт-гайка и т.д.

Непрерывное горячее цинкование реализовано в многотоннажных объемах при производстве листового проката, труб и проволоки на высокоскоростных автоматических ли­ниях. Развитие техники и технологии горячего цинкования позволило наладить производство тонколистовой холодно­катаной оцинкованной стали для автомобилестроения. При этом излишки цинка сдуваются с поверхности листа «пнев­матическими ножами» и получается покрытие малой толщи­ны (8-10 мкм), что облегчает последующую штамповку, свар­ку и окраску деталей кузова автомобиля.

В современных автомобилях 60-90% панелей кузова изго­тавливаются преимущественно из горячеоцинкованной стали.

2. Металлизация напылением

Металлизация производится распылением расплавлен­ного металла на покрываемую поверхность из специальных газопламенных или электродуговых пистолетов. Цинк в виде проволоки поступает в распылительный пистолет, расплав­ляется и пульверизируется на изделия. Расплавленные кап­ли цинка застывают на поверхности в виде множества мел­ких чешуек, формирующих покрытие.

Структура покрытия имеет вид отдельных пластинча­тых наслоений. Одним из важных условий прочного сцепле­ния покрытия с основой является достаточная шероховатость покрываемой поверхности, которая достигается пескоструй­ной обработкой или травлением.

По сравнению с горячим цинкованием для металлиза­ции напылением не требуется использования энергоемкого и крупногабаритного оборудования, например, ванн. Напы­ление цинка можно применять не только в цеховых, но и в полевых условиях практически всесезонно.

Метод применяется для защиты крупных металлоконструк­ций и для местной металлизации, при этом возможно избиратель­но регулировать количество нанесенного цинка и наносить покры­тия большой толщины

250 мкм и более. К недостаткам метода следует отнести большие (до 35%) потери цинка при распылении.

Для уплотнения «металлизационных» цинковых покрытий и повышения их защитных свойств применяют после­дующую пропитку слоя различными защитными составами или используют органические грунтовки и лакокрасочные покрытия.

3. Термодиффузионное цинкование

Сущность метода (ранее процесс назывался «шерардизация») заключается в насыщении поверхности железа цин­ком и осуществляется при повышенных температурах в цинксодержащей смеси порошков. Покрытия могут наносится на низко- и высокоуглеродистые стали, а также чугуны.

При нагревании цинк диффундирует вглубь железа с образованием в поверхностном слое интерметаллидов Zn- Fe различного состава, составляющих основу термодиффу­зионного покрытия.

Процесс осуществляется в медленно вращающихся закрытых стальных барабанах с загрузкой нескольких сот килограммов деталей при температурах порядка 300

450°С. В результате химико-термических процессов, протекающих в течение 2-4 часов, происходит формирование довольно равномерного покрытия.

Химический состав стали не оказывает заметного вли­яния на толщину и структуру полученных покрытий, а ли­митирующей стадией цинкования является подвод порош­ковой смеси к поверхности изделия. Толщина получаемого покрытия регулируется составом и объемом подаваемой в барабан цинковой смеси, температурой и продолжительнос­тью процесса. Термодиффузионным способом наносят по­крытия толщиной 10-150 мкм.

Для улучшения внеш­него вида, повышения коррозионной стойкости и предотвращения вышеперечисленных проблем (межкристаллитная коррозия) для данного вида покрытия применяют обязательную финишную поверхностную обработку — нанесение лакокрасочного слоя.

Термодиффузионное цинкование в сочетании с дополнительной поверхностной обработкой применяют, главным образом, как альтернативу горячему цинкованию при дол­говременной защите от коррозии металлоизделий в строи­тельной индустрии. Однако экономия от его использования весьма сомнительна, а порой и опасна. Так как между производством крепежных изделий, оцинкованных подобным способом, и непосредственным их применением проходит некоторое время (влажность, влияние окружающей среды и т.д.), то на поверхности изделий образуется бурый налет (окисление железа) — первый признак начавшейся межкристаллитной коррозии. Поэтому данные изделия перед применением необходимо подвергать предварительной обработке, схожей с подготовкой крепежа без покрытия и покрывать лакокрасочным слоем для дальнейшей защиты.

4. Цинкнаполненные покрытия

К цинкнаполненным покрытиям отнесятся покрытия на основе неорганического или органического связующего с большим содержанием в нем высокодисперсного цинкового порошка. Бла­годаря высокому содержанию порошка цинка в сухой пленке (как правило, не менее 80%), цинкнаполненные покрытия в некоторой степени проявляют по отношению к стали анодные свойства. Вме­сте с тем, цинкнаполненным покрытиям присущ и типичный для лакокрасочных покрытий барьерный механизм защиты.

В качестве неорганического связующего широко при­меняют этилсиликатные композиции. Органические связу­ющие представляют собой смолы, входящие в состав тради­ционных лакокрасочных материалов — уретановые, эпоксид­ные, акриловые или кремнийорганические. Таким образом, в цинкнаполненных покрытиях суммируются достоинства цинковых металлических и лакокрасочных покрытий. Тол­щины покрытий обычно составляют десятки микрон. Высо­кие защитные свойства позволяют применять цинкнаполнен­ные покрытия в случаях, когда нанесение цинковых покры­тий традиционными методами практически трудноосуще­ствимо или экономически невыгодно. Примерами стальных конструкций, защищаемых от коррозии такими покрытия­ми, могут служить резервуары для хранения воды, металло­конструкции и оборудование нефтегазового комплекса, ра­ботающие в агрессивных условиях. Цинкнаполненные покры­тия являются достойной альтернативой горячему или тер­модиффузионному цинкованию.

(США) разработан способ защиты от коррозии стальных деталей, в основном крепежа, цинкнаполненным покрытием под названием «Dacromet 320» (Дакромет 320). Покрытие наносится мето­дом погружения деталей в суспензию цинковых частиц в вод­ном растворе органических и неорганических компонентов. После удаления излишков суспензии центрифугированием для окончательного формирования покрытия детали подвер­гаются ступенчатому нагреву, начиная с 80°С и до заверша­ющей температуры 300°С.

Особенность покрытия «Дакромет 320» заключается в наличии цинковых частичек микронных размеров в виде хло­пьев, предварительно обработанных в хроматном растворе и плотно связанных между собой неорганическим связующим. Толщина сухого покрытия составляет 8-10 мкм. Покрытие имеет серебристо-серый вид и, благодаря наличию в систе­ме хроматов, обладает высокой коррозионной стойкостью.

Дальнейшим развитием цинкнаполненных покрытий явились так называемые «цинкламельные покрытия» с до­полнительными слоями, не содержащими шестивалентного хрома. Система ламельного цинкового покрытия включает в себя базовый слой, состоящий из тонких алюминиевых и цин­ковых чешуек (ламелей) и, при необходимости, один или не­сколько дополнительных слоев, придающих покрытию спе­циальные свойства: фрикционные, коррозионную и химичес­кую стойкость, цвет и другие.

Цинкламельное покрытие наносят на предварительно подготовленную поверхность деталей путем их окунания в высокодисперсную суспензию цинкового и алюминиевого порошков, имеющих форму чешуек, в связующем материале или напыления суспензии на детали с последующим их нагревом до 240°С для сушки и отверждения. Сформировав­шееся базовое покрытие содержит более 70 % цинкового и до 10 % алюминиевого порошка, а также связующий органичес­кий материал. Оно состоит из множества слоев алюминие­вых и цинковых частиц толщиной менее микрометра и ши­риной около 10 мкм, расположенных параллельно друг дру­гу и покрываемой поверхности, соединенных связующим компонентом. Малый размер частиц делает возможным на­носить цинкламельные покрытия толщиной 4-8 мкм, кото­рые применяют в автомобилестроении. Более толстые по­крытия применяют для нанесения на детали и элементы строительных конструкций.

Покрытие обладает электропроводящими свойствами, его более электроотрицательный потенциал по отношению к стали создает электрохимическую защиту в дополнение к барьерной.

Основной недостаток данных видов покрытия — их высокая хрупкость и недостаточно хорошее сцепление с поверхностью изделий по сравнению с горячим и термодиффузионным цинкованием (в обоих случаях создается промежуточный интерметаллидный слой Fe-Zn).

5. Механическое цинкование

Механическое цинкование относится к «бестоковым» спо­собам нанесения металлических покрытий и применяется в тех случаях, когда требуется хорошая антикоррозионная защита деталей и необходимо предотвратить их наводороживание, ко­торое обычно сопровождает электрохимическое цинкование.

Механически нанесенные цинковые покрытия в насто­ящее время нашли применение в промышленности и вклю­чены в спецификации автомобильных фирм, согласно кото­рым для стальных деталей с прочностью более 1000 Н/мм2 рекомендуется применять «бестоковые» способы цинкова­ния, при нанесении которых не происходит наводорожива­ние покрываемых деталей.

Принцип цинкования заключается в механическом вза­имодействии в водной среде покрываемой поверхности, высокодисперсных (2-5 мкм) частичек цинка, находящихся во взвешенном состоянии, и стеклянных шариков. Процесс осу­ществляется в барабанах или колоколах, куда последователь­но загружаются покрываемые детали, стеклянные шарики и кислый водный раствор химических веществ. Сюда же до­зируется цинковый порошок. При вращении барабана мик­ронные частицы цинка прижимаются стеклянными шарика­ми к металлической основе изделия. В местах их соприкос­новения с основой возникает высокое контактное давление и образование адгезионных связей.

Определяющую роль в нанесении механических покры­тий играют органические вещества, содержащиеся в водных растворах, в которых на поверхности покрываемых метал­лов возможно образование тонких адсорбционных плёнок. К таким веществам относятся амины, амиды, продукты кон­денсации с окисью этилена, четвертичные алифатические соли аммония, простые и сложные ароматические эфиры, спирты, альдегиды и ряд других.

Для улучшения адгезии цинкового покрытия с основой на изделие предварительно наносят химическим способом тонкий промежуточный слой (менее 1 мкм) более «благород­ных» металлов — меди и олова.

В кислом растворе цинковый порошок частично раство­ряется и на поверхности частиц выделяется водород, кото­рый в виде газа удаляется из раствора. Специально вводимые в раствор ингибиторы тормозят бурное взаимодействие цин­ка с кислым раствором и снижают выделение водорода, а под­слой меди препятствует диффузии атомарного водорода в стальную основу. Таким образом, при механическом цинкова­нии не происходит наводороживания основы, не возникает водородная хрупкость высокопрочных и закаленных сталей и отпадает необходимость в операции «обезводороживание».

Цинкование осуществляется в автоматических лини­ях или в однопозиционных колокольных установках, обслу­живаемых ручным способом. Полученные покрытия можно хроматировать (пассивировать) и по коррозионной стойкос­ти в солевом тумане они не уступают традиционным гальва­ническим покрытиям.

Механически нанесенные цинковые покрытия толщиной 7-12 мкм применяют в различных отраслях машиностроения для защиты от коррозии деталей из высокопрочных и закален­ных, а также малоуглеродистых сталей. Для применения в стро­ительстве толщина покрытия может быть 25 мкм и более.

6. Электролитическое цинкование

Электролитическое цинкование в настоящее время яв­ляется широко распространенным способом и применяется практически во всех областях промышленности для защиты от коррозии разнообразных металлических изделий, таких, как болты, гайки, шайбы, всевозможные крепежные и конструкционные элементы. Электролитическим способом цинк наносят также на холоднокатаные тонколистовые стали.

Это наиболее рациональный и экономичный способ цин­кования, позволяющий в широком диапазоне регулировать толщину и свойства осажденного слоя цинка.

Электролитические цинковые покрытия, как правило, без финишной обработки не применяются. Под финишной обработкой подразумевается создание на поверхности цин­ка конверсионных пленок — хроматных, фосфатных и их раз­новидностей, а также дополнительная пропитка конверсион­ных пленок уплотняющими составами и/или нанесение на конверсионные плёнки органических полимерных пленок.

Существенно более высокой коррозионной стойкостью по сравнению с покрытиями на основе чистого цинка облада­ют электролитические сплавы цинка Zn-Ni, Zn-Co, Zn-Fe и другие с последующей финишной обработкой.

Варианты конструкций финишной обработки покрытий из цинка и его сплавов становятся все более разнообразными и область применения электролитического цинкования по­стоянно расширяется.

Толщина цинковых покрытий регламентируется в за­висимости от назначения, условий и срока эксплуатации в соответствии с ГОСТ 9.303-84 и колеблется в широких преде­лах — от 3 до 40 мкм. Например, для легких условий эксплуа­тации толщина покрытия составляет 6-9 мкм, для средних и жестких — 15-21 мкм, для особо жестких условий — 24-40 мкм. Толщина покрытия может быть уменьшена при использова­нии дополнительной защиты, наносимой поверх конверсион­ных пленок. К сожалению, данный ГОСТ не предусматривает регламентацию коррозионной стойкости в качестве критерия соответствия покрытия выбранным условиям эксплуатации, как это имеет место во многих инженерных стандартах.

В автомобилестроении, например, минимальная толщи­на цинкового покрытия обычно устанавливается в пределах 6-15 мкм, в некоторых специальных случаях она может быть увеличена до 20-25 мкм. Главным критерием при этом явля­ется коррозионная стойкость покрытия, измеряемая в камере солевого тумана по ГОСТ 9.308-85 (или американским ASTM В-117, германским DIN 50021 и другими национальными стан­дартами). Важно отметить, что при одной и той же толщине покрытия, его фактическая коррозионная стойкость в зави­симости от состава покрытия, вида конверсионной пленки и дополнительной защиты может различаться в несколько раз.

Ни один из вышеперечисленных способов цинкования — погружение в расплав, диффузионный, механический, электро­литический или нанесение цинкнаполненных составов — не яв­ляется универсальным. Все они в какой-то мере взаимно допол­няют друг друга и позволяют решать разнообразные техничес­кие задачи, связанные с защитой изделий от коррозии и прида­ния их поверхности необходимых функциональных свойств.

* В статье использованы материалы из книги Окулова В.В.

Термодиффузное цинкование

Этот способ нанесения покрытий на крепеж является самым молодым и наукоемким. Нанесение на поверхность цинка происходит в герметичных ретортах при температурах от 350 до 4 500 градусов Цельсия. Технология практически безопасна для окружающей среды, а качество получаемого покрытия на порядок выше чем у полученного методом гальванических ванн. Срок службы крепежа с термодиффузным покрытием толщиной 50 мкм достигает 15 лет в условиях производства или морского климата. Отходы, получаемые в результате технологического процесса, абсолютно безопасны и используются как ценный наполнитель для строительных бетонов. Есть у этого способа и недостатки. Процесс термодиффузии достаточно сложен, а объем камер ограничен требованиями технологического процесса. В связи с этим способ мало подходит для массового производства крепежа. Также нужно отметить, что крепеж, оцинкованный таким способом, не имеет декоративных свойств.

Характеристика цинкового покрытия

Цинкование представляет собой нанесение слоя цинка на металлический крепеж. Главная функция такого покрытия – защита от коррозии. Принцип действия основан на окислении цинка при взаимодействии с воздухом. Вследствие этого на поверхности болтов образуется пленка, не пропускающая кислород к металлу.

Цинк защищает болты от коррозии в средних условиях эксплуатации – при температуре до +70 °С и без воздействия агрессивных сред. При повышении температуры антикоррозионные свойства теряются и крепеж защищается только механически.

Метод нанесения цинкового покрытия и его толщина зависят от цели использования и условий функционирования крепежа.

Для работы в легких условиях, то есть в теплом сухом помещении, достаточно нанести слой в 5-8 мкм.

При работе в условиях образования конденсата покрытие должно быть толщиной от 8 до 12 мкм.

При эксплуатации в умеренном климате толщина достигает 25 мкм.

В очень жестких условиях, таких как морской климат и агрессивные среды, наносится слой более 25 мкм.

При проведении теста в соляном тумане по стандарту DIN EN ISO 9227 цинковое покрытие показало результат в 120 часов защиты от коррозии.

Оцинкованный болт

Рис.1. Оцинкованный болт

Механическое цинкование

Защитное покрытие при таком способе образуется методом «втирания» специальной цинковой суспензии в деталь. Для этого используются галтовочные барабаны и стеклянные шарики, которые и служат для «втирания» цинка. Способ обеспечивает толщину покрытия от 10 до 20 мкм с относительно невысоким качеством. Технология отлично подходит для нанесения цинка на высокопрочный крепеж, так как не вызывает «водородной хрупкости». Также детали, оцинкованные механическим способом, прекрасно выглядят. К сожалению, область применения крепежа после механического цинкования ограничена, так как покрытие имеет невысокое сцепление с основным материалом.

Цинкламельный способ

Нанесение цинка при таком способе производится с использованием специальных 80%-х растворов цинка, в которые могут быть добавлены алюминий и другие элементы. Нанесение может осуществляться методом спрея, окунанием в раствор, или в галтовочном колоколе. Цинкламельная технология позволяет получить многослойное качественное покрытие, не содержащее токсичных элементов. Цинкламельным способом получают наиболее толстые покрытия, которые могут достигать 100 мкм. Увы, такой способ редко используют для оцинковки ответственного крепежа, так как долговечность такого покрытия в условиях производства невелика. Зато цинкламельный способ позволяет получить самое качественное декоративное покрытие, которое может иметь различные цвета, в зависимости от добавленных в раствор присадок.

Как мы видим, каждая из технологий хороша для определенных целей и все они могут быть применены для покрытия высокопрочного крепежа. Выбор детали, прошедшей ту или иную обработку, зависит от конкретных требований к коррозионной стойкости крепежа и должен производиться согласно проекта.

Покрытие болтов слоем цинка для защиты от коррозии

Болты с покрытием MODENGY 1014 Оцинкованные болты Покрытие болтов цинком: способы, виды и альтернативы

В последнее время перед производителями высокопрочного крепежа стоит серьезная задача, которая заключается в увеличении срока эксплуатации изделий и придания им особых свойств. Для реализации этой задачи используются самые различные решения, в том числе и использование специальных сортов стали. Но существует и более простое, но не менее эффективное решение, которое не требует больших затрат, но в тоже время гарантирует максимально качественный эффект. Это решение – нанесение на поверхность изделия защитного покрытия, чаще всего цинкового. Высокопрочный крепеж, покрытый слоем цинка, не теряет своих свойств, но при этом срок его службы значительно увеличивается. Даже в условиях производства с агрессивными средами или в морской воде срок службы оцинкованных метизов может достигать 30 лет.

Технологии цинкования и требования к качеству

Современные технологии цинкования достаточно многочисленны. Самым распространенным и наименее трудоемким является гальваническое цинкование. Несмотря на то, что технологии этой много десятилетий, она успешно используется по сей день и позволяет получать стойкое качественное покрытие. С развитием промышленного производства появились и более сложные способы, такие как механическое, термодиффузионное, горячее и цинкламельное цинкование изделий.

Механизм защиты крепежа цинком очень прост – в активной среде, например в морской или насыщенной минеральными солями воде, цинк работает как анод практически со всеми распространенными металлами, исключая магний и алюминий. Поэтому цинк взаимодействует с агрессивной средой, а сталь, являясь в этом случае катодом, надежно защищена, пока на ней есть слой цинка. Вопреки распространенному мнению о том, что основной характеристикой цинкового покрытия является его толщина, эксперты оценивают качество цинкования крепежа, взяв за основу срок эксплуатации детали с покрытием в годах. В лабораторных условиях крепеж проходит проверку при помощи специального оборудования, которое имитирует климатическое или любое другое воздействие в ускоренном темпе. Таким образом, экспертиза дает возможность очень оперативно оценить долговечность оцинкованного крепежа, не прибегая к многолетним испытаниям.

Для крепежа различного назначения допустимая долговечность покрытия может серьезно отличаться. Если у деталей, имеющих декоративное покрытие, началом коррозии считается момент, когда на поверхности осталось 10-15% цинкового покрытия, то для высокопрочного крепежа, применяемого в строительстве и машиностроении, эта критическая величина равна 50%.

ДЛЯ ЧЕГО НЕОБХОДИМО ЦИНКОВАНИЕ

Покрытие цинком различных крепежей и метизов – один из наиболее распространенных и действенных способов повышения их эксплуатационного ресурса. Цинк является металлом с отрицательным потенциалом. Именно этим объясняется его устойчивость к воздействию агрессивных сред и влаги. При повреждении цинкового покрытия происходит его регенерация, что в разы замедляет коррозионные процессы. Основная цель цинкования болтов и гаек из стали состоит в защите ферритной подложки от деформации.

Цинковое покрытие способно прослужить несколько десятков лет. Именно по этой причине его используют для крепежей и метизов. Снижение риска появления ржавчины в точках соединения позволяет в разы сократить расходы на постоянную замену деталей, ремонт многочисленных узлов. Наносится покрытие разными способами: выбор его зависит от заявленных характеристик обрабатываемых деталей, требований к ним, условий эксплуатации.

Гальваническое цинкование

Гальваническое цинкование – это ни что иное как процесс электролиза. Для нанесения защитного слоя таким способом в ванну погружают изделия и цинковые пластины, на которые подается постоянный ток. Под воздействием тока цинк, являющийся анодом, растворяется и его молекулы оседают на изделиях из стали, выполняющих роль катода. При гальваническом цинковании толщина защитного слоя может составлять от 5 до 25 мкм. Гальванический способ позволяет получить равномерное качественное покрытие даже на изделиях сложной конфигурации. К недостаткам этого способа можно отнести так называемую «водородную хрупкость», которую приобретает крепеж, что несколько ограничивает использование гальванических ванн при оцинковании высокопрочного крепежа. Кроме этого, такой способ наносит существенный вред окружающей среде, так как получаемые отходы очень токсичны.

Антифрикционные твердосмазочные покрытия – альтернатива цинку

Антифрикционные твердосмазочные покрытия показывают внушительные результаты испытания в соляном тумане – от 672 часов защиты от воздействия коррозии. Они обладают высокой несущей способностью и стабильно работают в температурном диапазоне от -75 до +255 °С.
Для нанесения на болты подходят материалы MODENGY 1011 и MODENGY 1014. В отличие от цинкового покрытия, они делают возможным многократный монтаж и демонтаж соединений, а также снижают трение в резьбе.

Болты с покрытием MODENGY 1014

Рис. 2. Болты с покрытием MODENGY 1014

Возврат к списку

Горячее цинкование

При горячем цинковании специально подготовленные изделия погружают в ванну с расплавленным цинком в специальном вращающемся барабане. Перемещение деталей внутри барабана обеспечивает равномерное распределение цинка по поверхности. После того, как слой цинка покроет крепеж, барабан извлекают из ванны с расплавленным цинком и начинают вращать с большой скоростью. Возникающая в этот момент центробежная сила позволяет избавиться от излишков цинка. Главным достоинством этого метода является высокое качество антикоррозийного покрытия – при погружении детали в расплав, цинк заполняет все поры изделия, обеспечивая максимальную защиту. Оцинкованный горячим способом крепеж применяют в самых ответственных конструкциях, таких как опоры мостов, мачты антенн мобильной связи, опоры ЛЭП. К сожалению, одним из главных недостатков способа, который не дает применять его повсеместно, является дороговизна технологии. Себестоимость изделий, прошедших горячее цинкование, на 40% выше, чем у деталей, оцинкованных гальваническим методом.

Термодиффузное цинкование

Этот способ нанесения покрытий на крепеж является самым молодым и наукоемким. Нанесение на поверхность цинка происходит в герметичных ретортах при температурах от 350 до 4 500 градусов Цельсия. Технология практически безопасна для окружающей среды, а качество получаемого покрытия на порядок выше чем у полученного методом гальванических ванн. Срок службы крепежа с термодиффузным покрытием толщиной 50 мкм достигает 15 лет в условиях производства или морского климата. Отходы, получаемые в результате технологического процесса, абсолютно безопасны и используются как ценный наполнитель для строительных бетонов. Есть у этого способа и недостатки. Процесс термодиффузии достаточно сложен, а объем камер ограничен требованиями технологического процесса. В связи с этим способ мало подходит для массового производства крепежа. Также нужно отметить, что крепеж, оцинкованный таким способом, не имеет декоративных свойств.

Выбор покрытия на крепеж

Выбор защитных покрытий для высокопрочных крепёжных изделий

Высокопрочный крепёж (болтокомплекты: болт, гайка и шайбы), применяемый для изготовления металлических строительных конструкций имеет ряд специфических особенностей, вытекающих из условий применения этого крепежа. Основными из них являются повышенные требования к надёжности и способность создавать расчётное предварительное натяжение при монтаже.

По сложившейся практике строительства мостовых сооружений устройство их монтажных соединений выполняется за счёт фрикционных сил, возникающих при обжатии монтажных поверхностей на расчётное усилие высокопрочными болтокомплектами. Расчёт фрикционных соединений ведётся согласно требованиям СНиП 2.05.03 «Мосты и трубы».

Расчётные усилия натяжения болтокомплектов достигаются с помощью контроля момента затяжки болтового соединения, рассчитываемого по значению коэффициента закручивания.

Поставка высокопрочных болтов и гаек на строительные площадки до настоящего времени осуществляется без защитных покрытий. Поэтому единственным способом защиты метизов от коррозии на период до монтажа является консервационная смазка, дальнейшее использование которой при затяжке крепёжных изделий в процессе сборки недопустимо из-за снижения усилия затяжки у смазанных болтов и растекания смазки по поверхности монтажных соединений, что приведёт к потере адгезии штатного лакокрасочного покрытия. В соответствии с СТП 006-97 для удаления консервационной смазки и загрязнений крепёжные изделия подвергаются перед монтажом мойке в горячих щелочных растворах с последующей смазкой в 10-20 % растворе масла в бензине. Срок хранения подготовленных таким образом болтокомплектов не превышает 10 суток. Отмеченные вспомогательные технологические операции затратны и трудоёмки для их выполнения в условиях строительной площадки, в особенности в зимнее время.

Для исключения указанных операций по предмонтажной подготовке крепёжных изделий целесообразно на заводском этапе изготовления метизов нанести на них защитные покрытия, к которым предъявляются следующие требования: ● покрытие должно сохранять защитную способность по крайней мере на период до их монтажа, включая транспортировку и хранение; ● толщина покрытия должна обеспечивать свободное навинчивание гайки на болт без предварительного обнижения резьбы, чтобы сохранить прочность резьбового соединения; ● покрытие должно обеспечить нормативное значение коэффициента закручивания в диапазоне Кзакр. = 0,11- 0,20; ● технология нанесения покрытия на крепёжные изделия не должна вызывать наводораживание стальной подложки крепежа, способствующее последующему непредсказуемому её охрупчиванию и разрушению.

Отдельно следует остановиться на защитных покрытиях для длительной противокоррозионной защиты крепёжных изделий, к которым можно предъявить следующие требования: ● покрытие должно сохранять защитную способность на длительный срок эксплуатации при воздействии различных агрессивных сред; ● обеспечить нормативное значение коэффициента закручивания в диапазоне Кзакр. = 0,11- 0,20; ● технология нанесения покрытия, не должна требовать обнижения резьбы; ● технология нанесения покрытия на крепёжные изделия не должна вызывать наводораживание стальной подложки крепежа, способствующего последующему непредсказуемому её охрупчиванию и разрушению.

Практика применения защитных покрытий для крепёжных изделий показала, что наилучшим средством для их противокоррозионной защиты является цинкование. Однако при применении данного вида покрытия из технологического процесса оцинковки следует исключить операцию по подготовке стальной поверхности путём кислотного травления, т.к. оно способствует процессу наводораживания стали. По этой причине гальваническое покрытие не может быть применено для защиты высокопрочных крепёжных изделий. Горячее цинковое покрытие может быть применено с условием применения технологии, исключающей риск наводораживания.

Следует также отметить, что применению высокопрочного крепежа, оцинкованного горячим методом, препятствует значительная толщина покрытия, не позволяющая наносить его на болтокомплекты с допусками резьбового соединения 6g/6H. В связи с этим при применении крепёжных изделий с горячецинковым покрытием приходится ослаблять допуск на наружный диаметр резьбы. Во вступающих в действие с июля 2015 г. ГОСТ 32484.1÷32484.6-2013 «Болтокомплекты высокопрочные для предварительного натяжения конструкционные» предусмотрено поле допуска резьбы гаек 6az для применения их в болтокомплектах с горячим цинковым покрытием. При этом резьба на гайке нарезается, когда на заготовку уже нанесено горячецинковое покрытие. Только при таких условиях применение горячего цинкового покрытия оправдано для длительной противокоррозионной защиты высокопрочных крепёжных изделий.

Горячему цинковому покрытию конкурентом может только быть термодиффузионное цинковое (ТДЦ) покрытие соответствующей толщины. Следует, однако, заметить, что для крепёжных изделий с горячецинковым покрытием и ТДЦ покрытием характерны неприемлемо завышенные значения коэффициента закручивания, в результате чего при затяжке в болтах не достигается нормативный уровень усилия натяжения. Указанную проблему решает применение антифрикционных покрытий, известных как «дуплекс-системы».

При этом подчеркнём, что, в отличие от мостостроения, в строительстве, машиностроении и судостроении широко применяется высокопрочный крепёж с горячецинковым покрытием в пределах прав и ответственности, определяемых проектной документацией и законом.

Из имеющихся видов цинкования для противокоррозионной защиты высокопрочных болтокомплектов наиболее целесообразно применение термодиффузионного цинкования 2 или 3 классов и цинкнаполненных лакокрасочных покрытий ламельного типа (рис. 1). Оба метода предполагают применение при подготовке поверхности метизов под покрытие лёгкого абразивно-струйного бластинга для удаления продуктов коррозии и окисной плёнки, возникшей в процессе их изготовления, что исключает необходимость его кислотного травления.

Рис. 1. Высокопрочные болты с разными покрытиями:
а) болт с ТДЦ покрытием;б) болт с ламельным покрытием

Существующее уже более 100 лет ТДЦ покрытие традиционно выполняется по следующей технологии: цинкуемые детали помещаются в реторту с порошковой смесью, состоящей из порошкового цинка, глинозёма и активатора (хлористого аммония или активированного угля). Путём радиационного нагрева реторта прогревается до температуры плавления цинка (420 oС), и за счёт температурной диффузии атомы цинка из твёрдой и паровой фазы внедряются в кристаллическую решётку железа. В свою очередь активные атомы железа движутся в сторону цинка. В результате этого процесса образуется интерметаллидное покрытие Zn-Fe, состоящее из нескольких слоёв-фаз. Первый, собственно диффузионный α-слой толщиной 10-12 мкм, представляет собой твёрдый раствор цинка в железе, содержащий до 4,5 % Zn. За счёт него последующие слои прочно закрепляются на стальной основе. Следующий Г-слой как раз и обеспечивает диффузию цинка и железа во встречных направлениях. Г-слой толщиной 4-5 мкм содержит до 28 % железа и очень хрупкий. Поверх этих слоёв образуется также интерметаллидный δ-слой, имеющий столбчатую структуру и содержащий кроме цинка от 11.5 до 7 % железа. Именно он за счёт большего содержания цинка начинает выполнять протекторные (защитные) свойства для стали. Поскольку это интерметаллид, он имеет высокую микротвёрдость (до 4800 МПа) по сравнению с чистым цинком, имеющим микротвёрдость не более 900 Мпа. Толщина δ-слоя составляет 30-40 мкм. Затем при более длительном нагреве (более 3 ч) образуется ζ-слой, представляющий почти чистое цинковое покрытие, имеющее микротвёрдость, сопоставимую с цинком, и обеспечивающее наиболее высокие защитные свойства. Толщина ζ-слоя в зависимости от выдержки в печи может достигать 40 и более мкм. Таким образом, хорошую защитную способность ТДЦ покрытие на крепеже может иметь при общей толщине не менее 30-40 мкм. Указанная толщина покрытия ТДЦ вписывается в величину общего межрезьбового зазора между резьбовыми поверхностями болта и гайки с допуском 6g/6H, который для наиболее распространённого типоразмера мостовых высокопрочных метизов М22 составляет 113 мкм, что не мешает свинчиваемости указанного резьбового соединения при условии достаточной пластичности цинкового покрытия.

Рис.2. Установка для нанесения ТДЦ покрытия:
а) загрузка реторты, вмещающей 1,2 т крепёжных изделий, в печь;б) охлаждение реторты после выполнения цинкования.

Среди достоинств метода ТДЦ следует назвать следующие: ● детали цинкуются в герметически закрытых ретортах, поэтому процесс диффузионного цинкования экологически безопасен и не требует создания очистных сооружений; ● получаемое покрытие не имеет пор и за счёт диффузионного слоя в виде твёрдого раствора цинка в железе имеет прочную адгезионную связь со стальной подложкой; ● защитная способность покрытия в 2-4 раза выше, чем у гальванических и несколько выше, чем у горячецинковых покрытий; ● диффузионный цинк покрывает детали равномерным слоем без наплывов, точно повторяя профиль цинкуемой поверхности, включая глухие отверстия, элементы сложной конфигурации, щели, полости, резьбу и т.п.; ● отходы производства не требуют захоронения.

В то же время традиционный способ ТДЦ с использованием радиационного нагрева имеет следующие недостатки: ● невозможность получения качественного покрытия при толщинах покрытия менее 30 мкм из-за высокого содержания в верхних слоях интерметаллида цинка с железом, что вызывает высокую микротвёрдость покрытия, а, значит, и высокое значение коэффициента закручивания; ● относительно небольшая производительность метода ТДЦ, лимитируемая объёмами реторт для цинкования и длительностью прогрева реторты с порошковыми смесями и цинкуемыми деталями; ● значительный расход электроэнергии и цинкового порошка, выгорание цинка при радиационном нагреве; ● необходимость наличия массивного металлоёмкого теплоизолированного корпуса печи. Исходя из указанных недостатков, более рационально для цинкования высокопрочных крепёжных изделий применить новый способ ТДЦ – с индукционным нагревом, который позволяет: ● получить по всей площади цинкуемой поверхности равномерное гомогенизированное защитное покрытие требуемой толщины с высокой коррозийной стойкостью, как содержащее до 98 % цинка; ● сократить время цинкования с 2,5 ч до 5-20 минут, т.е. в 12-48 раз быстрее; ● сократить в 2 раза расход цинкового порошка для покрытия поверхности металлоизделий за счёт уменьшения степени выгорания цинка; ● сократить в 4 раза расход электроэнергии за счёт уменьшения длительности производственного цикла цинкования; ● сохранить при цинковании резьбовых соединений геометрию, профиль и диаметр резьбы; ● восстанавливать цинковое покрытие в случае его повреждения путём проведения повторного цинкования; ● существенно сократить капитальные вложения на создание промышленной установки, использующей предлагаемый способ ТДЦ, по сравнению с установкой, выполненной по традиционному способу.

В настоящее время имеется опытно-промышленная установка для оцинковки деталей методом ТДЦ с индукционным нагревом, имеющая рабочую камеру диаметром 300 мм и длину 4 м. Производительность такой установки до 30 кг метизов в час.

Альтернативой вышеперечисленным методам защиты крепёжных изделий может служить цинк-алюминиевое ламельное покрытие типа Dacromet или Delta. Это фактически лакокрасочные покрытия, наполненные чешуйчатыми частицами цинка и алюминия толщиной не более 10-15 мкм, имеющие прекрасные декоративные свойства (серебристый цвет) и долговечность не менее двух лет – на весь период транспортировки и хранения метизов до выполнения монтажных операций. Технология нанесения ламельного покрытия исключает вероятность наводораживания, т.к. при его применении нет контакта с кислотами. Суспензия основы покрытия наносится на изделия в три слоя методом их окунания в центрифуги, наполненные суспензией, и последующей сушки в течение 5-10 минут в проходных печах при температуре 200 и 300 оС. Диффузии цинка в стальную подложку при этом не возникает.

Как показали наши исследования, покрытия и ТДЦ, и Dacromet для обеспечения по условиям сборки монтажных поверхностей мостовых конструкций требуемого значения коэффициента закручивания (в диапазоне Кзакр. = 0,11 – 0,15) предполагают применение специальных смазок на полимерной основе. В этом случае возникает проблема совместимости этих смазок со штатными лакокрасочными покрытиями для мостовых конструкций. Поставщики лакокрасочных материалов (ЛКМ) в этом случае не дают гарантии по стойкости штатных покрытий в узлах болтовых соединений.

Перспективным было бы формирование на высокопрочных болтах покрытия, обеспечивающего одновременно необходимый коэффициент закручивания (0,11 – 0,15), антикоррозионную защиту и совместимость с покровными ЛКМ. Универсальное покрытие решало бы сразу несколько проблем по разным направлениям: исключение предмонтажной подготовки крепёжных изделий, обеспечение необходимой долговечности противокоррозионной защиты, обеспечение требуемых усилий обжатия крепёжных изделий, что вызвало бы обоюдный интерес и у изготовителей высокопрочных метизов и в мостостроительных организациях. В качестве такого универсального покрытия видится ламельное цинкнаполненное покрытие со смазками на полимерной основе.

Механическое цинкование

Защитное покрытие при таком способе образуется методом «втирания» специальной цинковой суспензии в деталь. Для этого используются галтовочные барабаны и стеклянные шарики, которые и служат для «втирания» цинка. Способ обеспечивает толщину покрытия от 10 до 20 мкм с относительно невысоким качеством. Технология отлично подходит для нанесения цинка на высокопрочный крепеж, так как не вызывает «водородной хрупкости». Также детали, оцинкованные механическим способом, прекрасно выглядят. К сожалению, область применения крепежа после механического цинкования ограничена, так как покрытие имеет невысокое сцепление с основным материалом.

Покрытие болтов слоем цинка для защиты от коррозии

Болты, подлежащие покрытию

по одной из перечисленных ниже технологий, должны полностью соответствовать требованиям стандартов, технических условий, чертежей, другой конструкторской и нормативно-технической документации на их изготовление. Соответствие их характеристик и марки стали должно быть подтверждены сертификатами качества заводов-изготовителей. На изделиях должна присутствовать маркировка товарного знака производителя и класса прочности. К покрытию не допускаются детали, имеющие в своем составе смолы или мягкий припой. Предельные отклонения размеров резьбы подвергаемых покрытию болтов должны отвечать требованиям стандартов по резьбам. На поверхности деталей не допускается наличие заусенцев, окалины, расслоений и трещин, раковин, пор и коррозионных повреждений. Острые кромки и углы у крепежных изделий обязательно скругляют радиусом не менее 0,3 мм. На болтах не должно быть смазки, остатков эмульсии, пыли и металлической стружки после механической обработки, а также забоин, расслоений и коробления после термической обработки.

На предшествующем покрытию этапе болты должны быть тщательно подготовлены к начальным операциям технологического процесса. Крепежные изделия, готовые к нанесению цинкового покрытия хранят в условиях, исключающих появление конденсата. Допустимое время их хранения определяется соответствующей технологией цинкования.

Длительность формирования и качество защитного слоя при покрытии болтов по технологии горячего цинкования зависит от скорости прогрева изделий в расплаве чистого или легированного (никелем, алюминием) цинка. Метод погружения в расплав с использованием центрифуги позволяет получить хорошие результаты для болтов с номинальным диаметром наружной резьбы до 8,0 миллиметров. При горячем цинковании по современным технологиям поверхность головки, стержня и резьбы получается достаточно гладкой, без наплывов и включений. Толщина цинкового покрытия находится в пределах 45-65 мкм. Наплывы и утолщения во впадинах резьбы практически отсутствуют.

Покрытия болтов по методу термодиффузионного цинкования классифицируются по толщине. Диапазон классов – от 5 до 110, толщина цинкового покрытия – от 5 до 50 мкм. Качественный, матово-серого цвета, защитный слой не имеет вздутий, раковин и трещин. Равномерный, гладкий или слегка шероховатый слой покрытия в точности повторяет конфигурацию болта. На поверхности слоя допускаются технологические пятна темно-серого цвета, размер которых не превышает 5% площади покрытой поверхности болта.

Гальваническое покрытие болтов позволяет создать дополнительный поверхностный защитный слой с толщиной цинкового покрытия от 4 до 20 мкм. Оцинкованный крепёж приобретает светло-серый или серебристо-серый с голубоватым оттенком цвет. Покрытие обеспечивает высококачественную защиту болтов и значительно расширяет возможности их практического использования.

Товары каталога:

Гровер DIN 127
Гвоздь толевый ГОСТ 4029
Гвоздь строительный ГОСТ 4028, чертеж 7811-7075
Анкерный болт с кольцом
Болт с фланцем DIN 6921 класс прочности 5.8
Твитнуть

comments powered by Disqus

Цинкламельный способ

Нанесение цинка при таком способе производится с использованием специальных 80%-х растворов цинка, в которые могут быть добавлены алюминий и другие элементы. Нанесение может осуществляться методом спрея, окунанием в раствор, или в галтовочном колоколе. Цинкламельная технология позволяет получить многослойное качественное покрытие, не содержащее токсичных элементов. Цинкламельным способом получают наиболее толстые покрытия, которые могут достигать 100 мкм. Увы, такой способ редко используют для оцинковки ответственного крепежа, так как долговечность такого покрытия в условиях производства невелика. Зато цинкламельный способ позволяет получить самое качественное декоративное покрытие, которое может иметь различные цвета, в зависимости от добавленных в раствор присадок.

Как мы видим, каждая из технологий хороша для определенных целей и все они могут быть применены для покрытия высокопрочного крепежа. Выбор детали, прошедшей ту или иную обработку, зависит от конкретных требований к коррозионной стойкости крепежа и должен производиться согласно проекта.

Статьи о продукции Обновлено: 03.12.2020 12:49:11

ОСНОВНЫЕ ЭТАПЫ ЦИНКОВАНИЯ

Вне зависимости от того, какая технология цинкования гвоздей, болтов и других видов крепежей выбрана, весь процесс можно условно разделить на этапы:

Источник https://allgosts.ru/21/060/gost_iso_10684-2015

Источник https://pressadv.ru/metally/cinkovanie-boltov-gost.html

Источник https://burforum.ru/vidy-metallov/tolshchina-cinkovogo-pokrytiya-boltov.html