Покрытие цинковое с хроматированием как

Содержание

Хромирование

Хромирование заготовок в челябинскеХромирование валов в челябинскеХромирование труб в челябинскеХромирование в челябинскеХромирование направляющих в челябинскеХромирование маховика в челябинскеХромирование изделий в челябинскеХромирование пластин в челябинскеХромирование шпилек в челябинскеХромирование фланца в челябинскеХромирование форсунок в челябинскеХромирование деталей в челябинскеХромирование роликов в челябинскеХромирование деталей в челябинске Хромирование втулок в челябинске

Создание первых производственных установок по хромированию относится к концу 20-х годов текущего столетия. За истекший период времени хромовые покрытия, по сравнению с другими гальваническими покрытиями, получили наиболее широкое распространение. Такое положение объясняется ценными свойствами хрома, позволяющими сочетать в покрытии внешний вид и коррозионную стойкость с высокой твердостью и износостойкостью.

Важной областью хромирования являются защитно-декоративные покрытия. Наряду с этим хромовые покрытия получили широкое распространение в машиностроении для увеличения износостойкости новых деталей машин и инструмента, а также для восстановления изношенных деталей. Последнее приобрело особенно большое значение при ремонте двигателей внутреннего сгорания в связи с созданием технологии пористого хромирования.

Однако применение электролитического хромирования для восстановления изношенных деталей машин ограничивается глубиной износа. В случаях, когда величина износа достигает 0,7 – 1,0 мм хромирование становится нерациональным, так как при большой толщине слоя покрытия продолжительность процесса осаждения велика, а осажденный металл имеет склонность к скалыванию.
В этих случаях может быть применено железнение. Твердость и износостойкость электролитического железа значительно ниже, чем хрома. Поэтому железненные детали подвергаются дополнительно хромированию или цементации.

ОБЩИЕ СВЕДЕНИЯ

Хром – элемент 6-й группы периодической системы элементов Д.И. Менделеева. Его атомный номер 24, атомная масса 51,99. До хрома ни один элемент периодической системы не выделяется электролизом из водных ресурсов.

Физические свойства хрома следующие: температура плавления 1890 — 1900 оС; плотность (при 20 оС) 6,9 7,2 г/см3; температурный коэффициент линейного расширения (при 20 оС) 6,6  10-6 К-1; удельная теплоемкость 0,46  103 Дж /(кг  К).

Соединения шестивалентного хрома являются сильными окислителями. Все хромовые кислоты относятся к сильным; по мере усложнения их состава степень их диссоциации в разбавленных растворах возрастает. Оксид Cr2 O3 обладает амфотерными свойствами. Соединения Cr2++, обладающие основными свойствами, неустойчивы.

Электрически осажденный хром обладает рядом ценных свойств: высокой твердостью, износоустойчивостью, термостойкостью и химической устойчивостью.

Хром обладает большой стойкостью против воздействия многих кислот и щелочей: он нерастворим в растворах азотной и серной кислот, в соляной и горячей серной кислотах легко растворяется, на воздухе и под действием окислителей пассивируется – на его поверхности образуется тонкая окисная пленка. Хром положительный потенциал и не обеспечивает при наличии в покрытии пор электрохимической защиты от коррозии стальных деталей.

Хорошо полированная поверхность хрома имеет высокие декоративные качества, которые отличаются стабильностью во времени: хром не тускнеет даже после нагрева до 670 – 720 К. Сернистые соединения на хром не действуют.

Хромовые покрытия применяют в следующих случаях:

1. Для защитно-декоративных целей. Хромовое покрытие с подслоем меди и никеля хорошо защищает сталь от коррозии, придавая изделиям красивый внешний вид. Защитно-декоративному хромированию подвергают детали автомобилей, велосипедов, приборов и т.п.

2. Для увеличения отражательной способности. Отражательная способность хромового покрытия уступает лишь отражательной способности серебра и алюминия, однако вследствие более высокой стойкости против окисления отражательная способность хрома более стабильна. Хромовое покрытие поэтому широко используется в производстве зеркал, отражателей, прожекторов.

3. Для увеличения износоустойчивости. Хромирование с этой целью используется в инструментальном производстве при отделке мерильных инструментов, фильер для волочения металлов и т.п. Большой эффект дает хромирование штампов и матриц при изготовлении различных изделий из резины, пластмасс, кожи, стекла. В этом случае хромовое покрытие не только обеспечивает износостойкость, но также исключает налипание прессуемых материалов к поверхности матриц. Хромовое покрытие значительно снижает смачиваемость стенок форм расплавленным стеклом или металлом. Значительное повышение износостойкости трущихся поверхностей стенок цилиндров и поршневых колец двигателей внутреннего сгорания достигается при применении процессов пористого хромирования.

4. Для восстановления изношенных размеров. Наращивание слоя хрома на изношенные поверхности термообработанных валов, втулок позволяет восстановить размеры деталей и этим увеличить срок эксплуатации изделий.

Толщина хромовых покрытий устанавливается в зависимости от условий эксплуатации и назначения покрытий по отраслевой нормативно-технической документации и имеет следующие значения, мкм:

По никелевому подслою 0,5 — 1,5
Для деталей из меди и ее сплавов 6,0 – 9,0
Повышающие износостойкость пресс-форм, штампов и т.п 9 – 60
Восстанавливающие изношенные размеры до 500

ОБЛАСТИ ПРИМЕНЕНИЯ ХРОМОВЫХ ПОКРЫТИЙ

Электролитическое хромирование применяется для внешней отделки изделий, повышения износостойкости, для защиты от коррозии и в ряде других случаев.

Декоративные и защитно-декоративные покрытия хромом отличаются долговечностью. Поэтому многие изделия, и в особенности работающие в тяжелых условиях эксплуатации, подвергаются декоративному хромированию: например, детали автомобилей, самолетов, вагонов, приборов, а также инструменты и изделия бытового характера.

Полированные хромовые покрытия обладают хорошей отражательной способностью. Коэффициент отражения света хромом достигает 70%. Эта величина несколько меньше, чем для серебра, но зато хром не тускнеет на воздухе. Поэтому хромирование используется в производстве различного типа фар и других малоответственных светоотражателей. Наряду с этим, из хромового электролита возможно осаждение черного хрома, применяющегося для уменьшения коэффициента отражения света.

Износостойкие хромовые покрытия применяются для многих инструментов и деталей машин, работающих на трение. К хромированию прибегают при покрытии новых деталей, а также при восстановлении изношенных, потерявших размеры во время работы на трение. Большое значение имеет исправление деталей, забракованных по размерам.

Номенклатура деталей, подвергаемых хромированию для повышения износостойкости, достигает больших размеров: детали мерительных инструментов, предельные калибры, режущий инструмент – метчики, сверла, развертки, фрезы, протяжки, долбяки и пр., инструмент для холодной обработки металлов давлением – волочильные глазки, пуансоны и матрицы для листовой штамповки, штампы для холодной штамповки и т.д.

Благодаря хромированию не только увеличивается срок службы деталей, но часто повышается качество. Это наблюдается при хромировании валиков бумагопрокатных станов, штампов и прессформ для обработки неметаллических материалов и резины.

Применение износостойких хромовых покрытий для восстановления изношенных деталей станков и двигателей внутреннего сгорания позволяет во много раз увеличить срок их службы. Примерами подобных деталей могут служить шпиндели станков, шейки коленчатых валов, распределительные валики, толкатели клапанов, поршневые пальцы, шейки валиков различных агрегатов и другие детали.
Важной областью использования износостойких хромовых покрытий является хромирование цилиндров или поршневых колец двигателей внутреннего сгорания. Однако для этих деталей, работающих в условиях ограниченной смазки и высоких удельных нагрузок, положительного эффекта от хромирования можно ждать лишь при покрытии пористым хромом.

Хромовые покрытия нашли применение также для защиты изделий от коррозии. Хром, осажденный при определенных условиях электролиза, обеспечивающих получение беспористых осадков при толщине слоя 40 – 50 мк, защищает стальные изделия от атмосферной коррозии и коррозии в морской воде.

РЕЖИМЫ ХРОМИРОВАНИЯ

Они оказывают большое влияние на свойства хромового покрытия и на его качество.
Для улучшения кроющей способности сульфатных электролитов сразу же после загрузки деталей дается ток, в 1,5 раза превышающий расчетное значение (“толчок” тока); через 15-30 с значение тока снижается до номинального. При хромировании стальных деталей вначале дается ток противоположного направления для анодного растворения окисных пленок, а затем “толчок” тока в прямом направлении, как указано выше. “Толчок” тока особенно необходим при хромировании деталей из чугуна.

Табл. Режимы хромирования

Пористое хромирование. Для хромовых покрытий, за исключение “молочных”, характерно наличие пор и сетки мелких трещин, которые снижают защитные свойства покрытия. С целью улучшения условий для удержания смазочных масел в условиях больших нагрузок на поверхность трудящихся деталей размеры пор и трещин увеличивают анодной обработкой в том же электролите, где происходило осаждение хрома.

Приготовление и корректирование электролитов. Для приготовления электролитов раздробленные куски хромового ангидрида помещают непосредственно в рабочую ванну, наполненную до уровня водопроводной водой, нагретой до температуры 330-350 К. Растворение хромового ангидрида ведут при непрерывном помешивании.

ПРИГОТОВЛЕНИЕ, КОРРЕКТИРОВАНИЕ И РАБОТА ХРОМОВЫХ ВАНН

Приготовление электролита

Электролиты для хромовых ванн приготовляются из двух основных компонентов – хромового ангидрида и серной кислоты.

Хромовый ангидрид CrO3. Молекулярный вес 100. Удельный вес 2,7. По ГОСТ 2548-44 в техническом хромовом ангидриде, применяемом для приготовления электролитов, допускается содержание следующих примесей:

  • Серной кислоты не более 0,4%
  • Посторонних металлов в сумме не более 0,007%
  • Хлора не более 0,0006%
  • Нерастворимого остатка не более 0,22%
  • Хромового гидрида не менее 99,2%
  • Примесь азотной кислоты не допускается

Выпускаемый отечественною промышленностью хромовый ангидрид представляет собой плавленую кристаллическую массу темно-красного цвета. На воздухе хромовый ангидрид поглощает влагу.

Серная кислота H2SO4. Молекулярный вес 98,08. Удельный вес 1,84. Для приготовления электролита используется чистая серная кислота, ГОСТ 4204-48. В порядке исключения допускается применение технической кислоты.
Серная кислота бесцветна. Присутствие органических примесей может вызвать коричневый оттенок, что, однако, не мешает использованию серной кислоты для хромового электролита.

Составление электролита

Для приготовления электролита рассчитанное количество хромового ангидрида дробится на небольшие куски, загружается в ванну хромирования и заливается для лучшего растворения водой, подогретой до 60-80о. При этом можно использовать водопроводную воду, не загрязненную железом, однако, в районах с жесткой водопроводной водой для этих целей необходимо пользоваться конденсатором или даже дистиллированной водой.

После растворения хромового ангидрида раствор перемешивают и определяют в нем содержание CrO3 по удельному весу.
Раствор после тщательного перемешивания подвергают анализу и, установив действительное содержание CrO3 и H2SO4, подсчитывают и дополнительно вводят недостающее количество компонентов.

Проработка электролита

Для нормального осаждения хрома рекомендуется содержание в электролите небольшого количества Cr3+, около 2-4 г/л. В готовом электролите производят пробное хромирование.

Замена хромового электролита производится через 1-2 года и зависит от интенсивности эксплуатации ванны и загрязнения ее примесями.

При эксплуатации ванны следует учитывать, что в процессе электролиза концентрация трехвалентного хрома в электролите изменяется в зависимости от конфигурации деталей. Так, при хромировании деталей, площадь покрытия которых больше площади анода, например, при хромировании внутренней поверхности цилиндра, концентрация трехвалентного хрома в электролите постепенно возрастает. Если же площадь детали – катода значительно меньше площади анода, что имеет место при хромировании наружных цилиндрических поверхностей, то содержание трехвалентного хрома в электролите понижается.

КОРРЕКТИРОВАНИЕ ЭЛЕКТРОЛИТА

Для поддержания постоянной концентрации CrO3 и H2SO4 электролит периодически корректируют путем введения в него новых порций хромового ангидрида и серной кислоты.

Количество добавляемого в ванну хромового ангидрида определяется на основании удельного веса электролита или результатам анализа. Добавление в ванну CrO3 осуществляется ежедневно.

Корректирование электролита серной кислотой производится значительно реже. Один раз в 7-10 дней электролит подвергают анализу на содержание трех- и шестивалентного хрома и серной кислоты. На основании анализа рассчитывают недостающее количество H2SO4 и вводят его в электролит. После этого электролит тщательно перемешивают и дают ему отстояться. Поэтому серную кислоту рекомендуется вводить в ванну во время перерывов в работе.

Аноды

Материалом анодов для ванны хромирования служит чистый свинец или сплав, состоящий из 92-93% свинца и 8-7% сурьмы. Аноды из сплава Pb или Sb в меньшей степени покрываются нерастворимой и непроводящей пленкой хромовокислого свинца, чем аноды из чистого свинца.

Во время электролиза выделяющийся на аноде кислород, взаимодействуя со свинцом, образует на его поверхности темно-коричневого цвета непроводящую пленку перекиси свинца. Сопротивление анода в процессе электролиза увеличивается и поэтому через определенные периоды работы ванны необходимо аноды чистить. При непрерывной работе ванны и высоких плотностях тока очистку анодов производят один раз в смену или после окончания цикла электролиза.

Удаление окисной пленки с анодов производится путем обработки их в соляной кислоте, разбавленной 1:1, или в 10-процентном растворе едкого натра. После этого аноды промываются водой.

По форме аноды изготавливаются в большинстве случаев плоскими и цилиндрическими. Однако в следствие плохой рассеивающей способности хромового электролита, при покрытии деталей с глубоким рельефом очертания анода должны определяться формой катода.

Влияние примисей

По мере работы хромовой ванны в электролите могут накапливаться железо, медь и некоторые другие металлы.
Железо по мере накопления в электролите (главным образом вследствие анодного декапирования стальных и чугунных деталей), подобно трехвалентному хрому, суживает интервал получения блестящих осадков. Допустимое содержание железа в электролите 8-10 г/л. На практике иногда содержание железа в электролите достигает 20-250 г/л, но при этом сильно снижается выход хрома по току. Удалить из хромового электролита чрезвычайно сложно. Поэтому электролит с большим содержанием железа обычно заменяют новым.
В настоящее время имеются указания на возможность осаждения железа желтой кровяной солью. Предполагается, что реакция между желтой кровяной солью и железом, находящимся в хромовом электролите в виде окисной сернокислой соли, протекает по следующему уравнению:

3K4Fe (CN)6 + 2Fe2 (SO4)3 = Fe4 [Fe (CN)6]3 + 6K2SO4

Для удаления железа желтую кровяную соль, взятую из расчета 5,6 г на 1 г железа в электролите, растворяют в малом объеме воды и при перемешивании вливают в электролит небольшими порциями. Образующемуся осадку берлинской лазури дают отстояться, после чего электролит осторожно сливают. При этом важно избегать введения избытка желтой кровяной соли, в присутствии которого не образуется осадок берлинской лазури.

Действие, подобное железу, оказывают медь, цинк и другие металлы. Содержание меди в электролите допускается 5-7 г/л.
Необходимо иметь в виду, что ванны хромирования мало чувствительны к примесям других металлов. Поэтому при неполадках в работе ванны не следует искать причину в загрязнении ее теми или иными соединениями металлов.

Безусловно вредное действие на процесс хромирования оказывает азотная кислота. Даже при малых количествах HNO3 в электролите, около 0,1-0,2 г/л, осадки хрома получаются темные. Поэтому примесь азотной кислоты в электролите не допускается.

Работа хромовой ванны

Залогом успеха при хромировании является правильность выбора режима электролиза, а также соблюдение его при хромировании. Совершенно не допускаются отклонения от установленной величины плотности тока и температуры электролита. Колебание последней допускается в пределах +- 1о. Для получения одинаковой плотности тока, на одновременно загруженных в ванну деталях необходимо руководствоваться следующими правилами. Подвески и контакты (крючки, крючки с прижимами и т.п.) должны изготавливаться из одинаковых материалов. Поперечное сечение токопроводящих частей подвесок должно быть рассчитано на требуемую силу тока без значительного нагревания. Качество контактов при хромировании ввиду применения больших плотностей тока имеет исключительно важное значение. Поэтому поверхность контактов необходимо тщательно очищать от коррозии и всякого налета электролита.

Кроме того, расстояние между изделиями и анодами в ванне для всех подвесок должно быть одинаковым. Несоблюдение этих требований может привести к неоднородности покрытия по толщине слоя хрома, образованию так называемого “пригара” на одних деталях и матовых осадков на других.

В процессе хромирования не допускаются перерывы тока, так как при повторном наращивании происходит отслаивание хрома. Это можно наблюдать либо непосредственно после хромирования, либо после механической обработки, в результате которой верхний слой хрома осыпается. Повторное хромирование допустимо, если изделие после перерыва тока подвергнуть анодному травлению в течение 30-40 сек. при плотности тока 25-30 а/дм2, а затем, изменив направление тока, продолжать хромирование. При этом осаждение хрома следует начинать с относительно низких катодных плотностей тока (но не ниже 20-25 а/мд2), и постепенно увеличивать до установленной величины.

При хромировании рельефных деталей рекомендуется в начале электролиза произвести “толчок тока”; это особенно целесообразно в отсутствии фигурного анода. Этот прием состоит в том, что электролиз начинают при плотности тока, примерно, вдвое больше, чем следует, а спустя 1-2 мин., величину ее постепенно снижают до нормальной. Благодаря “толчку тока” удается осадить хром на углубленных участках изделия.

Удаление покрытия

Недоброкачественные хромовые покрытия могут быть легко удалены с поверхности изделия.
Хромированные детали, изготовленные из стали и сплавов на медной основе, обрабатывают при комнатной температуре в соляной кислоте, разбавленной 1:1. Растворяется хром достаточно энергично; для ускорения процесса раствор подогревается до 35-40о. Для удобства наблюдения за растворением хрома детали следует загружать в ванну на сетках из винипласта.

Этот способ непригоден для деталей, насыщение которых водородом не допускается, например, для чугунных поршневых колец. Для таких деталей применяется способ, состоящий в анодном растворении хрома в щелочи.

Для удаления хрома изделие завешивают на анодную штангу в ванне с 15-20-процентным раствором каустической соды. Анодное травление производят при комнатной температуре и анодной плотности тока 10-15 а/дм2. Катодами служат стальные пластины. В растворе не допускается присутствие ионов хлора, способствующих растворению основного металла детали.

Удаление хлора можно производить также путем анодного растворения покрытия в хромовом электролите. Однако делать это в ванне хромирования не рекомендуется ввиду загрязнения электролита железом и сильного увеличения концентрации трехвалентного хрома. Этот способ может быть рекомендован для удаления хрома с алюминиевых деталей. Образующаяся при этом на поверхности алюминия окисная пленка удаляется зачисткой ее наждачным полотном или растворением в щелочи.

ОСНОВНЫЕ ДЕФЕКТЫ ХРОМОВЫХ ПОКРЫТИЙ

Соблюдение режима электролиза и своевременное корректирование электролита служат залогом получения доброкачественного хромового покрытия. Низкое качество подготовки поверхности перед покрытием и отступления от установленной технологии являются основными причинами возникновения дефектов.

Дефекты покрытий

Вид дефекта Причины возникновения и способы устранения
Отслаивание покрытия а) Плохая механическая или химическая подготовка поверхности изделия перед покрытием.Б) Деталь перед хромированием недостаточно прогрелась в электролите. Резко снизилась температура электролита, например вследствие добавления холодной воды во время электролиза. Резко увеличилась плотность тока.В) Перерыв тока в процессе хромирования.
Отслаивание хрома вместе с подслоем никеля Недостаточное сцепление никеля с основным металлом детали; неправильный pH никелевого электролита.
Темные с коричневым оттенком и “пригаром” (частой сыпью) покрытия Недостаточное содержание серной кислоты: отношение CrO3/H2SO4 около 200 и более
Серые с равномерной сыпью покрытия. Кроющая способность электролита снизилась. Высокое содержание в электролите трехвалентного хрома. Сильное загрязнение электролита железом или медью.
Отсутствие хрома на углубленных участках поверхности изделия Плохая кроющая способность электролита. Необходимо произвести “толчок тока” перед покрытием.
Отсутствие покрытия на отдельных участках поверхности изделия Экранирование участка поверхности изделия другим изделием на той же подвеске или соседней подвеской.
Шелушение покрытия или отложение очень тонкого слоя хрома наряду с образованием грубых толстых осадков на неизолированных участках подвески Неудовлетворительный контакт между деталью и подвеской.
Отсутствие хромового покрытия вокруг отверстий Не произведена зачеканка отверстий свинцом.
Серое покрытие с сильно шероховатой поверхностью Значительная пористость основного металла
Большое количество мелких точечных углублений Неправильное положение детали в ванне, препятствующее быстрому удалению пузырьков водорода с некоторых участков поверхности
Серое покрытие на нижней части детали Малое расстояние между нижней частью детали и дном ванны. Нормальное расстояние между деталью и дном ванны должно составлять не менее 70-100 мм

ТЕХНОЛОГИЯ ХРОМИРОВАНИЯ

Особенности подготовки деталей к хромированию

Подготовка поверхности детали к защитно-декоративному и износостойкому покрытию хромом имеет много общего. Последовательность технологических операций следующая:

1) механическая обработка поверхности (шлифование или полирование)

2) промывка органическими растворителями для удаления жировых загрязнений и протирка тканью

3) заделка отверстий и изоляция участков поверхности детали, не подлежащих хромированию

4) монтаж подвески

6) промывка в воде

Требования к механической подготовке. Перед покрытием поверхность детали обрабатывается по тому классу чистоты, который указан для готовой детали.

После механической обработки на поверхности детали не должно быть неметаллических включений, а также раковин, трещин и глубоких рисок, т.к. хром хорошо воспроизводит все эти дефекты.

Зачеканка отверстий и изоляция поверхности. Отверстия, если таковые имеются на поверхности изделия, перед хромированием должны быть закрыты свинцом или другим стойким в хромовой кислоте материалом. В противном случае вокруг отверстия остаются не покрытые хромом участки. Зачеканка производится заподлицо с хромируемой поверхностью. По окончании изоляции, подлежащие хромированию участки, необходимо тщательно очистить от загрязнения лаком. Поверхность зачищают наждачным полотном №0 и 00.

Монтаж подвески. При монтаже подвески на деталь необходимо проследить за тем, чтобы детали не закрывали друг друга и все участки их поверхности, по возможности, одинаково отстояли от поверхности анода.

Обезжиривание. При удалении с поверхности детали жировых загрязнений следует иметь в виду, что стальные закаленные тонкостенные детали, работающие при значительных удельных нагрузках, не допускается обезжиривать на катоде; в этом случае применяется анодное обезжиривание или обезжиривание химическим способом.

Декапирование. Перед хромированием стальные и чугунные детали подвергаются анодному декапированию в течение 30-90 сек. при плотности тока 25-40 а/дм2. Изделия из меди и медных сплавов анодному декапированию не подвергаются.

Защитно-декоративное хромирование

Декоративному хромированию подвергаются детали из стали, меди, латуни, алюминия, алюминиевых и цинковых сплавов.
При декоративном покрытии стальных изделий хромом (ГОСТ 3002-45) хром является наружным слоем многослойного покрытия: медь (осажденная в цианистом электролите) – медь (осажденная в кислом электролите) – никель – хром или никель – медь (кислая) – никель – хром.

Покрытия молочным хромом

При осаждении хрома на многослойное покрытие защита основного металла детали от коррозии осуществляется прослойкой из меди и никеля.

В ряде случаев покрытие должно обеспечить не только защиту от коррозии, но и высокую стойкость против механического износа. Получение такого хромового покрытия может состоять в осаждении молочного хрома и увеличении толщины покрытия.

На пористость участков хрома сильное влияние оказывают режим электролиза и толщина покрытия. При увеличении толщины покрытия пористость блестящего хрома возрастает, а пористость молочных осадков понижается. Поэтому молочные осадки хрома лучше защищают основной металл детали от коррозии, обладают более высокой коррозионной стойкостью, чем блестящие осадки.

Неодинаковая коррозионная стойкость хромовых осадков объясняется различной степенью пассивности хрома на поверхности покрытия и по граням трещин.

Однако, несмотря на более высокую пассивность и химическую стойкость молочных осадков хрома по сравнению с блестящими, они плохо защищают деталь при одновременном действии на нее коррозионной среды и знакопеременной нагрузки.

Износостойкие покрытия хромом

Износостойкое хромирование получило три основных направления:

1) повышение износостойкости новых деталей машин и инструмента, подвергающихся механическому износу в процессе работы

2) восстановление размеров изношенных деталей

3) исправление деталей, размеры которых оказались заниженными при механической обработке

Толщина хрома при износостойком покрытии хромом в большинстве случаев составляет 0,03-0,3 мм, в отдельных случаях ее увеличивают до 1,0 мм. Как правило, слой охлажденного хрома должен иметь одинаковую толщину по всей поверхности покрытия.

Металл детали, являющийся основой для слоя хрома, должен иметь достаточно высокую твердость. Это особенно касается деталей, работающих при высоких удельных нагрузках при сосредоточенном их действии на отдельных участках поверхности покрытия.
При выборе технологического процесса хромирования необходимо считаться с условиями эксплуатации деталей. Если смазка трущихся поверхностей затруднена, а удельные нагрузки достаточно высоки, то следует применять покрытие пористым хромом. Во всех прочих случаях прибегают к осаждению плотных хромовых покрытий.

Наиболее часто износостойкому хромированию подвергаются стальные и чугунные детали машин. Химический состав металла покрываемой детали редко служит препятствием к хорошему сцеплению. Стали с высоким содержанием вольфрама и кобальта, а также высокоуглеродистые и высококремнистые чугуны нельзя покрывать хромом. Также трудно получить хорошее сцепление при хромировании деталей, поверхностный слой которых испытывает значительные внутренние напряжения, например, в результате неправильно проведенной закалки.

Условия хромирования

Процесс износостойкого хромирования по сравнению с защитно-декоративным обладает некоторыми особенностями:

1) Напряжение на клеммах ванны более (около 5,5 в)

2) Плотности тока, применяемые при хромировании, более высокие.

3) Толщина слоя хрома несоизмеримо больше, что является причиной значительной продолжительности процесса, достигающей в отдельных случаях 24 час.

4) Режим электролиза следует поддерживать в строго установленных пределах. Отклонения от установленной величины плотности тока и температуры электролита в процессе электролиза могут вызвать дополнительные напряжения в слое осажденного хрома.

5) Хромированию подвергаются обычно стальные и чугунные детали машин без покрытия промежуточным слоем какого-либо другого металла.

Режимы хромирования, обеспечивающие получение блестящих (более твердых) и молочных (сравнительно мягких и эластичных) осадков, выбираются в зависимости от назначения деталей, условий их службы. Ниже приведены основные режимы хромирования для получения осадков того или другого типа:

Осаждение блестящего хрома

Осаждение молочного хрома

Осаждении молочно-блестящего (дымчатого) хрома

При выборе режима хромирования следует считаться с рельефностью детали и формой применяемого анода, определяющими степень неравномерности распределения тока между ближними и дальними участками детали.

При хромировании может оказаться, что отдельные участки поверхности детали не покрываются хромом. Для предупреждения этого рекомендуются следующие меры.

При покрытии хромом деталей, имеющих некоторый рельеф, или при одновременном покрытии однотипных деталей, смонтированных на нескольких подвесках, хромирование следует начинать с толчка тока. При этом плотность тока должна быть, примерно, в 1,5 раза больше заданной. Продолжительность толчка тока составляет 2-3 мин., затем плотность тока постепенно, в течение нескольких минут, снижают до установленной величины.

Если по техническим причинам невозможно создание толчка тока, то хромирование следует начинать хотя бы при установленной величине плотности тока или близкой к ней. Совершенно не допускается начинать электролиз с небольшой плотности тока, а затем повышать ее до требуемой величины.

Размерное хромирование. Сущность размерного хромирования состоит в том, что детали покрываются слоем хрома точно до заданного размера и направляются в производство без последующей механической обработки. Размерное хромирование создает экономию в хромовом ангидриде и расходах на механическую обработку детали. При размерном хромировании требуется осадить слой хрома совершенно одинаковой толщины и точно сохранить первоначальную форму детали, например, при хромировании цилиндрических деталей не допускается конусность или овальность.

Для размерного хромирования требуется применение фигурных анодов, специальных подвесных приспособлений, позволяющих жестко монтировать детали и аноды, а также изолирующих экранов. Монтаж должен выполняться таким образом, чтобы в процессе электролиза концентрация силовых линий тока была одинаковой на всей поверхности хромируемой детали.

Значение величины выхода по току и плотности тока при хромировании позволяет точно определить время, необходимое для осаждения требуемой толщины стоя хрома. Расчет производится по формуле

где τ – время в мин.,
δ – толщина покрытия в мк,
Dk – катодная плотность тока в а/дм2,
η – выход по току в %.

Однако для получения доброкачественного слоя хрома строго определенной толщины необходимо, чтобы поверхность покрытия не была шероховатой или пористой. Поэтому следует обратить внимание на чистоту поверхности детали перед покрытием (отсутствие царапин, пор и т.д.) и правильность состава электролита.

Если к покрываемой детали предъявляется высокие требования в смысле чистоты поверхности и границ допуска на изготовление, то размерное хромирование пригодно только при сравнительно малых толщинах слоя хрома. Примером могут служить гладкие калибры, хромируемые на толщину слоя 10-30 мк. Сравнительно толстые покрытия возможно наносить при размерном хромировании деталей с более широкой границей допусков, например, цилиндров двигателей внутреннего сгорания. Для этих деталей допускается некоторая конусность и эллипсность, величины которых практически лежат около 0,01 мм.

Хромирование алюминия

При непосредственном хромировании алюминиевых сплавов основной задачей является подготовка поверхности детали к покрытию. Для этого деталь из алюминия или алюминиевого сплава протирается тканью, смоченной бензином, и обезжиривается в течение 3-5 мин. в растворе: 50 г/л Na2CO3, 50 г/л Na3PO4, 30 г/л жидкого стекла при T = 60-65о. После промывки в горячей и холодной воде, деталь обрабатывают в цинкатном растворе (200 г/л ZnSO4  7H2O, 200 г/л NaOH) в течение 30-40 сек., затем промывают водой и производят обработку в разбавленном 1:1 растворе HNO3 в течение 5-7 сек. Деталь промывается в воде и вновь погружается в тот же цинкатный раствор на 10 сек. После промывки деталь замешивается в ванну хромирования (желательно под током) и хромируется при обычных режимах. Хорошие результаты дает также гидропескоочистка с завешиванием деталей, покрытых мокрым песком, под током в ванну хромирования.

Перспективы развития хромирования

Обзор способов хромирования и областей его применения свидетельствуют о широком использовании хрома в промышленности. Однако не все возможности технологии хромирования исчерпаны. В настоящее время исследования в области хромирования производятся в различных направлениях.

Однако из таких направлений имеет в виду интенсификацию и стабилизацию процесса хромирования. Этот вопрос одновременно решается различными путями.

Первый путь состоит в повышении катодной плотности тока при хромировании до 200-300 а/дм2. Наряду с повышением катодной плотности тока для получения блестящих осадков хрома необходимо также увеличивать температуру электролита, т.е. придерживаться рабочего интервала хромовой ванны. При этом скорость осаждения хрома возрастает не только за счет применения более высоких плотностей тока, но также за счет увеличения выхода по току.

Второй путь состоит в повышении выхода хрома по току при помощи понижения температуры хромирования и изменения состава ванны. Покрытие имеет серо-матовый цвет, но легко полируется: пористость его ниже, а пластичность выше, чем у обычных хромовых покрытий.

Третий путь состоит в изыскании возможности применения растворов с низкой валентностью хрома, обеспечивающих к тому же высокий выход по току.

Наряду с этим важное значение придается стабильной работе электролитов промышленного состава. Так, НИИХИММАШ предлагает саморегулирующийся электролит, имеющий состав: ромового ангидрида – 250 г/л, сернокислого стронция 5 г/л, кремнефтористоводородного натрия – 20 г/л, двухромовокислого калия – 20 г/л. В таком электролите содержание сульфат иона автоматически регулируется введением труднорастворимой соли стронция.

Второе направление имее целью получение хромовых покрытий с более высокими свойствами. Сюда следует отнести работы по получению особенно твердых, износостойкиз и коррозионностойких покрытий посредством карбидизации слоя электролитического хрома в парах бензина при T = 1050о. Большой интерес представляют работы по получению хромовых покрытий, хорошо удерживающих на поверхности смазку, что достигается наложением при хромировании переменного тока на постоянный. Для получения пористого хрома высокого качества большое значение имеют работы по осаждению пористых хромовых покрытий токами переменной полярности.

Таким образом, накопившихся к настоящему времени опыт по практическому применению хромирования и новые исследования в этой области создают предпосылки для совершенствования технологии процесса электролиза и дальнейшего улучшения свойств хрома.

Техника безопасности

При приготовлении электролита и эксплуатации ванны хромирования необходимо соблюдение правил техники безопасности. Хромовый электролит легко окисляет органические вещества, поражает кожу и слизистые оболочки дыхательных путей.

Рабочие, обслуживающие хромовые ванны, должны снабжаться резиновой спецодеждой: фартуками, перчатками и сапогами. Для предохранения глаз необходимо иметь защитные очки.

Ванна хромирования должна быть обеспечена безупречно действующей бортовой вентиляцией. Перед работой носовую полость необходимо смазывать мазью, состоящей из двух частей вазелина и одной части ланолина.

При попадании хромовой кислоты на кожу рук, образовавшееся темное пятно следует смыть раствором, состоящим из одной части спирта, одной части соляной кислоты и двух частей воды.

Хромировочный участок цеха должен быть снабжен песком и огнетушителями. Бензин, керосин, ветошь, целлулоид и т.п. горючие и легковоспламеняющиеся материалы допускается иметь на участке в количествах, необходимых лишь для текущей работы. Хранить их следует в металлических плотно закрывающихся ящиках.

Гальваническое покрытие цинком с хроматированием

Цинк, по своей природе, является реакционноспособным металлом. В условиях повышенной влажности и в химически агрессивных средах цинковые покрытия довольно быстро корродируют. Это наглядно проиллюстрировано на графике ниже (рисунок 1). При коррозии неизбежно портится и внешний вид изделий.

Рисунок 1 — Зависимость скорости коррозии цинковых покрытий от рН среды.

В сухом воздухе цинковые покрытия корродируют с образованием очень тонкий пленки оксида цинка ZnO. В присутствии влаги оксид цинка превращается в гидроксид Zn(OH)2. Данные продукты рыхлые и проницаемые для окружающей среды, поэтому не препятствуют дальнейшему развитию коррозионного процесса, вплоть до коррозии основы (рисунок 2). Ситуация усугубится, если продукты будут выветриваться или смываться с поверхности цинка — тогда скорость коррозии еще больше возрастет.

Рисунок 2 — Белая и красная коррозия на оцинкованных стальных изделиях.

В дальнейшем гидроксид цинка будет реагировать с углекислым газом из воздуха, в результате чего изделия покроются неравномерно серым слоем карбоната цинка. Важным условием для протекания этой реакции является высыхание поверхности цинка. В отличие от своих прекурсоров, карбонат цинка компактен и инертен по отношению к воде, поэтому он способен приостановить коррозию. Но при этом внешний вид изделия, безусловно, испортится. Без карбоната цинка коррозия покрытия активно продолжится. Скорость коррозии цинка определяется временем воздействия коррозионной среды, температурой, наличием активаторов (хлориды и пр.).

Данный механизм коррозии цинка описывается следующими реакциями:

O2 + 2H2O + 4e = 4OH-

Zn — 2е = Zn2+ 2Zn + O2 = 2ZnO Zn + 2H2O = Zn(OH)2 + H2 ZnO + H2O = Zn(OH)2 Zn(OH)2 + CO2 = ZnCO3 + H2O 2ZnO + H2O + CO2 = 2ZnCO3•3Zn(OH)2

Таким образом, несмотря на высокую коррозионную активность металлического цинка, в средах, в которых на нем смогут образоваться инертные и компактные продукты коррозии, он будет устойчив длительное время. Как упоминалось выше, естественным путем на цинке может образовываться карбонат. Однако пассивные пленки можно создать искусственно, при этом управляя их свойствами и цветом. После операции пассивации на поверхности цинка образуется тонкая пленка продуктов, значительно тормозящих коррозионный процесс.

Особенности процесса хроматирования и свойства покрытий

Общей проблемой хроматирования, за исключением использования растворов не содержащих хроматов (вариант С) является проблема очистки сточных вод и экологической безопасности. Кроме того, использование концентрированных растворов может привести к растворению тонких пленок цинкового или кадмиевого покрытия в углубленных местах изделий. Следует также учитывать, что при нагреве свыше 60С защитные свойства хроматных пленок снижается. Общим свойством хроматных пленок является также их низкая стойкость к истиранию и средняя или низкая пластичность.
Преимущества хроматных пленок кроме очевидного увеличения защитных свойств покрытий является способность восстановления небольших повреждений покрытия со временем («самозалечивание» хроматной пленки). Для резьбовых деталей, подвергнутых хроматированию преимуществом является их легкая «свинчиваемость».

Гальванические производства предлагают услуги хроматирования с использованием специальных добавок и составов, позволяющих получить, например, пленки цвета хаки. Детали с такими покрытиями используются в военной технике. Или пленки глубокого черного цвета, которые обладают повышенной коррозионной защитой и позволяют заменять химическое оксидирование металлических поверхностей.

Пассивация цинковых покрытий.

Различают хроматирование, хромИтировнаие, фосфатирование и оксидирование цинка. Чаще всего применяют первые два способа. Фосфатирование имеет узкоспециализированную направленность — под окраску или под пропитку маслом. Оксидирование используют как один из вариантов декоративного чернения цинка. Все эти способы обработки создают на цинке так называемые конверсионные покрытия, которые содержат в себе не только компоненты раствора, но и ионы металла-основы.

Самыми тонкими являются хромитные пленки. Обычно они бесцетные или голубоватые, но могут демонстрировать интерференционные оттенки красного, фиолетового, синего, зеленого, слабо желтого цветов, особенно если смотреть на белом фоне. Далее, в порядке возрастания толщины, идут радужные желтые, коричневые, бронзовые, оливковые и черные тона. Физические изменения в металлической поверхности также влияют на видимый цвет покрытой поверхности.

2.1 Радужная пассивация цинка (хроматирование).

Радужная пассивная пленка является одной из наиболее часто применяемой на цинковых покрытиях (рисунок 3), наряду с бесцветной. Она имеет толщину 0,25-0,5 мкм. Радужная пассивация лучше защищает цинк от коррозии, чем бесцветная. Ее стойкость в камере солевого тумана составляет 200-300 часов. За счет наличия в радужной хроматной пленке водорастворимых соединений шестивалентного хрома она обладает важным свойством «самозалечивания» — при повреждении она способна восстанавливаться.

Радужная хроматка

Рисунок 3 — Пример оцинкованной детали с радужным хроматированием.

Хроматная пленка плотная и защищает цинк от коррозии лучше, чем пленка естественных карбонатов. Соответственно, время до появления первых очагов коррозии увеличивается, потускнение покрытия идет очень медленно и равномерно, без пятен. Также на хроматированной поверхности не остается «пальцев».

Кроме этого, хроматы являются как хорошей основой под окраску, так и обладают самостоятельными декоративными свойствами.

2.1.1 Механизм хроматирования цинка.

Пассивацию цинковых покрытий, нанесенных гальваническим путем, чаще всего ведут в растворах на основе хромовой кислоты или ее солей. Поэтому такую операцию и называют хроматированием. Хроматы могут принимать участие в ряде сложных реакций, в частности в присутствии определенных добавок, давая смешанные соединения.

В растворе хромовой кислоты без посторонних анионов цинк растворяется медленно и конверсионные слои не образуются. Однако, присутствующие в растворе анионы, например сульфаты, каталитически ускоряют коррозию цинка в подкисленном хроматном растворе с образованием конверсионных пленок.

Упрощенно процесс хроматирования можно описать по стадиям:

1. Цинк растворяется (ионизируется) кислотой, выделяющийся водород реагирует с шестивалентным хромом с получением трехвалентного.

2. В слое раствора, прилегающем к покрытию, наблюдается локальное повышение рН и возрастание концентрации инов цинка.

3. Цинк и хром образуют нерастворимые и слаборастворимые соединения, т.е. конверсионную пленку. Побочные продукты реакции поступают в раствор.

Для успешного протекания реакции необходимо, чтобы первично полученный конверсионный слой был проницаем для раствора хроматирования.

Рассмотрим механизм хроматирования подробнее (рисунок 4).

Рисунок 4 — Схематичное изображение механизма хроматирования цинковых покрытий.

• Первые реакции при хроматировании имеют следующий характер:

Zn + 2H+ = Zn2+ + 2H

Cr2O72- + 14H+ + 6e = 2Cr3+ + 7H2O

• Эти реакции способствую повышению рН, в результате чего становятся возможными следующие реакции:

Cr3+ + 3OH- = Cr(OH)3

(в дальнейшем возможна реакция 2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O, которой объясняется присутствие в покрытии трехвалентного хрома)

Cr2O72- + H2O = 2CrO42- + 2H+

Zn2+ + CrO42- = ZnCrO4 (этим объясняется присутствие цинка в хроматных пленках)

Zn2+ + 2OH- = Zn(OH)2

2Cr(OH)3 + H2CrO4 = Cr(OH)3•Cr(OH)CrO4 + H2O (хромат хрома является основой хроматной пленки)

• Считается также, что конечным продуктом реакции может быть оксид хрома:

Cr2O72- + 8H+ + 6e = Cr2O3 + 4H2O 2Zn + 6H+ + 2Cr2O72- + 2e = 2ZnCrO4 + Cr2O3 + 3H2O

В описанном механизме возможны отклонения, зависящие от состава раствора и кислотности, практически не влияющие на конечные продукты.

Радужная конверсионная пленка обладает выраженными адсорбционными свойствами, поэтому в нее может входить некоторое количество компонентов раствора.

Диапазон рН, наиболее подходящий для ионизации цинка, можно увидеть на рисунке 1. Исходя из графика оптимальным можно считать диапазон 1-4. Чем ниже рН, тем сильнее растворяется цинк и тем выше вероятность того, что раствор также окажет осветляющее действие. Скорость образования конверсионного покрытия также наиболее высока при более низких значениях рН и постепенно уменьшается с увеличением рН.

2.1.2 Структура и состав радужной хроматной пленки на цинке.

Хроматная пленка имеет слоистую структуру. Нижний слой — гидроксид цинка. Выше располагается смесь гидроксидов хрома (III), цинка и их гидроксохроматов. Внешний слой сформирован соединениями шестивалентного хрома.

Свежеосажденные хроматные пленки аморфные, гелеобразные и мягкие, имеют низкую механическую прочность, нуждаются в бережном обращении. При высыхании они сжимаются и затвердевают, становятся трудно смачиваемыми и устойчивыми к воздействию водных растворов. Отверждение покрытия продолжается в течение 24 часов после высыхания.

Точный состав и структуру хроматных пленок установить довольно сложно. В дополнение к этому состав пленки варьируется в зависимости от параметров ванны и самого процесса.

Так, свойства хроматных пленок зависят от:

• Состав, концентрация и кислотность раствора хроматирования;

• Качество самого цинкового покрытия: наличие примесей, структура, степень блеска, шероховатость.

• Время закрепления на воздухе. • Длительность обработки и промывки; • Температура ванны хроматирования и промывки после нее.

Усредненый состав радужных хроматных пленок приведен в таблице ниже:

Компонент %масс.
Хром(VI) 7-12
Хром (III) 25-30
Сера в виде сульфатов 2,0-3,5
Цинк 2,0-2,5
Натрий 0,2-0,5
Вода 15-20
Кислород Остальное

Наиболее часто встречающееся отношение трехвалентного хрома в покрытии к шестивалентному равно 28:8.

Соединения трехвалентного хрома в пленке нерастворимы, придают ему твердость, влияют на коррозионную стойкость.

Соединения шестивалентного хрома более растворимы, оказывают определяющее влияние на коррозионную стойкость и эффект самозалечивания. Растворимость хроматов возрастает с повышением температуры внешней жидкой среды. Сухие хроматные пленки растворяются хуже, чем свежеосажденные влажные. Минимальная растворимость пленки наблюдается после хранения изделий в течение 48 часов в теплых сухих помещениях.

При пересушивании или термическом ударе хроматная пленка трескается (в отличие от пленок на основе трехвалентного хрома). Эффект растрескивания проиллюстрирован на рисунке 5. Пересушенная хроматная пленка становится полностью нерастворимой в воде.

Рисунок 5 — Микроизображения хроматной и хромитной пленки на цинке (слева) до и после термическго удара в 200о С. Справа трехмерное микроизображение трещин на хроматной пленке после термоудара.

Растрескиванием, обезвоживанием и уменьшением растворимости хроматов объясняется снижение защитной способности хроматной пассивации при нагреве выше 60о С.

2.1.3 Влияние условий осаждения хроматных пленок на их свойства.

• Пористость.

До сушки хроматные пленки пористы. Чем толще пленка, тем меньше в ней пор. Аналогично, чем выше класс чистоты обрабатываемой поверхности и чем больше блеск цинкового покрытия, тем менее пористы хроматные пленки.

Чем больше температура раствора хроматирования, тем более твердые пленки из него образуются.

• Толщина (масса).

Толщина хроматных пленок зависит от состава раствора, особенно от рН при постоянном содержании сульфатов. Чем ниже рН, тем толще пленки. Интересен эффект одновременного повышения рН и содержания сульфатов. Масса покрытия при том проходит через максимум. Толстые хроматные пленки менее износостойки, при высыхании пленок износостойкость возрастает.

Масса полученного хроматного покрытия и количество растворяющегося цинка в растворе бихромата натрия в зависимости от концентрации серной кислоты (200 г/л) приведены на рисунке 6.

Рисунок 6 — Зависимость массы хроматной пленки (1) и количества растворяющегося цинка (2) в растворе бихромата натрия (200 г/л) в зависимости от концентрации серной кислоты. Время обработки 30 секунд.

На рисунке 7 показано количество растворенного цинка и масса хроматной пленки, в зависимости от рН раствора хроматирования.

Зависимость толщины съема цинка от pH раствора

Рисунок 7 — Зависимость толщины съема цинка (1) при хроматировании и массы хроматной пленки (2) на цинке в зависимости от рН хроматирующего раствора.

На рисунке 8 показано влияние времени погружения деталей на массу хроматной пленки при различных концентрациях серной кислоты в растворе хроматирования.

Рисунок 8 — Влияние времени выдержки деталей в хроматирующем растворе на массу хроматной пленки в зависимости от количества серной кислоты.

При постоянной кислотности раствора и одинаковой концентрации сульфат-ионов толщина хроматных пленок выше, когда раствор содержит в качестве добавки трехвалентный хром. Чем выше содержание трехвалентного хрома (при постоянной концентрации сульфата), тем выше масса получаемого покрытия и тем выше скорость растворения цинка. Это связано с возможным снижением рН раствора в результате образования хромата хрома и выделения серной кислоты по реакции:

Na2Cr2O7 + Cr2(SO4)3 + 3H2O = Na2Cr2O4 + Cr2O3•CrO3 + 3H2SO4

Как уже упоминалось ранее, кислотность раствора вблизи поверхности цинка заметно снижается в процессе образования хроматного покрытия. Хотя это повышение рН является условием для образования защитного покрытия, но это же повышение рН также ингибирует дальнейшее растворение цинка и, следовательно, образование хроматного покрытия. Таким образом, более высокая буферная емкость растворов, содержащих трехвалентный хром, способствует образованию более толстых покрытий.

Правильно составленный раствор хроматирования должен поддерживать содержание трехвалентного и шестивалентного хрома в определенных пределах. Однако изменение рН может нарушить это соотношение и, таким образом привести, к плохому качеству покрытия.

С ростом температуры раствора хроматирования толщина пленок возрастает, как показано на рисунке 9. Сильное же повышение температуры, особенно выше 50о С, значительно снижает их толщину. Считается, что это связано с повышенным образованием в хроматных пленках негидратированных продуктов реакций.

Рисунок 9 — Зависимость массы хроматной пленки от времени выдержки оцинкованных деталей в растворе хроматирования при различных температурах (0-30о С).

Важнейшим фактором цвета при хроматировании является отношение шестивалентного хрома к сульфатам в растворе. Прозрачные и золотисто-желтые покрытия могут быть получены из растворов с низкими суммарными концентрациями.

• Адгезия и пластичность.

Адгезия хроматного покрытия к цинку (если соблюдены параметры техпроцесса) очень высокая, т.к. реакция его образования гетерогенная и оно включает в себя как компоненты раствора, так и компоненты основы. Хроматные пленки в достаточной степени пластичны, а трещины, полученные при их деформации восстанавливаются за счет эффекта самозалечивания.

2.1.4 Окрашивание хроматированных оцинкованных поверхностей.

Хроматные пленки обладают важными свойствами, делающими их пригодными для использования в качестве подложек под окрашивание: • Повышают адгезию красок (уступают в этом отношении фосфатным основам). • Уменьшают расход. Низкая толщина и пористость хроматных пленок приводит к чрезвычайно малому поглощению лаков или других органических материалов. Это дает определенные экономические преимущества перед фосфатными основами. • Хроматные покрытия ингибируют коррозию основного металла и тем самым продлевают долговечность органического покрытия. Хроматное покрытие защищает основной металл от агрессивных веществ, которые могут проникать через поры в органическое покрытие. • Хроматные покрытия предотвращают нежелательные реакции между компонентами лакокрасочного покрытия и металлом подложки.

Из-за своего студенистого и аморфного характера хроматные покрытия не влияют ни на внешний вид, ни на текстуру, а также не вызывают механического загрязнения или меления нанесенного лакокрасочного покрытия. Перед покраской оцинкованные хроматированные изделия можно хранить в течение длительного времени без какой-либо опасности поглощения водяного пара (они гидрофобны), что может привести к растрескиванию или отслаиванию нанесенных лакокрасочных покрытий.

Варианты хроматирования

В настоящее время гальванические производства используют несколько вариантов составов реактивов для хроматирования, которые позволяют получать защитные пленки различной толщины и оттенка. В таблице представлены различные варианты работы ванн химической пассивации цинковых и кадмиевых покрытий.

Растворы хроматирования и режимы процесса

Состав раствора Варианты хроматирования
А В С
Натрий двухромовокислый, г/л 200
Серная кислота, г/л 10
Хромовый ангидрид, г/л 100
Хлористый натрий, г/л 25
Аммоний молибденовокислый, г/л 4-6
Аммоний хлористый, г/л 35-50
Борная кислота, г/л 6-10
Температура, 0С 20-30 20-30
Продолжительность, сек. 5-30 5-30

По варианту А получают толстые пленки золотистого цвета. Вариант В используется для получения пленок золотисто-красного оттенка. Вариант С используется в автоматических линиях – отсутствие хроматов позволяет решить проблему экологической безопасности процесса.

Радужное хроматирование

Для получения прозрачных пленок используется двухступенчатая обработка — сначала детали помещают в раствор хромового ангидрида (150-200 г/л) и натрия сернокислого (30-45 г/л), или в раствор натрия двухромовокислого (200-250 г/л), серной кислоты (8-10 г/л), азотной кислоты (80-100 г/л) и натрия сернокислого (4-6 г/л) на 5-40 секунд. А затем, после промывки водой, детали помещают в раствор тринатрийфосфата (60-70 г/л) на 2-3 минуты.

Другие виды хромсодержащей пассивации цинка.

Кроме радужных (желтых), существуют также бесцветные, оливковые и черные хроматные пленки (рисунок 10).

Рисунок 10 — Внешний вид хроматной пленки: бесцветная, черная, радужная, оливковая.

Они отличаются не только внешним видом, но и коррозионной стойкостью.

• Бесцветное хромитирование цинковых покрытий применяется для эксплуатации в мягких условиях, например, в сухих отапливаемых помещениях. Бесцветные пленки обладают наименьшей толщиной и наименьшей коррозионной устойчивостью. Такие пленки хорошо сочетаются с блестящими цинковыми покрытиями.

Оливковое хроматирование используют в случае, когда необходимо обеспечить наибольшую коррозионную устойчивость изделий. Оливковые пленки обладают наибольшей толщиной и наилучшими защитными характеристиками.

Черные хроматные пленки используют в качестве защитно-декоративного покрытия.

Сравнение внешнего вида различных хроматных пленок после коррозии дано на рисунке 11.

Внешний вид оцинкованных пластин с в 3% хлориде натрия

Рисунок 11 — Внешний вид оцинкованных пластин с различными видами пассивации после 7 суток в 3% растворе хлорида натрия.

Область выше красной линии — солевая атмосфера, ниже линии — область солевого раствора 3% хлорида натрия. Время воздействия — 7 суток. Видно, что наименьшее коррозионное воздействие было произведено на радужную и оливковую хроматную пленку пленку. При этом бесцветное хромитирование показало наихудший результат. Черная хроматная пленка показала достойный результат благодаря промасливанию.

В таблице ниже приведена сравнительная характеристика цинковых покрытий с различными видами хроматирования:

Тип хроматирования Толщина пленки, мкм Содержание Cr(VI), мг/м2 Стойкость в 5% солевом тумане, часов
Бесцветное 0.025-0.08 10-30 20-80
Желтое (радужное) 0.25-0.5 80-220 200-300
Оливковое 1.0-1.5 300-360 400-450
Черное без промасливания 0.25-1.0 80-400 20-60

Следует также отметить, что соединения шестивалентного хрома, которые присутствуют в хроматных пленках, весьма токсичны. Поэтому в качестве альтернатив хроматированию цинковых покрытий предлагаются защитные хромИтные пленки на основе относительно безвредного трехвалентного хрома, а также фосфаты. В настоящее время, несмотря на все успехи в развитии хромИтных конверсионных покрытий на цинке, они еще не стали полноценной заменой хроматных. Это связано в первую очередь с отсутствием эффекта «самозалечивания». Из-за этого наиболее уязвимыми частями хромИтированных изделий являются острые кромки, резьбы, щелевые зазоры и т.п.

ХромИтные растворы содержать соль трехвалентного хрома кобальта, никеля, а также фториды и нитраты. В основном хромИтировнаие бесцветно, но сегодня существуют и радужные композиции.

Not Found

Цинковое покрытие
1

. Цинковое покрытие является анодным по отношению к черным металлам и защищает сталь от коррозии электрохимически при температурах до 70 °С, при более высоких температурах — механически. Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов; обеспечивает свинчиваемость резьбовых деталей.
2
. Для повышения коррозионной стойкости цинковое покрытие хроматируют и фосфатируют. Хроматирование одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная.
3
. Цинковое хроматированное покрытие теряет свой декоративный вид при условии периодического механического воздействия:прикосновения инструмента, рук.
4
. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности и при опрессовке пластмассами при температуре выше 100 °С.
5
. Электрохимическое цинкование вызывает потерю пластичности сталей вследствие наводороживания. Стали с пределом прочности выше 1380 МПа цинкованию не подлежат.
6
. Покрытие обладает прочным сцеплением с основным металлом, низким сопротивлением механическому истиранию и повышенной хрупкостью при температурах выше 250 °С и ниже минус 70 °С; матовое покрытие выдерживает гибку, развальцовку. Покрытие обладает низкой химической стойкостью к воздействию продуктов, выделяющихся при старении органических материалов.
7
. Микротвердость покрытия, наносимого электрохимическим способом, в среднем, составляет 490-1180 МПа (50-120 кгс/мм2); удельное сопротивление: при температуре 18 °С составляет 5,75-10-8 Ом- м.

Кадмиевое покрытие

. Кадмиевое покрытие является анодным и защищает сталь от коррозии в атмосфере и морской воде электрохимически; в пресной воде — механически.
2
. Для повышения коррозионной стойкости кадмиевое покрытие хроматируют и фосфатируют. Хроматирование одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная. Скорость коррозии в промышленной атмосфере в 1,5-2 раза больше, чем у цинкового покрытия.
3
. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности, при опрессовке пластмассами при температуре выше 100 °С.
4
. Покрытие не рекомендуется применять для деталей, работающих в атмосфере промышленных районов; в контакте с топливом, содержащим сернистые соединения; в атмосфере, содержащей летучие агрессивные соединения, выделяющиеся при старении из органических веществ: при высыхании олифы, масляных лаков и т. п.
5
. Электрохимическое кадмирование вызывает потерю пластичности сталей вследствие наводороживания. Для деталей из стали с пределом прочности выше 1370 МПа (140 кгс/мм2) допускается кадмирование по специальной технологии.
6
. Покрытие обладает прочным сцеплением с основным металлом, хорошими антифрикционными свойствами, низкой износостойкостью; пластичнее цинкового; выдерживает запрессовку, вытяжку, развальцовку, свинчивание. Окислы кадмия токсичны. Сварка по кадмиевому покрытию не допускается.
7
. Микротвёрдость кадмиевого покрытия-340-490 МПа (35-50 кгс/мм2); удельное сопротивление при температуре 18 °С — 10,98-10-8 Ом-м.

Никелевое покрытие

. Никелевое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам. Покрытие применяется для защитной, защитно-декоративной отделки деталей, повышения поверхностной твердости, износостойкости и электропроводности.
2
. Для повышения декоративности покрытия по никелевому подслою наносят хром толщиной до 1 мкм.
3
. Увеличение коррозионной стойкости достигается сочетанием нескольких слоев никелевых покрытий с различными физико-химическими свойствами. При толщине 24 мкм защитные свойства двухслойного покрытия (без подслоя меди) в два раза, а трехслойного с заполнителем в три раза превосходят защитные свойства блестящих покрытий.
4
. Удельное сопротивление при температуре 18 °С — 7,23-10-8 Ом- м.; микротвердость блестящего покрытия — 4420-4900, полублестящего — 2940-3930 МПа; коэффициент отражения блестящего покрытия — 75 %. Допустимая рабочая температура 650 °С.
5
. Покрытие обеспечивает хорошую растекаемость припоев и получение вакуумплотных соединений при высокотемпературной пайке в различных средах без применения флюсов, а также при аргонодуговой сварке (в последнем случае без медного подслоя). Никелевое покрытие толщиной до 6 мкм может подвергаться точечной сварке.
6
. Покрытие служит барьерным слоем пой покрытия золотом, серебром, сплавом олово-свинец и другими металлами, предотвращая диффузию меди, цинка, железа и других металлов.
7
. Черное никелевое покрытие применяется для придания деталям специальных оптических и декоративных свойств. Коэффициент отражения черного никелевого покрытия — до 20 %.

Никелевое химическое покрытие

. Химическое никелевое покрытие, содержащее 3-12 % фосфора, обладают лучшими защитными свойствами по сравнению с электрохимическим никелевым покрытием. Покрытие обладает повышенной твердостью и износостойкостью и рекомендуется для деталей, работающих в условиях трения, особенно при отсутствии смазки; применяется для защиты от коррозии, для обеспечения пайки низкотемпературными припоями. Покрытие обладает повышенной хрупкостью, не рекомендуется гибка и развальцовка деталей с химическим никелевым покрытием.
2
. Покрытие рекомендуется применять преимущественно для сложнопрофилирован-ных деталей.
3
. Покрытие после термообработки при температуре 400 °С приобретает высокую твердость.
4
. Микротвердость покрытия после термообработки — 6400-11800 МПа (650-1200 кгс/мм2); удельное сопротивление при температуре 18 °С — 6,8-10-7 Ом-м

Хромовое покрытие

. Хромовое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам, обеспечивает защиту от коррозии и улучшает декоративный вид.
2
. Защитно-декоративное покрытие наносят по подслою никеля тонким зеркально-блестящим слоем до 1 мкм. Покрытие толщиной до 0,5 мкм — пористое, при увеличении толщины образуется сетка трещин.
3.
Электрохимическое хромовое покрытие может быть твердым, пористым, молочным.
4
. Твердое хромовое покрытие обладает высокой износостойкостью, жаростойкостью, низким коэффициентом трения, плохой смачиваемостью, низкой пластичностью. Покрытие эффективно работает на трение (при нанесении на твердую основу), хорошо выдерживает равномерно распределенную нагрузку, легко разрушается под действием сосредоточенных ударных нагрузок.
5
. Молочное хромовое покрытие обладает невысокой твердостью и износостойкостью, небольшой пористостью. Покрытие защищает от коррозии с сохранением декоративного вида.
6
. Наводороживание сталей сильнее при получении молочного покрытия, чем твердого.
7
. Для деталей, к которым предъявляют требования защиты от коррозии, декоративной отделки, а также износостойкости, рекомендуется применять комбинированное покрытие, состоящее из молочного и твердого хрома.
8
. Пористое покрытие повышает износостойкость деталей. Покрытие характеризуется разветвленной сеткой трещин (поры расширены дополнительным анодным травлением).
9
. Черное хромовое покрытие применяется для создания светопоглощающей поверхности; покрытие непрочно при работе на трение. Коэффициент отражения черного хромового покрытия — 3-4 %; покрытие стабильно в вакууме.
10
. Нанесение хромовых покрытий на сложнопрофилированные детали затруднено из-за низкой рассеивающей способности хромовых электролитов.
11
. Для повышения коррозионной стойкости детали с хромовым покрытием могут подвергаться дополнительной обработке (гидрофобизированию, пропитке и т. п.). При эксплуатации в условиях непосредственного воздействия морской воды для дополнительной зашиты хромированных деталей рекомендуется периодическое возобновление смазки.
12
. Микротвердость твердого хромового покрытия — 7350-10780 МПа (750-1100 кгс/мм2), черного хромового покрытия -2940-3430 МПа (300- 350 кгс/мм2).

Медное покрытие

. Медное покрытие является катодным по отношению к стали, алюминиевым, магниевым и цинковым сплавам. Покрытие применяется в качестве технологического подслоя для уменьшения пористости и повышения сцепления других покрытий. Для защиты от коррозии как самостоятельное покрытие не рекомендуется из-за низкой коррозионной стойкости.
2
. Медное покрытие обладает высокой электро- и теплопроводностью, пластичностью, выдерживает глубокую вытяжку, развальцовку, хорошо полируется, облегчает приработку, притирку и свинчивание; в свежеосажденном состоянии хорошо паяется. С низкотемпературными припоями образует интерметаллические соединения, резко ухудшающие паяемость и прочность паяного соединения.
3
. Допустимая рабочая температура покрытия — 300 °С; микротвердость покрытия -590-1470 МПа (60-150 кгс/мм2); удельное сопротивление при температуре 18 °С- 1,68 10-8 Ом-м.

Покрытие сплавом медь — олово

. Покрытие высокооловянистым сплавом М-О(60) по отношению к стали является катодным, рекомендуется для повышения износостойкости электроконтактных деталей, а также для обеспечения пайки. Покрытие допускается применять в качестве защитно-декоративного.
2
. Покрытие стойко к воздействию щелочей, слабых органических кислот и сернистых соединений.
3
. Коэффициент отражения покрытия 60-65 %, сопротивление износу — в 4 раза больше, чем у серебряного покрытия; твердость в 5-6 раз больше твердости медного покрытия.
4
. Покрытие хорошо паяется низкотемпературными припоями с применением канифольных флюсов.
5
. Покрытие не подвержено росту нитевидных кристаллов и переходу в порошковую модификацию при низких температурах.
6
. Микротвердость покрытия — 5390-6370 МПа (550-650 кгс/мм2).

Оловянное покрытие

. Оловянное покрытие в атмосферных условиях является катодным по отношению к стали, анодным — во многих органических средах, а также по отношению к меди и ее сплавам, содержащим более 50 % меди. Покрытие рекомендуется для обеспечения пайки.
2
. Оловянное покрытие стойко к действию серосодержащих соединений и рекомендуется для деталей, контактирующих со всеми видами пластмасс и резин.
3
. Оловянное покрытие обладает хорошим сцеплением с основным металлом, эластичностью, выдерживает изгиб, вытяжку, развальцовку, штамповку, прессовую посадку, хорошо сохраняется при свинчивании. Свежеосажденное оловянное покрытие хорошо паяется. Блестящее покрытие сохраняет способность к пайке более длительное время, чем матовое.
4
. Для матового оловянного покрытия характерна значительная пористость. Пористость покрытий малой толщины (до 6 мкм) может быть снижена оплавлением покрытия или нанесением блестящего покрытия.
5
. На поверхности покрытия в процессе хранения образуются нитевидные токопроводящие кристаллы («иглы»).
6
. При эксплуатации оловянных покрытий при температуре ниже плюс 13 °С возможно разрушение покрытия вследствие перехода компактного белого олова (b-Sn) в порошкообразное серое олово (a-Sn) («оловянная чума»).
7
. Микротвердость покрытия — 118-198 МПа (12-20 кгс/мм2); удельное сопротивление при 18 °С — 11,5-10-8 Ом-м. Допустимая рабочая температура покрытия — 200 °С.

Покрытие сплавом олово — никель

. Покрытие сплавом О-Н(65) является катодным по отношению к стали; рекомендуется как защитное для деталей, подлежащих пайке; для обеспечения поверхностной твердости и износостойкости.
2
. Покрытие обладает высокой коррозионной стойкостью: стойко в условиях повышенной влажности и среде, содержащей сернистые соединения.
3
. Покрытие хорошо полируется, выдерживает запрессовку в пластмассы, вследствие высокой хрупкости не рекомендуется для деталей, подвергаемых развальцовке и ударным нагрузкам.
4
. Микротвердость покрытия 4900-5880 МПа (500-600 кгс/мм2). Допустимая рабочая температура 300-350 °С.

Покрытие сплавом олово — висмут

. Покрытие сплавом 0-Ви-(99,8) в атмосферных условиях является катодным по отношению к стали, анодным по отношению к меди и ее сплавам, содержащим более 50 % меди; рекомендуется как защитное для деталей, подлежащих пайке.
2
. Коррозионная стойкость и склонность к иглообразованию такие же, как у оловянного покрытия.
3
. Покрытие хорошо выдерживает развальцовку, штамповку, прессовые посадки, сохраняются при свинчивании.

Покрытие сплавом олово — свинец

. Покрытие сплавом О-С(60) в атмосферных условиях является катодным по отношению к стали, анодным — по отношению к меди и ее сплавам. Покрытие обеспечивает паяемость низкотемпературными припоями.
2
. В условиях повышенной температуры и влажности коррозионная стойкость ниже, чем у оловянного покрытия.
3
. Покрытие пластично, обладает низким электрическим сопротивлением, паяется с применением неактивированных канифольных флюсов.
4
. Оплавленное покрытие имеет лучшие эксплуатационные характеристики.
5
. Оплавленное покрытие не подвержено иглообразованию. На цинкосодержащих сплавах покрытие должно применяться по подслою никеля, предотвращающего диффузию цинка в покрытие и иглообразование.
6
. Паяемость покрытия после опрессовки в полимерные материалы, при необходимости, восстанавливают горячим способом с неактивированным канифольным флюсом.

Золотое покрытие

. Золотое покрытие является катодным по отношению к покрываемым металлам и защищает их механически; рекомендуется для обеспечения низкого и стабильного переходного электрического сопротивления контактирующих поверхностей, улучшения поверхностной электропроводности.
2
. Покрытие обладает высокой тепло- и электропроводностью, химической стойкостью, в том числе в атмосфере с повышенной влажностью и серосодержащих средах.
3
. Групповые контакты с покрытиями золотом и сплавами золотом, имеющие обычно малые зазоры между цепями, для условий эксплуатация 4-8 следует герметизировать или помещать в пылебрызгозащитные устройства.
4
. Покрытие из цианистых электролитов, работающее в контактных устройствах, склонно к возрастанию адгезии трущихся поверхностей в процессе работы. Покрытие из кислых электролитов не обладает таким дефектом.
5
. При осаждении золотого покрытия на латунь рекомендуется подслой никеля, который предотвращает диффузию цинка на поверхность золотых покрытий из основного металла. Никелевый подслой под покрытие золотом и сплавами золотом следует наносить из электролитов, обеспечивающих получение покрытия с низкими внутренними напряжениями.
6
. С оловянно-свинцовыми припоями золотое покрытие образует хрупкие интерметаллические соединения, снижающие механическую прочность паяного соединения.
7
. Микротвердость покрытия 392-980 МПа (40-100 кгс/мм2); удельное сопротивление при температуре 18 °С — 2,2-10-8 Ом-м; внутренние напряжения достигают 59-147 МПа (6-15 кгс/мм2).

Покрытие сплавом золото — никель

Покрытия сплавами Зл-Н (99,5-99,9), Зл-Н (98,5-99,5), Зл-Н (93,0-95,0) являются катодными по отношению к покрываемым металлам и защищают их механически. Коррозионная стойкость сплава золото-никель и функциональное назначение такие же, как золотого покрытия.
2
. Покрытие характеризуется высокой электро- и теплопроводностью, высокой твердостью, повышенным сопротивлением износу, отсутствием склонности к свариванию, невысокими внутренними напряжениями; отличается химической стойкостью в различных агрессивных средах и сохраняет стабильными во времени свои характеристики.
3
. Подслой никеля создает благоприятные условия работы покрытий на трение, предотвращает диффузию основного металла при температурах до 350 °С, способствует стабильности контактного сопротивления.
4
. С оловянно-свинцовыми припоями покрытие образует хрупкие интерметаллические соединения, снижающие механическую прочность паяного соединения.

Серебряное покрытие

. Серебряное покрытие является катодным по отношению к покрываемым металлам; рекомендуется для обеспечения низкого контактного сопротивления, для улучшения поверхностной электропроводности.
2
. Покрытие характеризуется высокой электро- и теплопроводностью, пластичностью, отражательной способностью; низкими твердостью, сопротивлением механическому износу и внутренними напряжениями; склонностью к свариванию. Покрытие хорошо выдерживает гибку и развальцовку, плохо переносит опрессовку в полимерные материалы. Покрытие подвержено миграции по поверхности диэлектрика под действием разности потенциалов. Блескообразователи в электролитах для нанесения покрытия способны отрицательно влиять на электропроводность покрытия.
3
. Не допускается применять серебряное покрытие в качестве подслоя под золото из-за диффузии серебра через золото с образованием поверхностных непроводящих пленок (При применении изделий с электроконтактами с золотым покрытием по подслою серебра возможна нестабильность переходного сопротивления вплоть до отказа из-за диффузии серебра через золото).
4
. Под воздействием соединений хлора, аммиака, серосодержащих, фенолсодержащих и т. п. веществ на поверхности серебряных и серебросодержащих покрытий образуется пленка, способствующая повышению переходного сопротивления покрытия и затрудняющая его пайку.
5
. Микротвердость покрытия — 883-1370 МПа (90-140 кгс/мм2), которая в течение времени может уменьшаться до 558 МПа (60 кгс/мм2);удельное сопротивление при температуре 18 °С — 1,6-10-8 Ом-м.

Палладиевое покрытие

. Палладиевое покрытие является катодным по отношению к покрываемым металлам, обладает высокой стойкостью в атмосферных условиях и при воздействии сернистых соединений.
2
. Покрытие рекомендуется применять для снижения переходного сопротивления контактирующих поверхностей, повышения их поверхностной твердости и износостойкости, при необходимости сохранения постоянства электрического сопротивления.
3
. Покрытие обладает высокой износостойкостью и хорошей электропроводностью, стабильным во времени контактным сопротивлением; коэффициент отражения — 60-70 % Электропроводность почти в семь раз ниже, чем у серебряного покрытия, но стабильна во времени до температуры 300 °С.
4
. Покрытие не рекомендуется применять в контакте с органическими материалами и резинами, а также в замкнутом пространстве при наличии указанных материалов; не допускается применять в среде водорода.
5
. При толщине более 9 мкм в покрытии возникают микротрещины, что снижает его функциональные и защитные свойства.
6
. Микротвердость покрытия — 1960-2450 МПа (200-260 кгс/мм2); удельное сопротивление при температуре 18 °С — 10,8-10-8 Ом-м; внутренние напряжения достигают 686 МПа (70 кгс/мм2).

Родиевое покрытие

. Родиевое покрытие является катодным по отношению к покрываемым металлам.
2
. Покрытие рекомендуется применять для обеспечения стабильных электрических параметров деталей контактных устройств, повышения отражательной способности поверхности.
3
. Покрытие обладает высокими износостойкостью, электропроводностью, отражательной способностью. Коэффициент отражения — 76-81 %. Покрытие не подвержено свариванию, стойко в большинстве коррозионно-активных сред, в том числе в сероводороде, не окисляется до температуры 500 °С.
4
. Покрытие при толщине 1,0 мкм практически не имеет пор, при толщине более 3 мкм склонно к образованию микротрещин.
5
. Микротвердость покрытия — 3920-7840 МПа (400-800 кгс/мм2); удельное сопротивление при температуре 18 °С — 4,5-10-8 Ом-м; внутренние напряжения достигают 1670 МПа (170 кгс/мм2).

Анодно-окисные покрытия

. По алюминию и алюминиевым сплавам
1.1
. При анодировании размеры деталей увеличиваются примерно на 0,5 толщины покрытия (на сторону).
1.2
. Качество анодно-окисного покрытия повышается с улучшением чистоты обработки поверхности деталей.
1.3
. Анодно-окисные покрытия, применяющиеся для защиты от коррозии, подвергаются наполнению в растворе бихромата калия, натрия или в воде, в зависимости от их назначения. Эти покрытия являются хорошей основой для нанесения лакокрасочных покрытий, клеев, герметиков и т. п.. Для придания деталям декоративного вида анодно-окисные покрытия перед наполнением окрашивают адсорбционным способом в растворах различных красителей или электрохимическим способом в растворах солей металлов.
1.4
. Для получения на анодированных деталях из алюминиевых сплавов зеркального блеска рекомендуется предварительно полировать поверхность. Отражательная способность анодированного алюминия и его сплавов уменьшается в следующем порядке: А99, А97, А7, А6, АД 1, АМг1, АМгЗ, АД31, АДЗЗ.
1.5
. Твердые анодно-окисные покрытия с толщиной 20-100 мкм являются износостойкими (особенно при использовании смазок), а также обладают тепло- и электроизоляционными свойствами. Детали с твердыми анодно-окисными покрытиями могут подвергаться механической обработке.
1.6
. Анодно-окисные покрытия имеют пористое строение, неэлектропроводны, хрупки и склонны к растрескиванию при нагреве выше 100 °С или деформациях.
1.7
. При сернокислотном анодировании шероховатость поверхности увеличивается на два класса; хромовокислое анодирование в меньшей степени отражается на шероховатости поверхности. При назначении анодно-окисных покрытий следует учитывать их влияние на механические свойства основного металла. Влияние анодно-окисных покрытий возрастает с увеличением их толщины и зависит от состава сплава.
1.8
. Анодирование в хромовой кислоте обычно применяется для защиты от коррозии деталей из алюминиевых сплавов, содержащих не более 5 % меди, главным образом, для деталей 5-6 квалитетов.
1.9
. Покрытие Ан.Окс.эиз наносят для придания поверхности деталей из алюминия и алюминиевых сплавов электроизоляционных свойств.
1.10
. При электроизоляционном анодировании рекомендуется применять щавелевокислый электролит. Покрытие обеспечивает стабильные электроизоляционные свойства после пропитки или нанесения соответствующих лакокрасочных материалов; при пропитке толщина покрытия увеличивается на 3-7 мкм, при нанесении лакокрасочного покрытия — до 80 мкм. Сопротивление покрытия пробою возрастает с увеличением его толщины, уменьшением пористости и повышением качества исходной поверхности. Царапины, риски, вмятины, острые кромки снижают электроизоляционные свойства покрытия. После пропитки покрытия электроизоляционным лаком сопротивление пробою зависит, главным образом, от толщины покрытия и мало зависит от состава алюминиевых сплавов и технологического процесса анодирования.
1.11
. Покрытие Ан.Окс.эмт рекомендуется для деталей из низколегированных деформируемых алюминиевых сплавов с целью придания им декоративного вида.
1.12
. Для деталей, изготовленных из сплавов, содержащих более 5 % меди, не рекомендуется применять покрытия АН. Оке .хром и Ан.Окс.тв.
1.13
. Для деталей, изготовленных :из сплавов, содержащих более 3 % меди, не рекомендуется применять покрытия Ан.Окс.эмт и Ан.Окс.эиз.
1.14
. Анодно-окисное покрытие обладает прочным сцеплением с основным металлом; обладает более низкой теплопроводностью, чем основной металл; стойко к механическому износу. Микротвердость на сплавах марок Д1, Д16, В95, АК6, АК8 — 1960-2450 МПа (200-250 кгс/мм2); на сплавах марок А5, А7, А99, АД1, АМг2, АМг2с, АМгЗ, АМг5, АМгб, АМц, АВ — 2940-4900 МПа (300-500 кгс/мм2); микротвердость эматалевого покрытия 4900 МПа (500 кгс/мм2); удельное сопротивление покрытия 10-7-1012 Ом-м.
2
. По магниевым сплавам
2.1
. Для защиты деталей, изготовленных из магниевых сплавов, неорганические покрытия рекомендуется применять в сочетании с лакокрасочными покрытиями.
2.2
. Анодно-окисные покрытия без дополнительной окраски применяют для защиты деталей, работающих в минеральных неагрессивных маслах, а также для межоперационного хранения деталей. Не подлежат окраске резьбовые поверхности деталей и посадочные поверхности при тугой посадке деталей. В этих случаях на металлические покрытия дополнительно наносят смазку, грунты и т. п.
2.3
. Для защиты внутренних полостей и в приборах допускается применение анодно-окисных покрытий, пропитанных лаками.
2.4
. Для защиты от коррозии деталей, работающих в жидких диэлектриках, применяется анодно-окисное покрытие без пропитки и лакокрасочного покрытия.
2.5
. Покрытие Аноцвет обеспечивает хорошую адгезию пропиточного лака, хорошо полируется после пропитки лаком. Обладает высокой износостойкостью; пробивное напряжение не менее 200 В; хрупкое, легко скалывается с острых кромок; снижает уста-лостную прочность металла. Поверхностная плотность покрытия 0,03-0,04 кг/м2, после пропитки — 0,035-0,05 кг/м2 Микротвердость покрытия — 1670-1960 МПа (170-200 кгс/мм2).
2.6
. Покрытие Аноцвет применяют для деталей, имеющих посадочные поверхности 6, 7, 8 квалитетов (2 и 2а классов точности). Нанесение покрытия Ан.Окс на сборочные единицы допускается при условии изоляции сопряженных деталей из других сплавов. Рабочая температура покрытия — до 400 °С.
2.7
. Покрытие Аноцвет допускается наносить на сборочные единицы при условии изоляции сопряженных деталей из разнородных сплавов. Не допускается анодирование деталей, имеющих каналы диаметром менее 5 мм большой протяженности. Рабочая температура покрытия — до 400 °С. Толщина покрытия — от 5 до 40 мкм. Цвет покрытия — белый, зеленый или серо-черный в зависимости от применяемого электролита.
3
. По титану и титановым сплавам Анодно-окисное покрытие применяется для повышения адгезии лакокрасочных материалов, обеспечения свинчиваемоемости резьбовых деталей, декоративной отделки. Покрытие Ан.Окс обладает прочным сцеплением с основным металлом: прочность клеевого соединения при работе на отрыв не менее 29,4 МПа (300 кгс/см2); на сдвиг — не менее 12,8 МПа (130 кгс/см2); обладает электроизоляционными свойствами: пробивное напряжение без лакокрасочного покрытия — 10-50 В; поверхностная плотность покрытия — 0,002-0,004 кг/м2; износостойко; при работе на трение предотвращает налипание металла. Покрытие Аноцвет обеспечивает прочность клеевого соединения при работе на отрыв не менее 11,8 МПа (120 кгс/см2), на сдвиг — 4,9-5,9 МПа (50-60 кгс/см2).

Химическое окисное и пассивное покрытия

. По углеродистым сталям
1.1
. Покрытие Хим.Окс применяется для защиты от коррозии в условиях эксплуатации 1, а также для повышения адгезии лакокрасочных материалов, клеев и т.п.
1.2
. Покрытие имеет высокую пористость, низкие защитные свойства» улучшающиеся при пропитке нейтральными маслами; подвержено быстрому истиранию; не поддается пайке и сварке.
2
. По алюминию и алюминиевым сплавам
2.1
. Покрытие Хим.Окс имеет невысокие защитные свойства, низкую механическую прочность; обладает хорошей прочностью сцепления с основным металлом; неэлектропроводно; термостойко до температуры 80 °С.
2.2
. Покрытие Хим.Окс.э электропроводно, имеет невысокие защитные свойства, низкую механическую прочность, термостойко до температуры 80 °С, не влияет на затухание высокочастотной энергии в волноводном тракте.
З
.По меди, медным сплавам и высоколегированным сталям
3.1
. Покрытие Хим. Пас предохраняет поверхность меди и медных сплавов от окисления и потемнения в течение непродолжительного времени; несколько повышает коррозионную стойкость высоколегированных сталей.
3.2
. Для повышения коррозионной стойкости деталей следует применять смазки или лакокрасочные материалы.
3.3
. Покрытие непригодно для защиты от контактной коррозии.
3.4
. Покрытие не влияет на антимагнитные характеристики основного металла.
4
. По магниевым сплавам
4.1
. Покрытие предохраняет от коррозии только при межоперационном хранении и внутризаводской транспортировке; несколько повышает адгезию лакокрасочных материалов.
4.2
. Покрытие нестойко к истиранию, легко нарушается при механическом воздействии; термостойко до температуры 150 °С; не влияет на усталостную прочность сплавов.
4.3
. Для деталей 5-6 квалитетов (1-2 классов точности) для нанесения покрытий используются растворы, в которых размеры деталей не изменяются вследствие растравливания.
4.4
. Нанесение покрытий на сборочные единицы допускается только в растворах, не вызывающих коррозию сопрягаемых металлов.

Химическое фосфатное покрытие

. Покрытие применяется для защиты стальных деталей от коррозии, повышения адгезии лакокрасочных материалов, клеев, а также как электроизоляционное покрытие. Обработка в растворах хроматов улучшает защитные свойства.
2
. Покрытие обладает высокими электроизоляционными свойствами при температуре до 500 °С; пробивное напряжение — 300-1000 В; имеет невысокую механическую прочность, легко истирается; хрупкое, не выдерживает ударов, при изгибе основного металла на 180° дает трещины и осыпается по линии изгиба, но не отслаивается; не смачивается расплавленными металлами; не поддается пайке и сварке. Покрытие не влияет на твердость, прочность и магнитные характеристики сталей.
3
. Обладает высокой стойкостью к воздействию горячих масел, бензола, толуола, различных газов, за исключением сероводорода.
4
. Поверхностная плотность покрытия -0,001-0,01 кг/м2.

The requested URL /bottom.php was not found on this server.

Additionally, a 404 Not Found error was encountered while trying to use an ErrorDocument to handle the request.

Пассивация фосфатированием.

4.1 Общие сведения и механизм фосфатирования цинка.

Фосфатирование цинковых покрытий заключается в том, что оцинкованная поверхность покрывается кристаллическим или аморфным слоем фосфатов после погружения в фосфорсодержащий раствор. Суть процесса схожа с фосфатированием стали.

Основным компонентом такого раствора обычно являются первичные фосфаты железа, цинка или марганца (далее обозначаются как Me).

Фосфатное покрытие в основном состоит из третичных фосфатов. Его образование обусловлено повышением концентрации катионов Me в прикатодном слое вследствие реакции растворения основы. Результатом этого является повышение рН на катодных участках и превышение предела растворимости фосфатов. На границе металл/раствор химическое равновесие растворенной соли смещается в сторону образования вторичных и третичных солей, нерастворимых в этой среде, которые в конечном счете и формируют осадок.

Т.е. фосфатирование — это топохимическая реакция электрохимической природы, при которой коррозийное растворение металла-основы происходит на микроанодах, тогда как разряд ионов водорода с последующим осаждением нерастворимых фосфатов происходят на микрокатодах. При этом состояние равновесия в объеме раствора не нарушается, так как реакционные участки ограничены поверхностью металла, а образующаяся в ходе реакций фосфорная кислота практически компенсирует потери израсходованной кислоты. Следовательно, концентрация ионов водорода в основной массе раствора изменяется незначительно.

Осаждение вторичных или третичных фосфатов происходит в определенных пределах рН, которые специфичны для основного катиона в растворе и зависят от концентрации этого катиона и Н2PО4- — иона. По мере роста рН фосфаты будут выпадать в осадок в следующем порядке: Fe3+, Zn2+, Mn2+ и Fe2+.

При рабочей температуре происходит образование нерастворимых фосфатов. Ионы водорода нейтрализуются при растворении цинка в фосфорной кислоте:

Zn + 2H+ = Zn2+ + H2

Одновременно может происходить прямая реакция между основным металлом и первичными фосфатами:

Zn + Me(H2PO4)2 = MeHPO4 + ZnHPO4 + H2

Zn + Me(H2PO4)2 = MeZn(HPO4)2 + H2

Первичные фосфаты железа, цинка и марганца легко растворимы, в отличие от вторичных и третичных, за исключением цинка.

Анодирование в сернокислом электролите

Вальцовка труб: что это такое, где используется и как осуществляется?
Анодирование в серной кислоте позволяет получить полупрозрачные, бесцветные покрытия толщиной около 35 мк. Если процессу анодирования предшествует процесс глянцевания поверхности деталей, покрытия получают высокие декоративные качества (блестящее анодирование). В серной кислоте получают также пластичные анодные пленки, которые не разрушаются при формовке изделий.

Концентрация серной кислоты и температура электролита

Концентрация серной кислоты для анодирования в промышленных условиях принимается в диапазоне 8-35% (по массе). В концентрированном растворе анодная пленка получается мягкой и пористой, эластичность пленки высокая. Классической является концентрация 15% (по массе). Температуру в процессе анодирования задают в пределах от 18С до 25С. В большинстве случаев принимается температура в 20С. С применением серной кислоты получают также твердые анодные пленки, в этом случае процесс анодирования проводится при низких значениях температур (от -5 до +5 С).

Контроль температуры в процессе анодирования является обязательным, от температуры зависит плотность тока и скорость растворения пленки, что в свою очередь оказывает прямое влияние на качество и характеристики покрытия. Для того, чтобы избежать локального перегрева раствора электролита используют специальные перемешивающие устройства.

Напряжение и плотность тока

При анодировании в серной кислоте используется стандартный выпрямитель с выходным напряжением до 24 вольта. При стандартном режиме сила тока составляет 16 вольт при плотности тока 1,5 а/дм2. Для получения коррозионностойких пленок большой толщины напряжение силу тока поднимают до 18 вольт, а при обработке сплавов алюминия с кремнием до 22 вольт. В отдельных случаях, например, при анодировании рулонного материала или проволоки используется переменный ток. Использование пониженной плотности тока позволяет получать тонкие, прозрачные окисные пленки, превосходящие по прозрачности пленки аналогичной толщины, полученные при стандартных значениях плотности тока.

Длительность процесса

Продолжительность процесса анодирования зависит от требуемых значений толщины пленки, а также используемой плотности тока. Для чистого алюминия это соотношение можно предложить в виде:

Толщина пленки, мк. = (Плотность тока, а/дм2 Х Время, мин.)/3

Соотношение является приблизительным, т. к. на продолжительность процесса может зависеть от типа сплава и режима обработки.

Рабочий процесс

Технологический процесс анодирования отличается от процессов нанесения гальванических покрытий прежде всего тем, что рассеивающая способность электролитов анодирования значительно выше, чем у электролитов, использующихся при процессах хромирования, меднения, цинкования или никелирования металла. Эффективная рассеивающая способность при активном перемешивании позволяет получать равномерные по толщине пленки на всей поверхности изделий, включая внутренние поверхности отверстий и пазов.

В остальном технологический процесс анодирования аналогичен процессам электрохимического нанесения покрытий – изделия погружают в предварительно нагретый электролит на подвесах или зажимах, детали не соприкасаются друг с другом, расстояние до катода должно быть не менее 15 см. (для габаритных изделий значения выше). Затем включается перемешивание раствора и подается ток. В обычных условиях площадь катода должна быть равна площади анода, сечение катода должно быть достаточным для обеспечения требуемой плотности тока.

По окончании процесса прекращают подачу тока и незамедлительно извлекают изделия из гальванической ванны. Изделия промывают в проточной воде и сушат.

Микродуговое оксидирование

Что такое цементация стали и как ее сделать в домашних условиях?

Микродуговое оксидирование (МДО) – метод получения многофункциональных оксидных слоев. Микродуговое оксидирование – походная от анодирования. Позволяет наносить слои с высокими защитными, коррозионными, теплостойкими, изоляционными, декоративными свойствами. По внешнему виду покрытие, полученное микродуговым способом, очень напоминает керамику.

Сейчас это один из самых перспективных и востребованных способов нанесения оксидных слоев, т.к. позволяет наносить сверхпрочные покрытия с уникальными характеристиками.

Процесс микродугового оксидирования ведется, в большинстве случаев, в слабощелочных электролитах при подаче импульсного либо переменного тока. Перед нанесением покрытия не требуется особой подготовки поверхности. Особенностью процесса является то. Что используется энергия от электрических микроразрядов, которые хаотично передвигаются по обрабатываемой поверхности. Эти микроразряды оказывают на покрытие и электролит плазмохимическое и термическое воздействие. Оксидный слой приблизительно на 70 % формируется вглубь основного металла. Только 30 % покрытия находится полностью снаружи изделия.

Толщина покрытий, полученных микродуговым способом, составляет около 200 – 250 мкм (достаточно толстое). Температура электролита может колебаться от 15 до 400 °С, и это не оказывает на процесс особого влияния.

Применяемые электролиты не оказывают вредного влияния на окружающую среду и их срок службы очень долгий. Оборудование – компактное, не занимает много места и просто в эксплуатации.

Рассеивающая способность используемых электролитов высока, что позволяет получать покрытия даже на сложнорельефных деталях.

Микродуговое оксидирование применяется для формирования покрытий в основном на магниевых и алюминиевых сплавах.

Снятие анодных покрытий

Удалить некачественное анодное покрытие можно только со всей поверхности изделия, частичное восстановление пленки в большинстве случаев невозможно. Покрытие, как правило снимают в растворах, содержащих едкие щелочи. Процесс проходит под строгим контролем основных режимов, т. к. такие растворы обладают высокой степенью воздействия на основной металл. Классическим и менее всего воздействующим на поверхность алюминия признают раствор, содержащий 35 мл/л фосфорной кислоты и 20 г/мл хромовой кислоты. Обработка проходит в течение 1-10 мин, в зависимости от толщины пленки при температуре 95-100С. для снятия твердых анодных покрытий используют указанный раствор с повышенной два раза концентрацией, при этом поверхность алюминиевых сплавов, содержащих медь может окрашиваться в серый или черный цвет.

Повторная обработка изделий после удаления анодной пленки возможна после оценки состояния поверхности изделия, если чистота поверхности достаточна для нанесения покрытия и полирование не требуется, можно приступать к процессу незамедлительно.

Следует отметить, что при обработке деталей для которых необходимо точное соблюдение первоначальных размеров потребуется повторное анодирование с нанесением пленки большей толщины, чем была первоначально. Это связано с тем, что при снятии и повторном нанесении покрытия потери могут составлять от половина до двух третей первоначальной толщины пленки.

Свойства и применение хромовых покрытий

В зависимости от назначения хромовые покрытия разделяют на декоративные и функциональные. Первые наносят в виде тонких (<1 мкм) слоев на грубом промежуточном подслое, а вторые наносят прямо на стальную или другую подложку. Толщина функциональных покрытий достигает нескольких миллиметров.

Декоративное хромирование имеет огромное применение в автомобильной промышленности и многих других областях техники, где к изделиям предъявляют высокие требования как с эстетической точки зрения, так и в плане коррозионной стойкости.

Функциональное хромирование применяется для покрытия инструмента, шаблонов, форм для отливки под давлением и других деталей, подвергаемых сильному механическому износу. Широкое применение имеет функциональный хром и при восстановлении изношенных деталей машин.

Ванны хромирования

Основной составляющей ванны для хромирования является хромовый ангидрид. Кроме того, необходим так называемый катализатор, которым в традиционных ваннах является серная кислота.

В соответствии с общим правилом содержание серной кислоты по отношению к содержанию хромового ангидрида должно быть в пределах 0,8-1,2 %. В среднем принимают 1 % и, следовательно, в ванне, содержащей хромовый ангидрид (250 г/л), должно быть серной кислоты 2,5 г/л.

Ванны для хромирования имеют очень малый катодный выход по току, в основном <20 % и низкую кроющую способность.

Ванна, содержащая хромовый ангидрид (400 г/л), имеет хорошую электропроводность и, следовательно, не требует такого высокого напряжения при хромировании, как ванны с меньшим содержанием хромового ангидрида. Она рекомендуется для декоративного хромирования изделий сложной формы. Недостатком такой (концентрированной) ванны является низкий выход по току, и, следовательно, она непригодна для функционального хромирования.

Кроме классических хромовых ванн с сульфатным катализатором разработан и ряд других, например, с катализатором, состоящим из солей двух кислот — серной и и кремнийфтористоводородной ограниченной растворимости, что полезно для оптимальной работы ванны. Применение этих ванн, называемых саморегулирующимися должно бы существенно облегчить проведение хромирования ввиду того, что отпадает необходимость аналитического исследования химического состава. Однако это не совсем так, к тому же еще выявились и такие недостатки как значительная агрессивность ванны, требующая очень тщательной изоляции стальных изделий, хромирующихся частично с учетом опасности поражения стали в не изолированных местах.

Работа с растворами хромового ангидрида сопряжена с многими трудностями, обусловленными токсичностью этого вещества и трудоемкой технологией очистки сточных вод.

Необходимость применения довольно высоких температур и тока большой плотности требует оборудования ванн для хромирования эффективной вытяжной системой. Даже ванны, не находящиеся под током, но при рабочей температуре, выделяют вредные для человеческого организма пары.

Второй проблемой являются материальные потери. Большое содержание хромового ангидрида влечет за собой значительные потери за счет уноса электролита из ванны с деталями. Ванны улавливания являются неизбежной необходимостью. Нередко применяют две промывки.

Рациональным способом снижения потерь материала является применение ванны с меньшим содержанием хромового ангидрида. Следует экспериментально установить, нельзя ли для данной продукции применять ванну с меньшим содержанием хромового ангидрида, например, 200 г/л.

Универсальная ванна, пригодная для технического и декоративного хромирования, содержит: хромовый ангидрид (250 г/л) и серную кислоту (2,5 г/л). Декоративные покрытия наносят при

50°C и средней плотности тока 25 А/дм2, а функциональные покрытия — при 55-60°С и плотности тока 45-60 А/дм2.

Подготовка ванны хромирования.

Раствор электролита готовят в запасной ванне, футерованной изнутри поливинилхлоридом. В ванну вливают половину того количества деминерализованной воды, которое будет необходимо в рабочей ванне. В воду порциями добавляют хромовый ангидрид и перемешивают до полного его растворения. С этого момента возникает проблема, сколько следует добавить серной кислоты, так как введенный хромовый ангидрид уже содержит кислоту.

На хромовый ангидрид для гальванотехнических целей существует стандарт, в соответствии с которым в хромовом ангидриде серной кислоты должно быть не больше, чем 0,4 %. На хромовый ангидрид плавленный технический перечислены четыре сорта хромового ангидрида: S, I, II и III. Содержание серной кислоты не должно превышать для сорта S — 0,1 %, для сорта I — 0,4 %, для сорта II — 0,6 % и для сорта III — 0,8 %.

На каждой упаковке должна находиться надпись с обозначением сорта хромового ангидрида. Если потребитель не знает, каким хромовым ангидридом он располагает, он должен отправить пробу приобретенного товара на анализ. Если это невозможно, то надо подготовить ванну из хромового ангидрида, не добавляя сразу серной кислоты, лишь только сахар (1 г/л).

После нагрева до рабочей температуры проводят пробное хромирование изделий, покрытых блестящим никелем. Если на поверхности появляются радужные налеты, то это означает, что в ванне недостаток серной кислоты. Необходимо добавить на каждые 100 л ванны 25 см3 20 %-ной серной кислоты. После тщательного переметывания ванны возобновляют пробное хромирование, а если радужные налеты остаются и дальше, то необходимо добавить в ванну новую порцию кислоты. Эти операции повторяют до тех пор, пока радужный налет перестает появляться и начнет осаждаться нормальное хромовое покрытие.

Встречаются поставки хромового ангидрида, содержащие >1 % серной кислоты. Это проявляется в виде низкой кроющей способности хромовой ванны. Химический анализ покажет истинную концентрацию серной кислоты, избыток которой необходимо уменьшить, добавив

2 г карбоната бария на каждый грамм серной кислоты. Более подробные сведения приведены при рассмотрении поддержания стабильности и регенерации хромовой ванны.

Декоративное хромирование

Традиционные ванны для декоративного хромирования в 1 л содержат

400 г СгО3 и 4 г H2SO4, что связано прежде всего с высокой электропроводностью ванны, позволяющей достигать очень большой плотности тока при относительно невысоком напряжении. Высококонцентрированные ванны характеризуются также хорошей кроющей способностью изделий сложной формы. В них блестящее покрытие образуется уже при 35—40 °C и 15—20 А/дм2, что немаловажно.

Общая тенденция к экономии материалов и снижению степени загрязнения сточных вод требует применения ванн с меньшим содержанием хромового ангидрида. Во многих мастерских с успехом применяют универсальную ванну, содержащую хромовый ангидрид 250 г/л для функционального и декоративного хромирования. Для нанесения только декоративных покрытий можно использовать ванну, содержащую хромовый ангидрид 300 г/л и серную кислоту (3 г/л), что позволит работать при 40 °С,

20 А/дм2. Уже само снижение температуры равнозначно экономии энергии.

Декоративные хромовые покрытия наносят преимущественно на блестящий никель сразу же после никелирования и тщательной промывки. Следует избегать длительных перерывов, приводящих к высыханию никелевого покрытия под воздействием воздуха и его пассивации. Пассивированный никель активируют катодной обработкой несколько минут в ванне для электролитического обезжиривания и краткой выдержкой в разбавленной серной кислоте. При хромировании никелевых покрытий, отполированных механическим способом, активация серной кислотой обязательна.

Перед погружением в ванну детали следует подогреть в воде с температурой ванны хромирования, так как на холодной поверхности осаждается матовое покрытие. Некоторые работники без горячей промывки погружают изделие в ванну для хромирования при выключенном токе, ожидая, пока не нагреется поверхность изделий. Такой порядок хромирования допустим лишь при функциональном хромировании, когда предварительное анодное травление предупреждает пассивацию, но при декоративном хромировании передержка изделий без тока может привести к пассивации. При хромировании медных и латунных изделий, отполированных до высокой степени чистоты, предварительный нагрев в воде необходим, так как нагрев в самой ванне хромирования приводит к матовой поверхности.

Плотность тока при декоративном хромировании достигает 15—20 А/дм2, а температура 40—50 °С. Самые эффективные параметры выбираются экспериментально. В начале хромирования изделий сложной формы подают ток значительной плотности, чтобы наложить слои хрома в углубленных местах, а через несколько секунд уменьшают постепенно плотность тока до минимального значения. Следует учитывать, что начальный сильный удар током может привести к пригару покрытия в местах, находящихся близко от анодов, а поэтому параметры этого удара следует определить экспериментально.

В соответствии с основами гальванотехники следовало бы выбирать плотность тока в зависимости от величины поверхности одной загрузки. Предпосылка на первый взгляд очень простая, но в случае изделий сложного профиля подсчет поверхности затруднен.

На промышленных предприятиях этим занимаются конструкторские или технологические бюро, но в ремесленных мастерских гальваник должен рассчитывать лишь на собственную сообразительность и зрительную память, четко фиксировать показания вольтметра и амперметра, помнить требуемые значения и со временем он будет довольно неплохо обходиться без трудоемкого подсчета поверхности. Однако при серийном производстве необходимо вычислить поверхность всей загрузки, учитывая и неизолированные поверхности подвесок.

Функциональное хромирование

Целью функционального хромирования является придание поверхности металлического изделия специальных физических или химических свойств, например, большой твердости, износостойкости, сопротивления воздействию некоторых химических веществ и т. д.

Хром наносится преимущественно на стальную подложку, обработанную механически и термически. Твердость хромового покрытия полезна при очень мягкой подложке. Если твердость материала подложки невозможно повысить, то хромовое покрытие должно быть настолько толстым, чтобы самостоятельно противодействовать механическим нагрузкам.

Режущий инструмент покрывают тонкими (5—10 мкм) слоями. На самом острие хромовое покрытие сошлифовывается. Толщина хромового покрытия на формах для пластмасс 10—25 мкм. Использованные калибры покрывают избытком хрома по толщине и затем сошлифовывают до заданного размера. Подобным образом поступают с изношенными деталями машин.

Хромовые покрытия можно без труда наносить на стали и сплавы меди многих марок. Стальные детали твердостью HRC 40 перед хромированием следует термически обрабатывать для снятия внутренних напряжений. Температура 1—2 ч нагрева достигает 180—200 °С. Для обезжиривания стали применяют общеизвестные щелочные ванны. Углеродистые и молибденовые стали обезжиривают на аноде, а хромоникелевые и быстрорежущие стали — химическим способом. Часто применяют старый и апробированный метод обезжиривания в венской извести.

Химическое, а также и электролитическое обезжиривание производятся на изделиях еще перед выполнением добавочных операций, таких как изолирование, монтаж вспомогательных анодов, экранов и т, д., так как остатки обезжиривающих растворов ванн, остающиеся в щелях вспомогательных устройств отрицательно влияют на качество хромовых покрытий.

Поверхность, не подлежащая хромированию, покрывается химически стойким лаком, который, однако, при длительном хромировании не пригоден. Эффективным способом является обмотка изделий поливинилхлоридом или свинцовой фольгой. Этот последний способ оправдан в том случае, когда фольга служит в качестве добавочного катода, предупреждающего рост дендритов, на границе сталь—фольга.

Если в изделиях, предназначенных для хромирования, имеются отверстия, не подлежащие хромированию, то их следует заполнить свинцовыми пробками или пробками из пластмассы. Резина непригодна для этого, так как она растворяется в хромовой кислоте.

Низкая кроющая способность ванны хромирования требует применения точно продуманных подвесок и соответственно отформованных анодов. Неравномерная толщина покрытия, рассмотренная более подробно в гл. 1, проявляется особенно заметно в случае функционального хромирования. На ребрах и выступах, не защищенных соответствующими экранами, покрытие нарастает в виде толстого дендритного слоя. Без вспомогательных анодов углубленные места покрываются с трудом.

Острые ребра всегда склонны к образованию на них больших наростов, вот почему ребра необходимо закруглять, очевидно, с согласия конструкторов. Кроме того, необходим вспомогательный катод со свинцовой или алюминиевой проволокой. Катод не должен быть очень удален от ребра, так как в этом случае проволока покрывается хромом настолько сильно, что препятствует его осаждению на покрываемой поверхности.

Умение наиболее эффективно выбирать оборудование при техническом хромировании достигается за счет долголетней практики, в первую очередь, под наблюдением хорошего специалиста, а затем за счет самостоятельных идей, не всегда приводящих к желаемому результату, но дающих ценные указания на будущее. Важно поддержание ванны в надлежащем состоянии, так как в плохой ванне даже хороший специалист не достигнет хороших результатов.

Стальные изделия для хромирования (укрепленные на подвесках с соответствующими вспомогательными катодами, экранами и добавочными анодами) подвешивают в рабочей ванне и, не включая тока, ожидают, пока они не нагреются до температуры ванны. Затем переводят переключатель тока в положение, соответствующее соединению изделия с анодом и источником тока, и включают выпрямитель для так называемого анодного травления. При U = 6 В травление длится

30 с. После травления необходима выдержка в несколько секунд, чтобы пузырьки кислорода, скопившиеся на поверхности изделий во время анодного цикла, оторвались, а затем можно включить катодный ток. В течение первых пяти минут подается так называемый ударный ток при напряжении 8 В, после чего напряжение постепенно снижают до получения силы тока, соответствующей данной поверхности.

Чугунные изделия очищают вручную (лучше всего смесью извести с пумексом) и без травления помещают в хромовую ванну. Вначале плотность тока поддерживают большой (80—100 А/дм2), а после нескольких минут ее постепенно уменьшают до 40—60 А/дм2.

Медные и латунные изделия нельзя выдерживать в хромовой ванне без тока, так как они подвергаются травлению, следовательно, их следует предварительно подогреть в горячей воде и загружать в ванну под током.

Эксплуатация ванн хромирования

Эксплуатация ванн хромирования на первый взгляд очень проста, однако доставляет порой много забот. Значительным облегчением была бы возможность аналитического исследования состава ванны, однако не каждая мастерская имеет соответствующую лабораторию.

Содержание основного компонента в ванне — хромового ангидрида постепенно уменьшается по следующим причинам: из-за нерастворимости анодов хром вырабатывается из ванны; электролит уносится из ванны изделиями, поступающими на промывку; значительные количества электролита уносятся вентиляционным устройством. Суммарные потери очень велики, и необходимо через определенное время пополнять ванну хромовым ангидридом.

Если окажется, что необходима добавка хромового ангидрида, то возникают такие же затруднения, как и при составлении ванны, а именно неопределенность в отношении загрязнения хромового ангидрида серной кислотой. Простой, но не дешевый способ заключается в осаждении серной кислоты карбонатом бария и добавлении очищенного таким образом хромового ангидрида в ванну без опасения превышения концентрации серной кислоты. Если это невозможно, то необходимо периодически восполнять недостаток хромового ангидрида, наблюдая одновременно при работе ванны, нет ли избытка серной кислоты.

Концентрация серной кислоты влияет на работу ванны для хромирования. Химический анализ является наилучшим показателем правильного или неправильного соотношения между серной кислотой и хромовым ангидридом. (Опытный работник гальванической мастерской, однако, может больше рассказать, исходя из собственных наблюдений).

Бронзовые и радужные налеты на поверхности хромированных изделий свидетельствуют о малой концентрации серной кислоты, и, следовательно, добавлять ее необходимо малыми порциями вплоть до исчезновения налета, одновременно доливая концентрированную серную кислоту: 10 см3 на 100 л ванны. Перед доливкой кислоты следует, соблюдая осторожность, разбавить дистиллированной водой в отношении 1 : 5. После каждой добавки кислоты ванну перемешивают и проводят пробное хромирование.

При функциональном хромировании на поверхности покрытий могут возникнуть мелкие углубления или наросты в виде песчинок. Серную кислоту следует добавлять как рекомендовано выше.

Избыток серной кислоты ухудшает кроющую способность ванны, приводит к снижению катодного выхода по току и к появлению матовых пятен на поверхности деталей. Визуально избыток кислоты проявляется по дискретному проявлению пены, вследствие сильного газовыделеиия на поверхности изделия.

Избыток серной кислоты нейтрализуют карбонатом бария. На каждый грамм серной кислоты требуется

2 г карбоната. Его добавляют порциями в виде водяной кашицы к горячей ванне при постоянном перемешивании и включенной вентиляции. Следует помнить, что карбонат бария реагирует медленно и часть его остается в ванне, приводя к дальнейшей нейтрализации серной кислоты в виде сульфата бария. На практике следовало бы вводить карбонат бария малыми порциями и наблюдать при этом, как улучшается работа ванны.

Могут однако быть определенные затруднения с приобретением карбоната бария, необходимого для устранения избытка кислоты. В таких случаях можно поступить следующим образом. Из рабочей ванны отливают определенное количество раствора и взамен доливают дистиллированную воду с растворенным в ней хромовым ангидридом в количестве, необходимом для поддержания нормальной концентрации рабочей ванны. Можно предположить, что хромовый ангидрид настолько сильно загрязнен серной кислотой, что вместо улучшения ситуации может наступить ее ухудшение. Единственным советом является применение хромового ангидрида с известным химическим составом.

Отлитый из рабочей емкости (ванны) раствор можно использовать для побочных целей, например, для травления сплавов меди после доливки в него серной кислоты (

Для правильной работы ванны следует соблюсти соответствующее соотношение между поверхностью анода и поверхностью загружаемых изделий. Поверхность анодов должна быть в полтора раза больше. Если обстоятельства заставляют применять меньшие аноды, например, при хромировании внутренних поверхностей труб, то со временем в ванне накапливается избыточное количество трехвалентного хрома, что значительно ухудшает качество покрытий: они становятся матовыми, шероховатыми и хрупкими при одновременном ухудшении кроющей способности ванны.

Малое количество трехвалентного хрома (5 г/л) полезно влияет на работу ванны, кроме того, при составлении новой ванны добавляют сахар, который приводит к восстановлению шестивалентного хрома до трехвалентного. Сахар растворяется в воде и в таком виде доливается в ванну малыми порциями при постоянном перемешивании, так как ванна разогревается. Иногда вместо сахара применяют денатурат, но эта замена не полезна для работы хромовой ванны.

Снижение концентрации трехвалентного хрома — довольно трудоемкая операция. На анодных штангах оставляют полный комплект анодов, а на катодную вешают несколько стальных прутков. Плотность катодного тока должна достигать

60 А/дм2, анодного — <10 А/дм2, а температура ванны

60 °С. Переработка ванны длится от нескольких до десятков часов. С целью исключения этой длительной операции следует заботиться о стабилизации оптимальных условий хромирования ежедневно, т. е. поддерживать отношение поверхности анодов к поверхности загрузки

О загрязнении хромовой ванны избыточным трехвалентным хромом можно судить по цвету ванны. Очень темная окраска раствора, отобранного в стеклянный сосуд, свидетельствует о превышении концентрации вредного вещества и о необходимости регенерации ванны.

Вопрос о загрязнении ванны для хромирования примесными металлами выглядит иначе, чем в случае других ванн. Ванна для хромирования выдерживает без больших осложнений загрязнения железом, медью и цинком даже при нескольких (10—20) граммах на литр. Это не означает, что можно безнаказанно и постоянно допускать рост концентрации примесных металлов, тем более, что для устранения этих загрязнений не существует простых способов.

Ванна загрязняется хлоридами, когда для нее используют водопроводную воду из городской сети или такой водой доливают испарившуюся часть ванны. Немалый также вклад привносит и промывная вода, поступающая с изделий, погружаемых для хромирования.

Хлориды сужают область блеска и могут способствовать травлению металла подложки. Они служат также причиной чрезмерной коррозии анодов или свинцовой обкладки ванны. Хлориды можно удалять, добавляя в ванну оксид серебра, что не окупается, так как значительно дешевле было бы разбавить ванны дистиллированной или деминерализованной водой.

Окончательная обработка хромированных изделий

После выгрузки из ванны для улавливания большие и тяжелые изделия остаются еще теплыми и поэтому их промывают в теплой воде, так как очень холодная вода могла бы привести к возникновению трещин в хромовом слое.

После демонтажа подвесок изделие обычно уже охлаждено и его можно ополаскивать в проточной холодной воде. Пятна засохшего раствора ванны смывают 5 %-ным карбонатом натрия.

При функциональном хромировании выделяется значительное количество водорода, проникающего в покрытие и даже в подложку. Это вызывает так называемую водородную хрупкость.

С целью устранения водорода применяют 2—4 ч выдержку при 180—200 °С в печи или ванне с веретенным маслом. Не следует помещать хромированные изделия в уже нагретую до 200 °С печь, а начинать нагрев нужно со значительно более низкой температуры, например, с 60 °С, постепенно повышая температуру до заданной и только с этого момента надо отсчитывать время выдержки.

Термическая обработка — очень важная операция, оказывающая большое влияние на шлифование хромового слоя. При восстановлении деталей машин их обычно хромируют с избытком и, следовательно,возникает необходимость шлифования с целью получения заданных размеров.

Шлифование хромового слоя должен выполнять специалист по механической обработке хрома, так как неправильное выполнение этой операции может привести к шелушению покрытия, в результате чего необходимо полное удаление хрома и повторение всего процесса заново, а повторное хромирование более сложно.

Аноды для хромирования

Для хромирования применяют нерастворимые аноды, из сплава свинца с оловом или сурьмой. Чистый свинец менее пригоден, так как он более склонен к покрытию толстой и плохо проводящей пленкой хромата свинца. В гальванических мастерских, занятых хромированием, применяют преимущественно сплав PbSb7, содержащий 7 % Sb.

Форма анода влияет на его работу в ванне. Лучшими являются круглые или овальные аноды, которые однако необходимо отливать самостоятельно. При необходимости применяют плоские аноды шириной

50 мм и толщиной 10—15 мм. Тонкие и широкие аноды с технической точки зрения невыгодны, так как на их задней поверхности трудно получить анодный ток, необходимый для поддержания анода в активном состоянии.

Закрепление анода на штанге имеет существенное значение. Часто применяемый способ, заключающийся в загибке анода и навешивании на штанге не обеспечивает хорошего прохождения тока. К аноду следует прочно припаять крюк из медной полосы шириной

30 мм и толщиной 6—8 мм с резьбой под винт для прижима его к плоской токовой штанге. Полезно покрыть соединение химически стойким лаком.

Новые аноды следует формовать следующим образом. На катодную штангу навешивают стальные полосы, включают ток, добавляют напряжение до 5 В, а на анодных штангах размещают аноды один за другим, повышая постепенно напряжение до 8 В. В этих условиях проводят электролиз в течение часа, что достаточно для образования слоя диоксида свинца черно-бронзового цвета, характерного для анодов, работающих нормально.

Если на анодах образуется желтый налет, то его следует устранить, сначала смягчая в 25%-ном растворе поваренной соли, в течение ночи, затем, устраняя шлам стальными щетками. При сухой очистке анодов образуется очень вредная для человеческого организма пыль. Очищенные аноды, как и новые, обрабатывают током под большим напряжением.

В случае длительного перерыва в работе, например, по случаю отдыха, аноды следует вынуть из ванны, промыть и протереть волосяной щеткой, высушить и оставить на воздухе. Во время более коротких перерывов в работе, например, в течение ночи, изъятие анодов обременительно, поэтому их оставляют в ванне, а перед началом хромирования активируют, т. е. работают

30 мин.при напряжении 8 В после навешивания на катодной штанге стальных листов или прутков.

Вспомогательные аноды изготовляют из легкоизгибаемого тонкого свинцового листа или свинцовой проволоки. Иногда вспомогательные аноды изготовляют из стали или никеля, но они служат один раз, так как сильно травятся во время электролиза.

Снятие хромовых покрытий

Широко применяемый способ снятия хрома заключается в химическом его растворении 50 %-ной НСl при 30—35 °С.

Тонкие декоративные покрытия, осажденные на блестящем никеле, растворяются очень быстро, о чем свидетельствует прекращение выделения газовых пузырьков. После промывки никелированные изделия можно хромировать заново.

Более толстые покрытия функционального хрома удаляют в соляной кислоте под контролем, так как чрезмерно длительная выдержка в кислоте может привести к глубокому травлению стальной подложки.

Электролитический метод анодного удаления хрома состоит в обработке в ванне, содержащей NaOH (100—150 г/л), при 20—30 °С, 4—6 В и катодах из стали.

Если ванна для анодного удаления хрома загрязнена хлоридами, что часто наблюдается при использовании водопроводной городской воды, то нарушается гладкость стальной подложки, особенно при удалении толстых функциональных покрытий.

Для удаления декоративного хрома на никелевом подслое анодная обработка непригодна, так как приводит к пассивированию никеля. В некоторых мастерских хромовые покрытия удаляют в промышленной ванне для хромирования, навешивая хромированные изделия на анодную штангу. Эта технология нежелательна, так как хром растворяется в виде трехвалентного металла и после определенного времени ухудшает работу хромовой ванны.

Источник https://galvan.ru/katalog/hromirovanie

Источник https://generator98.ru/metally/raduzhnoe-hromatirovanie.html

Источник https://vskproekt.ru/svojstva-i-primenenie-xromovyx-pokrytij/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: