Коллекторная система отопления частного дома: основные узлы, монтаж, материалы

Содержание

Коллекторная система отопления частного дома: основные узлы, монтаж, материалы

Для отопления индивидуальных жилых домов широко применяют однотрубные и двухтрубные системы с естественной или принудительной циркуляцией теплоносителя. Каждая из них из них имеет свою область применения и определенные преимущества и недостатки — если однотрубные схемы развязки неплохо работают с радиаторными теплообменниками, то коллекторная система отопления незаменима при устройстве многоконтурных теплых полов.

Коллекторная (параллельная) развязка широко используется в схемах отопления индивидуальных домов для обогрева помещений и является наиболее дорогой, ее стоимость сопоставима с двухтрубной системой разводки. Тем не менее, без подобной схемы не может обойтись каждый дом, в котором для подачи тепла в помещения используется большое количество контуров теплообменных радиаторов и теплых полов.

Коллекторная система отопления

Рис. 1 Коллекторная система отопления частного дома — пример монтажа

Что такое коллекторная система отопления

Коллектором в отоплении называют элемент водопроводной арматуры, предназначенный для раздачи по ветвям, сбора и смешения теплоносителя из множества параллельных теплообменных контуров.

Коллекторная схема обеспечивает одновременную подачу теплоносителя на контуры теплых полов и радиаторов отопления (их максимальное количество в одной гребенке достигает 12) с одинаковым напором и температурой, которую можно устанавливать терморегулятором. Коллекторная магистраль отличается от однотрубных и двухтрубных систем тем, что подходит к радиаторам отопления снизу.

Принцип работы коллекторной системы

Коллекторная система работает по следующему принципу: нагретый котлом теплоноситель при помощи циркуляционного электронасоса, установленного между подающей и обратной линией, поступает в коллекторную распределительную гребенку, к выходным штуцерам которой подключены контуры отопления. Общая температура теплоносителя во всех контурах устанавливается терморегулятором, размещенным на входном штуцере подающей гребенки, а каждый отвод к петле оснащен расходомером, с помощью которого вручную устанавливается объем проходящего по контуру теплоносителя.

После прохождения по контурам охлажденный теплоноситель поступает в обратную линию и проталкивается электронасосом к котлу, в котором происходит его нагрев. Циркулируя по кругу, нагретая жидкость снова возвращается в подающий коллектор, который распределяет ее по отдельным контурам отопления.

В большинстве конструкций распределительные узлы обратной линии оснащаются запорными клапанами — это позволяет устанавливать на них электрические сервоприводы для автоматической регулировки проходящего по контурам потока.

Принцип устройства коллекторного отопления

Рис. 2 Принцип устройства коллекторного отопления

Что входит в состав коллекторной системы

Коллектор является наиболее ответственным и сложным прибором отопительной системы, типовое устройство для подключения контуров теплых полов состоит из следующих основных узлов:

  • Подающая гребенка — представляет собой горизонтальную трубу с отводами для подключения контуров отопления, в зависимости от конструкции располагается выше или ниже обратного коллектора.
  • Обратная гребенка — изделие является зеркальным отображением предыдущей детали, имеет аналогичные размеры основного канала и количество входных штуцеров.
  • Расходомеры — элементы устанавливаются в отводы подающего коллектора, имеют прозрачный корпус, на стенки которого нанесены деления с цифровым обозначением. Помещенный внутри корпуса стержень с индикаторной головкой указывает на объем теплоносителя, проходящего по контуру.
  • Запорные клапаны — обычно элементы размещают в обратной гребенке и закрывают колпаками плавной регулировки.
  • Воздухоотводы — монтируют на подающей и выходной гребенках, при помощи устройств стравливают воздух из коллекторных планок в автоматическом или ручном режиме.
  • Терморегулятор — прибор с выносным датчиком, закрепленным на гибкой трубке, его размещают на входе в коллектор, где он обеспечивает возможность регулировать температуру теплоносителя, которая в контуре теплого пола не должна превышать 55 С.

Конструкция коллектора отопления

Рис. 3 Коллектор — конструктивное устройство и основные узлы

  • Циркуляционный электронасос – входит в комплектацию некоторых моделей, прибор обеспечивает движение теплоносителя по трубопроводу коллекторной системы с определенным давлением. Агрегат устанавливается дополнительно с электронасосом, обеспечивающим циркуляцию по контуру отопления всего дома.
  • Температурные цифровые датчики — устанавливаются в отдельные модификации, измерительные приборы в подающей и обратной линии позволяют контролировать температуру. Это помогает оптимально настроить петлю для обеспечения наилучшей теплоотдачи и эффективности, которая наблюдается при разнице в 10 С.
  • Термодатчик — некоторые коллекторные схемы имеют в своем составе термостатический датчик, который при превышении температуры теплоносители более 55 С. размыкает цепь питания компрессионного электронасоса.
  • Байпас — иногда в коллекторную систему устанавливают перемычку, соединяющую подающую и отводную гребенки, элемент предназначен для подмешивания охлажденного теплоносителя к поступающей на вход коллектора горячей воде.

Виды коллекторов

Рис. 4 Различные виды гребенок

Устройство подающей и обратной коллекторной гребенки

Гребенки является одними из основных элементов коллекторной схемы, их основная функция — распределение потока теплоносителя по контурам отопления. Элемент имеет различное конструктивное исполнение для линий подключаемых радиаторов и теплых полов, максимальное количество задействованных контуров на один коллектор не превышает 12.

По отношению к диаметрам выходных штуцеров, гребенка имеет большое сечение (1, 1 1/2 дюйма против 3/4) и подключается к магистрали посредством торцевого соединения с элементами сантехнической арматуры. Обычно трубопровод к выходным штуцерам подсоединяют с помощью компрессионных фитингов (Евроконусов) — таким методом можно подключать трубы из сшитого и термостойкого полиэтилена, металлопластика, наиболее часто используемые в коллекторных системах отопления. Гребенки выполняются из нержавеющей стали, латуни, пластика, некоторые модификации собираются из отдельных звеньев.

Технические характеристики коллекторов, их плюсы и минусы

Коллектор применяется в системах водяного радиаторного и напольного отопления, являясь распределительным узлом по различным контурам, его типовые характеристики для латуни или нержавейки имеют следующие показатели:

  • Стандартный диаметр условного прохода гребенок — 1″ или 1 1/2″ дюйма.
  • Типовой наружный размер выходных штуцеров — 3/4″ или 1/2″ дюйма.
  • Количество выходных штуцеров (подключаемых контуров) — от 3-х до 12.
  • Подключение труб при помощи компрессионного разъема Евроконус.
  • Типовое рабочее давление в системе из латуни — до 10 бар.
  • Максимальная температура рабочей среды — +120º С.
  • Максимальная длина контура — не более 90 метров (зависит от диаметра и материала изготовления труб), а их предельные отклонения по длинам не должны превышать 30%.

Промышленность выпускает два вида коллекторов, имеющих значительные конструктивные отличия — для радиаторов отопления и теплых полов, в составе последних всегда присутствуют смесительный узел для подмешивания воды из обратной линии.

Схема разводки коллекторной систем отопления

Рис. 5 Схема разводки радиаторных коллекторных систем отопления

Достоинства

Распределительный коллектор имеет следующие особенности при работе в тепловой системе:

  • Позволяет задействовать в отоплении большое количество независимых контуров подогреваемых полов и радиаторов (до 12), каждый из которых всегда можно отключить без остановки отопления и работы других теплообменников.
  • Обеспечивает постоянство параметров носителя во всех контурах, регулировку объема подачи (давления и температуры) в каждом из них — это повышает комфорт пользования отоплением.
  • Существенное преимущество коллекторной гребенки — возможность установки в нее электрических сервоприводов, которые перекрывают поток клапанами в зависимости от показаний подключенного к ним датчика, их можно установить в любом месте — в комнате, на радиаторе или у поверхности обогреваемого пола. Таким образом, достигается автоматическая регулировка температуры обогревающих контуров и осуществляется экономия энергоресурсов.
  • В системе используются гибкие трубы отопления малого диаметра из относительно недорогих полимерных материалов, имеющие малое сечение и скрытно проходящие под полами, подводка теплоносителя на верхние или нижние этажи происходит без стояков. Данная конструкция повышает эстетичный вид жилья, минимизирует финансовые затраты.
  • Длину коллектора довольно просто увеличить, присоединив к нему дополнительные звенья с выходными штуцерами для подключения новых контуров.
  • Надежность схемы довольно высока из-за минимального количества скрытых соединений, а при монтаже теплых полов они вообще отсутствуют — труба любой длины присоединяется к входу и выходу коллектора в точках прямой видимости и удобного доступа. То же можно сказать и о радиаторах, которые подключаются через хорошо доступные фитинги снизу недалеко от поверхности пола.
  • Высокая ремонтопригодность обеспечивается возможностью отключения любой ветки для ремонта или замены приборов без сбоя работы других контуров.

Монтаж трубопроводов в коллекторной системе

Рис. 6 Монтаж трубопроводов подачи и обратки в коллекторной системе — пример

Недостатки

К недостаткам коллекторов относят их следующие параметры:

  • Стоимость заводского коллекторного узла от проверенных производителей из коррозионно-устойчивых металлов довольно высока и может достигать 300 у.е., что является довольно существенной суммой для рядового потребителя. Расходы можно уменьшить, используя менее качественные и надежные модели из пластика, цена которых достигает 50 у.е.
  • Для эффективного отопления длину всех контуров делают по возможности минимальной, для этого используют лучевую разводку и стараются поместить коллектор как можно ближе к центру дома, чтобы добиться максимально одинаковой длины всех контуров. На практике размещение коллектора по центру дома не всегда удается реализовать по техническим причинам, к тому же такая установка портит эстетику внешнего вида помещения с установленной распределительной системой.
  • Сборка распределительной коллекторной системы частного дома своими руками неподготовленным домовладельцем довольно проблематична, проведение монтажных и настроечных работ по силам только высококвалифицированным специалистам с большим опытом работы. Оплата услуг профессионалов потребует существенных финансовых средств, что затруднительно для среднего обывателя.
  • Как отмечалось выше, трубы всех контуров проходят под полом, то есть придется делать стяжку не только в помещениях с теплыми полами, но и на всех этажах в доме для выравнивания уровня полов и сокрытия подходящих к контурам труб. Проведение данных работ также потребует значительных финансовых расходов не только на оплату труда рабочих, но и материалы (теплоизолятор, сетку, раствор для стяжки).
  • Коллекторная схема не является самотечной, то есть при отсутствии электроэнергии прекращается функционирование циркуляционного электронасоса в коллекторном узле, и движение потока теплоносителя останавливается вместе с отоплением помещений.

Подключение колекторов

Рис. 7 Подключение приборов распределения потоков — примеры

Коллекторная система отопления — общие принципы проектирования схем разводки

Правильное проектирование и расчеты коллекторной системы по силам только квалифицированным специалистам, при выполнении проектных работ необходимо руководствуются следующими правилами:

  • Для определения длины контуров, параметров батарей отопления, температур теплоносителя, обязательно проведение расчета тепловых потерь в магистрали и контурах. Данная операция позволит определить оптимальные размеры тепловых приборов (количество их секций) и длин контуров теплых полов, в противном случае в комнатах будет слишком жарко или холодно при нормальном функционировании и потребуются дополнительные регулировки, снижающие КПД и производительность системы.
  • Запрещено подключение к коллекторам для теплых полов радиаторов отопления — они имеют разное гидравлическое сопротивление и температурные режимы работы (температура теплоносителя 40 — 55º С — для обогреваемых полов и 60º — 80º С — для радиаторов отопления).
  • Допустимая разница температур между линией подачи воды и обраткой — 5 — 15º С, оптимальная разница 10º С (55/45, 50/40, 45/35, 40/30 градусов).
  • Температура поверхности пола для жилых помещений и рабочих кабинетов 21 — 27º С, в жилых комнатах, коридорах, прихожих — 29 — 30º С, в ванных комнатах и бассейнах — 33º С, в домашних мастерских с активной физической деятельностью — около 17º С.
  • Расстояние между соседними витками труб в жилых комнатах частного дома лежит в диапазоне 150 — 300 мм, оно отлично для разных зон и изменяется с шагом в 50 мм:
  • Для краевых зон и около окон межтрубное расстояние равно 100 — 150 мм.
  • В центральной зоне комнат средней и большой площади стандартное межвитковое расстояние около 200 мм.
  • В санузлах, душевых и ванных комнатах используют расстояние между петлями в 150 мм.

Теплопотребление коттеджа таблица

Рис. 8 Теплопотребление коттеджа – пример расчета

  • Максимальная длина петель больших колец теплого пола диаметром 3/4 дюйма (16 мм) не должна превышать 70 — 90 метров, значение зависит от материала труб и возрастает с увеличением диаметра (для 20 мм труб допустимая длина — 120 метров.)
  • Электронасос должен иметь номинальльную мощность, рассчитанную математическим путем, ее превышение приводит к излишнему шуму, а низкая величина не обеспечивает оптимальную скорость движения теплоносителя.
  • Количество контуров, подключенных к одной гребенке, по строительным нормам не должно превышать 8, европейский стандарт допускает использование 12 ветвей.
  • В коллекторах теплых полов обязательно присутствие смесительных тройников или байпасных перемычек, обеспечивающих подмешивание остывшего теплоносителя из обратной магистрали к поступающей в гребенки горячей жидкости от котла. При отсутствии такого устройства теплый пол будет перегреваться, вызывая дискомфорт у жильцов, повышенный износ или деформацию некоторых видов трубопроводов.

Устройство коллекторной гребенки

Рис. 9 Устройство коллекторной гребенки для радиаторов отопления и ее подключение

Что нужно учитывать при проектировании и монтаже

При проведении планирования и монтажных работ руководствуется следующими правилами:

  • При заливке стяжки под теплые полы обязательно устройство демпферных зазоров по периметру помещений — это предотвращает деформацию пола при тепловом расширении стяжки, позволяет избежать появления трещин.
  • Также стяжка должна иметь толщину, обеспечивающую ее равномерный нагрев и удержание тепла в течение определенного времени, обычно толщина слоя лежит в диапазоне 30 — 50 мм. Следует учитывать, что толстый слой будет долго нагреваться и медленно остывать, а тонкий при быстром нагреве удерживает тепло короткое время — это вызовет более частое включение и отключение оборудования, и соответственно его повышенный износ.
  • Под трубы теплых полов обязательна укладка тепловой изоляции, препятствующей уходу тепла в бетонную плиту, обычно для этих целей используют фольгированный пенофол (вспененный полиэтилен), уложенный алюминиевым слоем вверх для отражения теплового излучения.
  • Перед заливкой стяжки в трубы подают теплоноситель с удвоенным давлением, которое сбрасывают после ее застывания — таким образом, полученные в стяжке каналы не будут в дальнейшем сдавливать трубопровод при его расширении после заполнения теплоносителем.
  • Подводящие трубы не должны иметь стыковых соединений под стяжкой, участки, не относящиеся к контурам радиаторов и теплых полов, для уменьшения теплопотерь следует помещать в гофрированную изоляцию.
  • Напольное покрытие обогреваемых полов должно обладать высокой теплопроводностью, исключено применение дерева, линолеума, ковров, препятствующих теплоотдаче.

Коллекторная разводка с гидрострелкой - схема

Рис. 10 Коллекторная разводка с гидрострелкой — схема

Принципы составления схем разводки

Оптимальное размещение коллекторного блока — выше уровня теплого пола, если производит обогрев двухэтажной дачи или коттеджа, его удобнее поместить на втором этаже по центру. В этом случае все контуры будут иметь приблизительно одинаковую длину в отличие от установки блока около наружных стен или в углах зданий.

  • Возможно будет интересно: Отопление в частном доме из полипропиленовых труб своими руками

Коллекторы для радиаторов и теплого пола

Отличие коллектора для полов от радиаторного состоит в конструктивном исполнении, связанным с разницей рабочих температур и более низким гидравлическим сопротивлением элементов радиаторов. Конструкция блока для подключения теплых полов намного сложнее, она включает в себя большое количество регулировочной водопроводной арматуры и циркуляционный насос для многоконтурных систем.

Стандартный коллекторный блок для бытовых радиаторов имеет простое исполнение: он состоит из подающего и обратного коллекторов большого сечения, из которых выходят штуцеры для подключения труб, идущих к радиаторам. Никаких регулировочных, настроечных вентилей и прочих сложных приборов устройство обычно не имеет, поэтому его подключение и установка не вызывает трудностей у большинства домовладельцев. Радиаторы отопления подсоединяются к блоку через трубы, проходящие в полу, и подключаются снизу в одной точке, для размещения прямого трубопровода необязательно делать стяжку, его можно уложить в штробу, вырезанную или выбитую в плите.

Типовой коллекторный блок является технически сложным элементом с большим количеством регулировок и настроек, часто в систему монтируется циркулярный электронасос. При установке блока следует различать гребенки прямой и обратной подачи, для удобства они промаркированы соответственно красной и синей красками. Также в прямой линии чаще всего размещаются регулируемые расходомеры с прозрачным колпачком и нанесенными делениями, указывающими объем проходящий через них жидкости, он отмечается внутренней индикаторной головкой красного цвета.

Обычно максимальное значение пропускаемого потока не превышает 5 кубических метров в час (соответствует делению 5 на колпаке), минимальная отметка 0,5. Если индикаторные головки находятся в верхней части, то при прохождении водного потока через подающую гребенку индикатор опускается и показывает объем проходящей жидкости. Иногда головки расположены снизу, в этом случае поток движется в обратном направлении из контура отопления в гребенку и соответственно расходомеры установлены в планку обратной подачи.

Если в коллекторный блок вмонтирован циркулярный электронасос, то его рабочее колесо направляет поток от выходной гребенки в корпус подающей — таким образом осуществляется подмешивание холодной воды из обратной линии в нагретый котлом теплоноситель для понижения его общей температуры.

В стандартном блоке предусмотрено место для расположения датчика терморегулятора, имеются выпускные клапаны для стравливания воздуха в подающей и обратной гребенке, установлены клапаны, на месте которых размещены посадочные места для сервоприводов, выполняющих автоматическое регулирование режимов работы.

Гидрострелка - схема установки и подключения

Рис. 11 Коллекторная система отопления индивидуального дома, Гидрострелка — схема установки и подключения

  • Возможно будет интересно, каким должно быть давление в системе отопления

Гидрострелка и солнечный коллектор

Гидрострелка и солнечный коллектор относятся к устройствам, выполняющим аналогичные водопроводным гребенкам функции — собирают в одном корпусе носитель из нескольких источников и распределяют его по контурам различного назначения.

Гидравлический распределитель устанавливают в тех случаях, когда для отопления используют значительные объемы теплоносителя, связанные с большим количеством контуров и площадями отапливаемых помещений. К стояковой гидрострелке подключают котел, гидроаккумулятор, коллекторы радиаторов отопления и теплых полов, бойлер, насосное оборудование с установкой циркуляционного насоса на каждое коллекторное звено.

Устройство предназначено для стабилизации давления и выравнивания температуры в подключенных контурах, обеспечивает удобство подсоединения распределительных узлов. Гидрострелка представляет собой вертикально (иногда используют горизонтальную установку) расположенную емкость (трубу большого диаметра) круглого или прямоугольного сечения с приваренными боковыми штуцерами, в верхней части которой находится клапан для развоздушивания, а снизу вмонтирован кран для слива теплоносителя.

Плоский солнечный коллектор

Рис. 12 Плоский солнечный коллектор

Солнечные батареи применяют в районах с большим количеством солнечных дней в году, также для экономии энергоресурсов используют солнечные коллекторы дополнительного подогрева теплоносителя, используемого для отопления и других хозяйственных целей.

Если солнечные батареи преобразуют ультрафиолетовое излучение в электрическую энергию, то солнечные коллекторы предназначены для нагревания теплоносителя, которым является воздух или жидкость.

Наиболее простое и популярное в быту коллекторное устройство сконструировано и работает следующим образом. В металлическом корпусе под защитным стеклом размещается теплоприемник — пластина черного цвета с запрессованным змеевиком из меди или алюминия, покрытом черным абсорбентом, приемник солнечного излучения располагается на слое утеплителя. Охлажденный теплоноситель перемещается по змеевику с помощью циркуляционного насоса системы отопления и после нагревания солнечным излучением поступает в котел.

Описанная система имеет высокие тепловые потери, поэтому в более дорогих схемах используют покрытый абсорбирующим слоем трубопровод, помещенный в вакуум. Внешне устройство напоминает ряд стеклянных колб с откачанным воздухом, внутри которых размещены нагреваемые медные трубы с хладагентом, каждая труба подключена к распределительному солнечному коллектору. В подобных системах в качестве теплоносителя используется специальный хладагент, имеющий низкую температуру кипения, при нагревании он превращается в пар и передает свою энергию протекающему в теплообменном коллекторе носителю.

Вакуумный солнечный коллектор

Рис.13 Вакуумный солнечный коллектор — принцип действия

Особенности монтажа коллекторной системы

Монтаж систем отопления проводят перед проведением отделочных работ по укладке напольного и стенового покрытия, проходящий по полу трубопровод привязывают к прочной металлической сетке и заливают стяжкой, расположенной на слое утеплителя.

Многоквартирный дом

Реализация коллекторного отопления в жилом многоквартирном доме практически не используется в быту, связано это в первую очередь с наличием радиаторного отопления в зданиях, при котором все помещения в квартире обогреваются батареями. Прокладка контуров для обогрева помещений через полы связана существенными финансовыми расходами и неэффективна, к тому же для укладки малого количества и небольшой длины петель не требуется гребенка. Существенный фактор, делающий бесполезным монтаж коллекторного отопления в многоквартирном доме — разбалансировка и нарушение температурного режима всей домовой системы, в результате чего возможны штрафные санкции и демонтаж уложенного теплого пола.

Коттедж

Коллекторные гребенки являются основными элементами в организации отопления загородных домов и коттеджей, обычно их размещают в стене комнат, расположенных по центру дома на каждом этаже, присоединяя к вмонтированному в них стояку.

Для этого в стене на этапе строительства размещают выемку, в которой располагают гребенку, для повышения эстетичного вида в место врезки ставят коллекторный шкаф с закрывающимися дверями.

На каждую комнату используют один контур, если в помещении расположено нескольких радиаторов, их подключают последовательно по однотрубной попутной или проходной схеме (ленинградка). Несколько малых контуров монтируют в том случае, если площадь помещений велика и максимальная длина трубопровода не обеспечивает ее покрытие с заданным шагом.

Комбинированная система отопления

Рис. 14 Комбинированная система отопления

Установка и подключение распределительной гребенки

Устанавливая и подключая распределительный коллектор для теплых полов, полезно соблюдать следующие правила:

  • Заполнение гребенки со всеми петлями в силу их большой протяженности производят малым потоком жидкости во избежание завоздушивания, обычно процедура занимает 1,5 — 2 часа времени для полов площадью 100 квадратных метров.
  • После заливки теплоносителя в систему перекрывают все контуры кроме одного — через него пропускают воду и сливают через спускной клапан, добиваясь отсутствия воздуха в петле. Аналогично поступают с другими контурами, последовательно прокачивая и сливая через них воду.
  • После заполнения теплоносителем всех петель оставляют подключенной одну петлю, включают циркулярный электронасос и прогоняют через нее воду, открыв клапан для спуска воздуха.
  • Операцию повторяют для каждого отдельного контура, прокачивая жидкость в течение 5-10 минут.
  • По завершении прогонки открывают все контуры, включают электронасос и котел для полного развоздушивания через автоматически выпускные клапаны, которое может продолжаться несколько часов.

Для обеспечения одинаковой температуры во всех петлях используют расходомеры, принцип настройки которых заключается в следующем: чем большую протяженность имеет петля, тем больший поток воды следует через нее пропускать. К примеру, если длина одной петли составляет 100 метров, второй 60, а третьей 40, то для настройки контура с наибольшей протяженностью откручивают гайку расходомера до упора, максимально увеличивая сквозной канал, и визуально определяют расход по метке.

В петлях с меньшей протяженностью выставляют расход, основываясь на максимальном показании наиболее протяженной петли в соответствующей пропорции. К примеру, если в самой длинной 100 метровой ветви стоит максимальный расход 2 единицы, в 60 метровой выставляют значение 1,2, в 40 метровой — 0,8.

Коллекторы Valtec

Рис. 15 Коллекторная система отопления индивидуального дома от популярного производителя Valtec — особенности и виды

Готовые конструкции коллекторов для отопления

На строительном рынке представлена продукция различных производителей коллекторного отопительного оборудования, среди них можно выделить такие популярные бренды, как ProfLine, Valtec, Luxor, Rehay, Shout.

Наиболее часто используемые материалы при изготовлении коллекторов — нержавейка и хромированная латунь, намного реже в бытовом отоплении оборудование подбирается из бюджетных полимеров (полипропилен), в которых не предусмотрена установка расходомеров и клапанов для сервоприводов.

Все готовые заводские конструкции собираются по одинаковым схемам с незначительными конструктивными отличиями — подающая и обратная гребенка могут стоять выше или ниже по отношению друг другу, некоторые модели дополнительно оснащаются другой трубой (байпасом) и термодатчиком для отключения циркуляционного насоса при повышенных температурах носителя. Наиболее дорогим является выбор комплектующих системы из латуни, которая по цене в три раза дороже нержавейки, немало стоят и другие элементы, к примеру, стоимость одного расходомера может доходить до 10 у.е.

Программа Audytor C.O. 4.0

Рис. 16 Программа Audytor C.O. 4.0

Расчет коллекторного отопления

Домовладельцу нет необходимости рассчитывать параметры коллектора (его проходной диаметр, длину, сечение выходных штуцеров) и диаметр труб при приобретении стандартного изделия. При желании произвести подобные расчеты, можно обнаружить необходимые формулы в сети, хотя и в этом случае проще ориентироваться на стандартные размерные параметры выпускаемых заводских изделий.

Основной задачей расчетов является определение длины труб для обеспечения необходимой температуры в помещении при известных температурных характеристиках теплоносителя. Для этого нет необходимости прибегать к сложным инженерным вычислениям, произвести которые под силу только узким специалистам в области отопления, для рядового обывателя проще воспользоваться онлайн калькулятором или компьютерной программой.

Для получения искомого результата в программу или калькулятор вводятся исходные данные о необходимой температуре в комнате и ее площади, диаметре и шаге расположения труб, температуре носителя. В интернете можно обнаружить обзоры программ для расчетов Audytor CO от компании Sankom, Комплекс Valtek от одноименной компании, Raucad/Rauwin 7.0 от Rehau.

Сборка коллекторного блока

Рис. 17 Сборка коллекторного блока

Самостоятельная сборка коллектора отопления

Коллекторы отопления обычно поставляются производителем в собранном виде, циркуляционный электронасос стандартной длины устанавливается позже на резьбовое соединение типа американка. Иногда комплектующие поступают потребителям по отдельности, порядок сборки состоит из следующих операций:

  • На подающую гребенку устанавливают расходомеры и вкручивают концевой воздухоотвод в правый торец.
  • К обратной гребенке с установленными ранее колпаками на запорных клапанах через американку с правой стороны производят подсоединение вентиля.
  • На обе гребенки слева через американку устанавливают сгоны для подключения компрессионного электронасоса, при этом они располагаются таким образом, чтобы штуцер для установки термометра находился с лицевой стороны.
  • В гребенку обратки вкручивает тройник, к которому присоединяют термостатическую головку.
  • При помощи резьбового соединения (американки) для монтажа циркуляционных электронасосов и прокладок из комплекта, насос присоединяют к верхней и нижней гребенкам.
  • По окончании работ к коллекторному блоку подключают трубы стандартного диаметра с помощью Евроконусов, идущих в комплекте.

Все основные соединения герметизируют с помощью резиновых прокладок, идущих в комплекте с блоком и электронасосом, иногда уплотнители отсутствуют в кране и тройнике подающей гребенки, тогда для герметизации используют льняную паклю или другие сантехнические материалы. Для проведения работ достаточно одного разводного ключа, при этом важно не пережать гайки — это может привести к разрыву прокладок.

После монтажа всей системы обязательно проведение гидравлических испытаний — опрессовки, при которой вода подается в магистраль под повышенным давлением (обычно его значение в 1,5 — 2 раза больше рабочего).

Трубы PEX и PE-RT для теплого пола

Рис. 18 Трубы PEX и PE-RT

Выбор труб

Хотя для подвода воды и устройства контуров можно использовать трубопроводы из различных материалов, в быту в основном используют полимеры, которые поставляются в бухтах различной длины и легко изгибаются при укладке петель.

Основными материалами трубопроводов отопления являются: металлопластик из сшитого полиэтилена PEX с алюминиевым слоем между внутренней и наружной оболочками, сшитый PEX и термостойкий PE-RT полиэтилен.

Следует отметить, что металлопласт не слишком практичен в качестве материала для теплых полов — ввиду большой жесткости его трудно изгибать с малым радиусом, а механическое воздействие на поверхность в процессе монтажа или до укладки стяжки приводит к загибам и изломам. Отремонтировать трубопровод из металлопластика можно вставкой участка, присоединяемого с помощью компрессионных или обжимных фитингов — это приводит к уменьшению проходного канала и повышению гидравлического сопротивления.

Трубы из сшитого и термостойкого полиэтилена имеют одинаковый срок службы около 50 лет, считается, что трубопровод PE-RT легче монтировать в помещениях с низкой температурой, а при повреждении его легко отремонтировать пайкой, хотя технология является не слишком известной. Также стоимость PE-RT ниже сшитого полиэтилена PEX, хотя на строительном рынке представлено достаточно изделий обеих категорий по относительно невысокой цене.

схемы укладки труб для обогреваемого пола

Рис. 19 Основные схемы укладки труб для обогреваемого пола

Варианты укладки трубопровода

Основные схемы укладки труб при монтаже — зигзагообразная и спиралевидная улитка, последняя обеспечивает более равномерный прогрев и считается лучшей по эффективности. При разводке труб следует выдерживать определенное расстояние между участками, оно зависит от схемы раскладки и толщины стяжки, его типовое значение для обычной толщины цементно-песчаного слоя лежит в диапазоне 150 — 200 мм.

Распределительный коллектор является основным узлом в индивидуальной системе отопления, содержащей два или более контура теплых полов, он выполняет функции раздачи и смешивания теплоносителя для снижения его температуры. При монтаже трубопровод из сшитого или термостойкого полиэтилена размещается под стяжкой в виде зигзага или улитки и подключается к гребенкам при помощи Евроконусов, обеспечивающих быстрое и герметичное соединение.

Диаметры полимерных труб

Небольшой вес, высокая пропускная способность и низкий коэффициент теплопроводности определяют основные качества полимерных труб, которые послужили толчком для повсеместной замены металлических изделий на пластик.

Геометрический диаметр полимерных труб — один из самых существенных параметров, который учитывается при проектировании современных систем отопления, канализации или снабжения водой, а также в проектах трубопроводов для теплотрасс.

Не менее важными величинами, чем диаметры пластиковых труб, выступают толщина стенки, термопласт для их изготовления, а также параметры предельного допустимого давления.

диаметр полиэтиленовых труб

Отечественные и зарубежные нормативные документы

Главным нормативным документом при производстве трубопроводов из пластика является разработанный в 2003 году ГОСТ Р 52134 — который определяет основные параметры для напорных труб из термопластов, а также для соединительных деталей и фитингов к ним. В 2013 году данный стандарт был преобразован в межгосударственный (ГОСТ 32415) и стал действовать на территории Армении, Беларуси, Киргизии, Молдовы, Таджикистана и Узбекистана.

размеры полипропиленовых труб

В основу разработки отечественных нормативных документов были положены европейские и международные стандарты, которые были разработаны и приняты в середине девяностых годов прошлого века — ISO 161-1:1996, ISO 4065:1996 и ISO 11922-1:1997.

Необходимо отметить, что некоторые производственные предприятия выпускают продукцию по собственным техническим условиям, необходимость которых вызвана нестандартным исполнением трубопроводов.

Нормативный ряд типоразмеров для трубопроводов отопления, водоснабжения и канализации, а также диаметры трубы теплотрассы составляют 34 наименования от 10 до 1600 мм.

Основные понятия и определения

В регулирующих документах приведены несколько основных понятий и определений, которые связывают диаметры труб (ГОСТ 52134) и термопласты для их изготовления — полиэтилен, полибутилен, ПВХ, полипропилен и сшитый полиэтилен:

  • наружный диаметр в миллиметрах служит для удобного выбора пластиковых труб по всем видам отопительных систем, а также для проектов водоснабжения и канализации. По ГОСТу наружный диаметр трубы не должен быть меньше ее самого меньшего диаметра на всем протяжении отрезка или бухты;
  • условный размер под названием номинальная толщина стенки в миллиметрах соответствует ее минимально допустимой величине в каждой точке сечения;
  • два безразмерных определения S и SDR связывают диаметры пластиковых труб с толщиной их стенок. Коэффициент SDR прямо указывает на отношение внешнего диаметра трубы к толщине ее стенки, а коэффициент S связывает напряжения в стенках трубопровода с допустимым рабочим давлением. Численно коэффициенты S и SDR связаны простой формулой — SDR=2S+1.

Для некоторых видов труб принято использовать такое определение как PN, которое указывает на предельную величину давления трубопровода в барах. При инженерных расчетах часто используют давление в МПа, одна единица которого соответствует 10 барам.

рабочее давление труб PNРабочее давление труб PN

Основные материалы для полимерных труб различного назначения

В промышленности полимерных материалов используется несколько основных видов термопластов, каждый из которых обладает своими достоинствами и недостатками:

  • основное назначение трубопроводов из поливинилхлорида (ПВХ) — напорная и безнапорная канализация, к материалам которой не предъявляется высоких требований по предельной температуре и давлению. По этой же причине трубопроводы ПВХ не получили широкого распространения при проектировании систем водоснабжения;
  • линейная молекулярная структура полиэтилена (ПЭ) также определяет невысокую стойкость к температуре, однако крайне низкая стоимость сырья позволила трубопроводам из полиэтилена практически полностью занять нишу напорных систем холодного водоснабжения. Также этот материал очень популярен при прокладке внешних канализационных труб большого диаметра;
  • разветвленная молекулярная структура с углеродными соединениями трубопроводов из полипропилена (ПП) придает этому материалу высокую стойкость к температуре, верхняя граница которой достигает +95°С. Такая особенность позволяет использовать трубопроводы из ПП в системах подачи горячей и холодной воды, а также в отопительных системах с ограниченным графиком рабочих температур;
  • поперечные связи в линейной структуре полиэтилена определили появление такого материала как сшитый полиэтилен (PEX), температурные характеристики которого существенно превышают параметры обычного ПЭ. Детали трубопроводов из сшитого полиэтилена соединяются с помощью специальных фитингов, так как поперечные связи молекулярной структуры потеряли способность к сварке;
  • развитая структура молекул полибутена (ПБ) обеспечили этому материалу повышенную стойкость к высоким температурам и долговременную прочность, которая превышает этот параметр у других материалов. Материал стоек к воздействию агрессивных химических сред, хорошо сваривается и имеет высокую устойчивость к механическому износу. Такие параметры полибутена определили его широкое распространение в проектах систем отопления и снабжения теплом, подачи горячей и холодной воды, а также в различных системах канализации. Долговечность изделий из полибутена составляет не меньше 50 лет.

диаметры полимерных труб различных материаловДиаметры полимерных труб различных материалов

Появление новых видов термопластов пока не привело к их широкому распространению, однако отчеты о новых разработках свидетельствуют о том, что в самом ближайшем времени состоится полная замена металлических труб на изделия из термопластов.

Диаметр трубы канализации

Канализационные трубы не подвергаются длительному воздействию высоких температур и давления, и по этой причине при их производстве используются самые дешевые полимерные материалы — полиэтилен, поливинилхлорид и полипропилен.

Табличные параметры диаметров пластиковых трубопроводов для напорной канализации приведены в ГОСТ Р 52134-2003, однако для самотечной канализации, которая применяется в большинстве многоквартирных и частных домов, рекомендации в нормативном документе отсутствуют. Согласно старому ГОСТ 22689.1-89 существует всего три типоразмера, которые определяют диаметры полиэтиленовых труб — 50, 90 и 110 мм. В 2014 году межгосударственным стандартом для стран СНГ (ГОСТ 22689-2014) ассортимент безнапорных канализационных трубопроводов из полиэтилена был расширен до 14 типоразмеров от 32 до 315 мм.

Безнапорные трубопроводы канализации из ПВХ или полипропилена выпускаются на основании технических условий, которые разрабатывает сам производитель и согласует с заказчиками в договорах поставки таких изделий.

Диаметр труб для отопления

В системах отопления должны использоваться трубы, которые имеют максимальную рабочую температуру до 95°С и рабочее давление до 10 атмосфер. Из известных промышленных полимеров под эти требования подходят только трубы из полипропилена (PN25) и сшитого полиэтилена. Диаметры полимерных труб для отопления лежат в пределах от 16 до 110 мм, что позволяет прокладывать любые отопительные сети.

Из линейки типовых диаметров трубопроводов для отопления коттеджа, квартиры или частного дома, приведем самые распространенные типоразмеры, которые используются для следующих целей:

  • трубопровод 16 мм применяется для коллекторной разводки системы отопления, для подключения одного или нескольких радиаторов, а также эта труба хорошо подходит для обустройства теплого пола;
  • трубопроводы диаметром 20 мм используются в работе систем отопления с принудительно циркуляцией в домах площадью до 100 м²;
  • трубопроводы 25 мм оправдывают себя в стояках отопления в многоквартирных домах до 5 этажей;
  • трубы 32 мм хорошо подходят для однотрубной разводки в домах площадью до 150 м² или используются в качестве стояков в домах повышенной этажности;
  • самотечные трубопроводы диаметром 40 мм используются в гравитационных системах отопления, где движение теплоносителя происходит естественным путем без циркуляционных насосов.

В последнее время на рынке стали широко использоваться трубопроводы из полибутена, который при прочих равных характеристиках превосходит ПП и PEX по предельному рабочему давлению.

Диаметр труб для водопровода

Типоразмер трубы для водопровода зависит от гидравлических расчетов проектировщика конкретной системы водоснабжения и, как правило, не выходит за рамки диаметров от 16 до 55 мм. Для внутренней разводки используют диаметры 16 и 25 мм, а для внутренних стояков полиэтиленовую или полипропиленовую трубу диаметром 32 мм. Трубопроводы 55 мм используют для наружных коммуникаций или транспортировки холодной воды от скважины до входа в дом.

наружный диаметр труб водопроводаТаблица: Толщина стенок труб водопровода по наружному диаметру

При расчетах систем водоснабжения учитываются характеристики насосов и суточное потребление воды, а для наружных коммуникаций — глубину промерзания грунта в конкретном регионе. Также при проектировании желательно соблюдать единый диаметр трубопроводов внутренней разводки, что исключает гидравлические удары и неприятный шум при открывании смесителей холодной или горячей воды.

Теплоизолированные трубопроводы Изопрофлекс и Касафлекс

Трубы Касафлекс и Изопрофлекс представляют собой отдельную категорию трубопроводов, основным отличием которых от обычных полимерных изделий является уже готовый слой теплоизоляции, заключенный в полимерную оболочку.

Трубопроводы Касафлекс предназначены для теплотрасс, диаметр которых лежит в пределах от 55 до 163 мм. Нержавеющая внутренняя труба работает при температурах до 160°С и рабочих давлениях до 16 атмосфер.

Трубопроводы Изопрофлекс изготовлены на основе сшитого полиэтилена, что допускает их применение в системах отопления и ГВС с максимальной температурой от 75 до 115°С. Параметры предельного давления трубопроводов Изопрофлекс лежат в пределах от 6 до 16 атмосфер и зависят от конкретной марки изделия. Номинальный ряд диаметров Изопрофлекс находится в диапазоне от 25 до 225 мм, что позволяет считать трубопроводы этого типа наиболее универсальным набором изделий для всех сфер применения.

К типовым характеристикам Изопрофлекс и Касафлекс необходимо добавить широкий модельный ряд трубопроводов этого типа, что позволяет использовать изделия одного производителя при монтаже всего комплекса системы отопления или водоснабжения — от теплотрассы до конечных отопительных приборов и точек раздачи воды.

Виды стояков: какой материал лучше для отопительного стояка?

Современное жилище невозможно представить без трубопроводов. У нас их может быть несколько, ведь в каждом доме или квартире нужны отопление и вода, а большую часть воды, которая поступает в дом, нужно куда-то сливать, то есть обязательно требуется канализация.

Пожалуй, самой сложной частью трубопроводов являются системы отопления. От правильности их монтажа может очень сильно зависеть комфорт в помещении.Стояки системы отопления

Важная часть системы отопления — это стояк. Виды стояков этих систем могут быть разными по расположению, конструкции, выполняемым функциям.

Если рассматривать материал, из которого стояки изготавливаются, то они могут быть:

  • Чугунными,
  • Стальными,
  • Оцинкованные,
  • Из нержавеющей стали,
  • Медными,
  • Полипропиленовыми,
  • Металлопластиковыми.

Какой материал для стояков лучше?

Вопрос, какие стояки лучше, приходится задавать себе тем людям, которые подошли к проблеме замены стояка отопления у себя в квартире или доме. Вариантов несколько. Кажется, что все просто: нужно выбрать самый прочный материал. Однако нельзя поменять части системы отопления у себя в квартире, не обращая внимания на материал, из которого смонтирована вся система, например, в многоэтажном доме. Рассмотрим достоинства и недостатки разны материалов для отопительных стояков.

Чугунные стояки сразу отметаем, так как сегодня они не используются для монтажа систем отопления.

Трубы из нержавейки и меди

Эти два материала очень прочные и долговечные. Они выдерживают высокое давление и очень высокие температуры. Однако целесообразно ли использовать их для стояков отопления? Трубы из меди стоят довольно дорого. Если вся остальная сеть сделана не из меди (что скорее всего), то соединение в одну систему разных металлов приводит к быстрому разрушению ввиду коррозии более активного из них. По этой причине не стоит соединять трубопроводы из меди с трубопроводами из алюминия, стали, оцинкованного металла. Чтобы не происходил процесс коррозии, нужно устанавливать в таких трубах пассивные аноды, к примеру, из магния. Еще одна проблема медных труб — блуждающие токи. Для защиты нужно обеспечить надежное заземление.

трубы из нержавейки
Нержавеющая сталь «ведет себя» при соединении в один трубопровод с другими металлами так же, как и медь. К тому же, кроме дороговизны самого материала, очень дорого стоит монтаж труб из нержавеющей стали.

Оцинкованные трубы

Данный вид труб вообще лучше не использовать для отопительных стояков. Различные добавки, которые присутствуют в теплоносителях, разрушают защитное их покрытие, при этом, продукты химической реакции оседают в трубах. Кроме разрушения самого стояка этот процесс изменяет химические реакции в теплоносителе. Это уже негативно может сказаться на всей системе отопления.

Стальные стояки

На сегодняшний день большинство трубопроводов систем отопления в нашей стране сделано из стальных труб. Поэтому новый обычный железный стояк хорошо «впишется» в старый трубопровод. При правильном монтаже он выдерживает 6-8 атмосфер давления. Температура, которая в отопительных трубах и радиаторах не бывает выше 110 0C, железному стояку не страшна. Срок службы порядка 50 лет.

Из недостатков следует отметить возможность коррозии и необходимость периодически перекрашивать поверхность.

Трубы из пластика

Пластиковый стояк отопления у многих вызывает недоверие. Нам кажется, что пластик не выдерживает высокие температуры, не справиться с давлением в городской системе, однако это совсем не так. Среди трубопроводов из полимерных материалов для монтажа систем отопления подходят два:

  • Металлопластик,
  • Полипропилен.

Помните, что выбирать трубы нужно в соответствии с их назначением: нельзя ставить трубы для холодной воды в отопление!

Металлопластиковый стояк выдерживает достаточную температуру и давление, он не требует обязательного крепления к стене, соединения с помощью фитингов надежны. Однако все же при перепадах температуры остается вероятность ослабления соединений, поэтому их периодически нужно проверять.

Полипропиленовый материал позволяет сваривать части трубопровода, поэтому он лишен недостатка металлопластика. Армированный полипропилен, который применяется для монтажа отопительных систем, в состоянии выдержать температуры и давление даже городских отопительных сетей, однако этот материал при нагревании деформируется. Деформация заключается в изгибании трубы. Если его оставить без внимания, то может быть нарушена герметичность, то есть возникает риск протечки. Чтобы избежать негативных последствий, полипропиленовые стояки крепят к стене. Делать это нужно не клипсами, а надежными хомутами.

трубы из пластика
Если учесть недостатки полимерных труб, то они в состоянии будут прослужить так же долго, как и стальные: не менее 50 лет.

Источник https://montagtrub.ru/kollektornaya-sistema-otopleniya-chastnogo-doma-uzlyi-montazh/

Источник https://tk-flex.ru/articles/diametry-polimernykh-trub

Источник http://stroy-king.ru/vidy-stoyakov-kakoj-material-luchshe-dlya-otopitelnogo-stoyaka.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: