Из чего можно сделать ветрогенератор. Правильный выбор генератора для ветряка

Содержание

Из чего можно сделать ветрогенератор. Правильный выбор генератора для ветряка

Многие владельцы загородных домов хотели бы использовать альтернативные источники энергии. Аналогичного мнения придерживаются и жители городских квартир из-за постоянного роста стоимости электроэнергии. При желании можно собрать простой ветряной генератор и установить его на своем участке.

Правовые вопросы установки ветряка

Перед началом работ по созданию ветрогенератора своими руками стоит разобраться в законности использования этого агрегата. Чтобы обеспечить дачный участок электроэнергией, вполне достаточно использовать установки, мощность которых не превышает 1 кВт. На территории России они считаются бытовыми, и для их использования не требуется разрешение или сертификат.

Также со стороны государства не предусмотрены и дополнительные налоги на производство энергии для бытовых потребностей. В результате можно смело собирать ветряки своими руками для дома и использовать бесплатную электроэнергию. Однако стоит дополнительно проконсультироваться в местных органах власти на предмет наличия каких-либо правовых нормативов по данному вопросу.

Кроме этого, не стоит исключать возможность жалоб со стороны соседей, если они начнут испытывать неудобства при использовании этого агрегата. Решив собрать ветровой генератор своими руками, стоит обратить внимание на несколько его параметров:

Кроме этого, могут возникнуть претензии со стороны экологических служб, если ветряк мешает миграции птиц. Однако такая ситуация крайне маловероятна.

Принцип работы

Ветряной генератор представляет собой устройство, преобразующее кинетическую энергию ветра в механическую с ее последующей конвертацией в электрическую. Происходит это благодаря вращению ротора генератора. Агрегат состоит из следующих элементов:

  • Лопасти.
  • Ротор турбины.
  • Генератор с подвижной осью.
  • Инвертор для преобразования переменного тока в постоянный.
  • Аккумуляторные батареи.

На лопасти воздействуют три силы, две из которых, подъемная и импульсная, преодолевают третью (тормозящую) и приводят в движение маховик. Вращательное движение передается на ротор генератора, и при его вращении в статоре создается магнитное поле. В результате этого появляется переменный ток, который затем с помощью специального контроллера преобразуется в постоянный и заряжает батарею.

Виды ветряных генераторов

Электроустановки этого типа принято классифицировать в соответствии с несколькими параметрами. Одним из главных здесь можно считать количество лопастей, так как многолопастные начинают работать даже при слабом ветре. Решив собрать ветряной генератор для дома своими руками, следует помнить о том, что лопасти могут быть парусными или жесткими. Проще всего сделать изделия первого типа, но они не отличаются высокой прочностью и требуют частого ремонта.

Отличаются ветроустановки и по расположению оси вращения — горизонтальные и вертикальные. Каждый из этих типов имеет как преимущества, так и недостатки. Если вертикальные устройства более чувствительны, то горизонтальные отличаются высокой мощностью. Последний признак классификации ветряных установок — фиксированный либо изменяемый шаг. В домашних условиях проще собрать агрегат первого типа.

Роторная установка

Собрать такую ветряную электростанцию своими руками довольно просто. При этом ее мощности будет достаточно для обеспечения всех потребностей в электрической энергии на садовом участке.

Подготовительный этап

Владельцам загородных домов можно смело ориентироваться на установки мощностью около 1,5 кВт. Наиболее простым устройством станет агрегат с вертикальной осью вращения. Для его создания потребуются следующие детали и материалы:

Кроме этого, потребуются болты с гайками, мерительный инструмент, болгарка либо ножницы по металлу и дрель.

Инструкция по изготовлению

Основу будущего агрегата составит цилиндрическая емкость, например, бочка или ведро. На нее необходимо нанести разметку, разделив емкость на четыре равных части. После этого следует разрезать металл (не до конца), чтобы получились лопасти. В шкиве и днище емкости просверливаются отверстия, которые должны располагаться строго симметрично, чтобы при работе не возник дисбаланс.

После этого лопасти отгибаются с учетом направления вращения используемого генератора, чаще всего по направлению хода часовой стрелки. Также следует помнить, что угол изгиба лопастей оказывает влияние на скорость вращения пропеллера. Закрепив лопасти на шкиве, генератор с помощью хомутов монтируется на мачте.

Основная часть работ на этом завершена, и остается лишь собрать электрическую цепь. Чтобы облегчить эту задачу, во время установки генератора на мачту стоит зарисовать схему соединений. Для подключения батареи следует использовать метровый отрезок провода сечением в 4 мм 2 . В свою очередь для соединения агрегата с сетью стоит воспользоваться проводником 2,5 мм 2 . Инвертор также подключается с помощью провода большего сечения.

Если все работы были проведены в соответствии с инструкцией, то ветряк будет хорошо работать, и при его эксплуатации проблем возникнуть не должно. При этом достоинств у роторной установки значительно больше, чем недостатков. К числу последних можно отнести лишь довольно высокую чувствительность к сильным порывам ветра.

Агрегат аксиального типа

Так как рынок насытился неодимовыми магнитами, стоимость этих изделий значительно снизилась. В результате можно на их основе собрать эффективный ветряк. Основой аксиального генератора станет ступица с тормозными дисками от машины. Перед началом работ ее необходимо очистить, проверить и смазать подшипники, а также покрасить.

Установка магнитов

Всего потребуется около 20 магнитов размера 20х8 мм. При желании можно использовать и большее количество этих изделий. Однако в такой ситуации следует руководствоваться двумя правилами:

  • Если генератор будет однофазный, то число магнитов должно соответствовать количеству полюсов.
  • Для трехфазного устройства следует придерживаться соотношения полюсов и катушек соответственно 2/3 или 4/3.

Магниты просто наклеиваются на диски ротора , но при этом их полюса должны чередоваться. Чтобы все сделать правильно, стоит предварительно изготовить шаблон-шпаргалку. Предпочтение следует отдать магнитам прямоугольной формы, так как при работе они создают магнитное поле по всей длине. Также следует отметить, что противостоящие магниты должны иметь разные полюса.

Выбор типа генератора

При сравнении одно- и трехфазного устройства, предпочтительнее выглядит второе. Одним из основных недостатков однофазного генератора являются вибрации, возникающие при работе. Причина их появления кроется в разнице амплитуд тока, так как его отдача происходит неравномерно. Благодаря компенсации фаз в трехфазной модели, поддерживается постоянная мощность.

Кроме этого отдача однофазного устройства примерно на 50% меньше. На этом преимущества 3-фазного генератора не заканчиваются. Так как при его работе не возникает вибрация, то шумовые показатели всей ветряной установки будут существенно ниже. При этом не стоит забывать и об увеличении срока эксплуатации, если выбор пал на трехфазную модель генератора.

Изготовление катушек

В создаваемом ветряке процесс зарядки батареи должен стартовать при частоте вращения ротора в 100−150 об/мин. Таким образом, общее число витков на всех катушках находится в диапазоне 1000−1200.Если эти цифры разделить на количество используемых катушек, то можно рассчитать число витков на каждой из них.

Следует помнить, что благодаря увеличению количества полюсов можно повысить мощность всей установки при работе на низких оборотах. На характеристики самодельного генератора серьезное влияние оказывает не только количество магнитов, но и их толщина. Общую мощность генератора можно рассчитать опытным путем. Для этого после изготовления одной катушки ее следует прокрутить в устройстве и измерить напряжение на определенном количестве оборотов без нагрузки.

Дальнейшие расчеты достаточно просты. Можно предположить, что при сопротивлении в 3 Ом на 150 об/мин на выходе получилось 27 В. Если из этого значения вычесть номинальное напряжение аккумулятора (в этом случае 12 В), получится 15 вольт. Для определения силы тока полученный результат (15 В) необходимо разделить на сопротивление катушки (3 Ом), что дает 5 ампер. Катушки необходимо между собой закрепить неподвижно, а выведенные наружу концы фаз соединяются треугольником или звездой. После сборки генератора его стоит проверить на работоспособность.

Финальный этап сборки

Высота мачты в среднем должна составлять от 6 до 12 метров, а ее основание стоит забетонировать. Ветряк монтируется на верхней части мачты и для упрощения ремонтных работ стоит предусмотреть механизм ее подъема и спуска, который будет приводиться в движение с помощью ручной лебедки.

Для изготовления пропеллера отлично подойдет труба из ПВХ с диаметром в 160 мм. Выбор формы лопастей осуществляется опытным путем, а основной задачей на этом этапе является усиление крутящего момента при работе на низких оборотах. Чтобы уберечь винт от сильных порывов ветра, его стоит оснастить складным хвостом.

Каждая из рассмотренных моделей ветряка имеет определенные преимущества и недостатки. Они могут быть достаточно эффективными в различных регионах, но максимальный результат будет получен в местности с частыми и сильными ветрами.

» Ветрогенератор простой домашний своими руками

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической .

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.

Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Ветрогенератор в домашнем конструкторском наборе

  • винт на три лопасти,
  • флюгерную систему,
  • мачту металлическую,
  • контроллер заряда АКБ.

Желательно, но не обязательно, соблюсти последовательность производства всех оставшихся частей ветряного генератора. Последовательность – это порядок, который необходим в любом деле для достижения результативности. Очевидно: существенную помощь в строительстве энергетической машины оказывают готовые наборы:

Изготовление лопастей пропеллера

Достаточно лёгким и простым видится изготовление лопастей винта генератора из пластиковой трубы диаметром 150-200 мм.

Для описываемой конструкции домашнего ветрогенератора были сделаны (вырезаны) три лопасти. Материал: 152-миллиметровая сантехническая труба. Длина каждой лопасти – 610 мм.

Лопасти для пропеллера домашнего ветрогенератора. Элементы пропеллера изготовлены из обычной сантехнической трубы, что широко используется в хозяйстве ЖКХ

Сантехническая труба изначально отрезается по размеру длины с небольшим запасом на обработку. Затем отрезанный кусок рассекается по осевой линии на четыре одинаковых части.

Каждая часть вырезается по несложному шаблону рабочей пропеллерной лопасти. Все кромки резов необходимо тщательно зачистить – отполировать для лучшей аэродинамики.

Элементы пропеллера ветрогенератора – пластиковые лопасти, закрепляются на шкиве, собранном из двух отдельных дисков. Шкив насаживается на вал мотора и притягивается винтом.

Та часть ступицы, на которой крепятся лопасти, имеет диаметр 127 мм. Другая часть – шестерня, в диаметре имеет размер 85 мм. Обе детали ступицы не изготавливались специально.

Закреплённые на ступице лопасти винта домашнего ветряка. Собранный из подручных деталей и готовый к установке на домашний ветрогенератор простейший винт

Металлический диск и шестерню удалось найти в старом техническом хламе. Но диск был без отверстия под вал, а шестерня имела малый диаметр. Объединением этих деталей в единое целое удалось решить проблему соотношения массы и диаметра.

После закрепления лопастей, осталось лишь закрыть торец ступицы пластиковым обтекателем (опять же для аэродинамики).

Флюгерная основа ветрогенератора

Обычный деревянный брусок (желательно из твёрдых пород) длиной 600 мм подойдёт для флюгерной основы. На одном конце бруска хомутами закрепляется электродвигатель, на другом монтируется «хвост».

Флюгерная часть установки, куда поставлены двигатель и хвост ветряка. Мотор дополнительно закрепляется хомутами, хвост накладными брусочками

Хвостовая часть сделана из листового алюминия – это вырезанный прямоугольный кусок, который попросту устанавливается между наставными брусочками и скрепляется винтами.

Для улучшения свойств долговечности, деревянный брусок рекомендуется дополнительно обработать пропиткой и покрыть сверху лаком.

На нижней плоскости бруска, на расстоянии 190 мм от заднего торца бруса, через опорный фланец закрепляется трубчатый отвод под соединение с мачтой.

Флюгерная система домашнего ветряка (нижняя её часть), изготовленная из простых доступных деталей. Такие детали найдутся у каждого владельца домашнего хозяйства

Недалеко от точки закрепления фланца, на стенке трубы высверливается отверстие d=10-12 мм под вывод кабеля сквозь трубу от ветрогенератора к накопителю энергии.

Основание и шарнирная мачта

Тогда как уже готова флюгерная часть домашнего ветрогенератора, наступает очередь производства опорной мачты. Домашнюю установку вполне достаточно поднять на высоту 5-7 метров. Металлическая труба d=50 мм (внешний d=57 мм) в самый раз подходит под мачту этого проекта ветрогенератора для дома.

Опорная тарелка под нижнюю часть мачты домашнего ветряка сделана из толстой листовой фанеры (20 мм). Диаметр блина 650 мм. По краям фанерного блина, равномерно по кругу и с отступом 25-30 мм просверлены 4 отверстия d=12 мм.

Нижняя и верхняя части, которые встанут между мачтой. Слева опорная площадка с установленным на поверхности шарнирным механизмом подъёма/спуска ветрогенератора

Эти отверстия предназначены под временное (или постоянное) штыревое крепление на грунт. Для прочности установки фанеру снизу можно усилить стальным листом.

На поверхности опорной тарелки прикреплена конструкция, собранная из металлических сантехнических фланцев, патрубков, уголков и муфты-тройника.

Между уголками и муфтой-тройником резьбовое сочленение выполнено не до конца. Это сделано специально, чтобы получить эффект шарнира. Таким образом, подъём или спуск ветрогенератора можно осуществлять без труда в любой момент.

Подставка под мачту ветряка оснащается четырьмя отверстиями для дополнительного крепления штырями на грунт. Так, примерно, выглядит состояние опорного элемента, когда мачта установлена и поднята

Муфта-тройник центральным отводом соединена с куском трубы, в нижней части которой установлен ограничитель для трубы мачты. Мачтовая труба надевается на трубчатый кусок меньшего диаметра до упора в ограничитель.

Примерно так же соединяется верхняя часть мачты и флюгерная система ветряка. Но там, в качестве ограничителя, внутри мачтовой трубы установлены подшипники.

Крепление мачты растяжками выполняется стандартно с применением обычных хомутов, которые несложно сделать своими руками из листового металла

Так что, для сборки всей мачтовой системы и потребуется, без каких-либо креплений, всего лишь соединить нижнюю и верхнюю части с мачтовой трубой. Затем, благодаря шарнирному устройству поднять ветрогенераторную установку и зафиксировать мачту растяжками.

Удобство шарнирной системы очевидно. К примеру, на случай непогоды ветрогенератор можно быстро «уложить» на землю, сохранив от разрушения и так же быстро установить в рабочее положение.

Домашний ветрогенератор и схема контроллера

Контроль напряжений и токов, снимаемых с генератора домашней ветряной энергетической установки и подаваемых на аккумуляторные батареи, необходим обязательно. Иначе АКБ быстро выйдет из строя.

Причина очевидна: нестабильность зарядного цикла и нарушения параметров зарядки. Или же следует применять, к примеру, которым не страшны хаотичные циклы, завышенные напряжения и токи.

Функции контроля достигаются сборкой и включением в конструкцию домашнего ветрогенератора простой электронной схемы. Домашние ветряные установки обычно комплектуются относительно простыми схемами.

Принципиальная схема контроллера заряда АКБ ветроэнергетической установки, сборка которой описывается в этой публикации. Минимум электронных компонентов и высокая надёжность

Главное назначение схем – управление реле, переключающего выходы ветрогенератора на аккумуляторную батарею или на балластную нагрузку. Переключение выполняется в зависимости от текущего уровня напряжения на клеммах АКБ.

Традиционная для домашних ветряков схема контроллера применялась и в этом случае. Электронная плата содержит небольшое число электронных компонентов. Схему достаточно просто спаять своими руками в домашних условиях.

Принцип построения обеспечивает зарядку аккумуляторов до момента, пока не будет достигнут граничный предел напряжения на клеммах. Затем реле переключает линию на установленный балласт. Реле нужно брать с контактной группой под высокие токи, не менее 40-60А.

Настройка схемы предполагает регулировку триммеров под установку соответствующих напряжений контрольных точек «А» и «В». Оптимальные значения напряжений в этих точках равны: для «А» — 7,25 вольт; для «В» — 5,9 вольт.

Если схема настроена под такие параметры, аккумуляторная батарея будет отключаться при достижении на клеммах напряжения 14,5 В и вновь подключаться к линии ветрогенератора при напряжении на клеммах 11,8 В.

Структурная электрическая схема домашнего ветряка: А1…А3 — аккумуляторная батарея; В1 — вентилятор; Ф1 — сглаживающий фильтр; Л1…Л3 — лампы накаливания (балласт); Д1…Д3 — мощные диоды

Схемой ветрогенератора предусмотрено управление вентилятором «3» (может использоваться для вентиляции газов АКБ) и альтернативной нагрузкой «4» через силовые транзисторы серии IRF.

Состояние выходов отмечают светодиоды красного и зелёного свечения. Предусмотрена установка ручного управления состоянием контроллера через кнопки «1» и «2».

Особенности подключения системы

Завершая публикацию, следует отметить одну важную особенность. (при условии уже работающей турбины) необходимо проводить следующей последовательностью:

  1. Подключить контакты «АКБ» на клеммы аккумулятора.
  2. Подключить контакты ветрогенератора на клеммы реле.

Если такую последовательность не соблюдать, существует высокий риск вывода контроллера из строя.

Установка ветрогенератора 4 кВт — видео гид

Конструкция всего агрегата состоит из основных и вспомогательных элементов.

В список главных элементов входят:

  • генератор ;
  • мачта ;
  • пропеллер .

К вспомогательным элементам этого “технологического прорыва” относятся:

  1. Батареи , которые в свою очередь состоят из аккумуляторов.
  2. Инвертор (его можно еще назвать контроллером).
  3. Также к вспомогательным элементам относится автоматический переключатель источника питания.

  1. Мачта, пропеллер и генератор. Их назначение всем понятно: На огромной мачте, стоит пропеллер, ветер приводит его в движение, он крутится, образуя энергию. Далее эта полученная энергия направляется к генератору, он в свою очередь генерирует простую энергию ветра в электроэнергию.
  2. Контролер. Задача контролера заключается в том, чтобы преобразовать переменный ток в постоянный, чтобы его можно было накапливать в аккумуляторы.
  3. Инвертор. Он работает в обратном режиме, относительно контролера. При выходе постоянного тока из аккумуляторов, инвертор перебазирует его на переменный, который пригоден для работы с бытовыми электроприборами.
  4. Аккумулятор. Его предназначение понятно всем – он накапливает в себе полученную энергию и выполняет работу ресивера.
  5. Автоматический переключатель источника питания обеспечивает непрерывную доставку электроэнергии, переключаясь между источниками. Например, если пропал ветер и ваш ветряк не может предоставить то количество энергии, которое нужно, то переключатель переформируется на дизельную электростанцию.

На что нужно обратить внимание?

  1. При выборе ветрогенератора для домашнего использования, нужно обратить внимание на коэффициент использования ветра и, конечно же, самое главное – это мощность. В хороших вариантах ветрогенераторов для дома, коэффициент достигает до 45%, что является очень продуктивным. Мощность же на домашних приспособлениях начинается от 300 Вт до 10 кВт (второго показателя с головой хватит на то, чтобы в вашем доме работали все электрические приборы).
  2. Очень важным аспектом при выборе ветряка для дома является его быстроходность. В стандартных версиях она колеблется от 5 до 7 единиц. К примеру, если вы выбрали ветряк с единицей быстроходности “5”,- то это значит, что при ветре 10 метров в секунду ваш пропеллер будет крутится со скоростью в 5 раз быстрее, то есть 50 метров в секунду.

Создаются как стандартные ветрогенераторы с горизонтальной осью вращения, так и вертикально-ориентированные, их винт представляет не вертикальную, а горизонтальную крыльчатку. При выборе второго устройства, не нужно ориентироваться на направление ветра, однако они сложнее в производстве, установке и эксплуатации, поэтому огромной популярностью они не пользуются.

От чего зависит эффективность работы:

  1. Конструкции определенного агрегата. От этого зависит многое, ведь у каждого ветряка свои особенности в сборке, поэтому и по производительности каждый из них будет отличатся. Многое зависит от размеров самого ветряка и легкости его лопастей. Не малую роль играет и сам генератор (сердце всей конструкции).
  2. Погодных условий местности, на которой установлен ветряк. Как и было сказано ранее, нет смысла устанавливать эту штуку на не ветряной местности. Установив его в условиях низкой ветрености, вы никакой пользы от него не получите.

Установка

Монтаж ветряка очень сложная процедура. Первым делом, следует купить закладные в фундамент, детали крепления. Затем, следует залить бетонную основу, которая будет держать ваш агрегат. При заливке фундамента, нужно сразу установить купленные ранее элементы для крепления. После того, как фундамент залит, он должен простоять 21 день, прежде чем начинать установку мачты.

Далее, идет работа посложнее. Самому вам не справится, нужен специально обученный персонал и тяжелая техника (подъемный кран обязательно). Сборка одного ветрогенератора для дома, займет не менее одного целого дня.

Все работы связанные со сборкой и установкой оборудования (сюда входят и подсоединение к сети, подключение всей проводки, сборка всего агрегата и так далее), должны осуществляется исключительно квалифицированными работниками.

Самодеятельность в этом сложном деле не приветствуется. Монтировка всего оборудования осуществляется в сухом помещении с температурой от 10 до 30 градусов Цельсия. Специальные работники, которые монтировали и устанавливали оборудование, должны предоставить пакет услуг, по которому они обязаны будут в период эксплуатации ремонтировать ветрогенератор.

Плюсы использования ветрогенератора у себя дома:

  1. Самым главным преимуществом является бесплатная электроэнергия . Заплатив однажды за все оборудование и установку этого агрегата, вам больше не придется платить за электроэнергию. Теперь вы сами еще вырабатываете.
  2. Очень частое явление, когда в сложные времена года, происходят перебои энергоснабжения. Происходит это зачастую из-за порванной линии, либо какие-то проблемы с . Установив у себя дома ветрогенератор, на ваши электроприборы больше не повлияет погода. В сложных погодных условиях, ветряк будет работать даже быстрее обычного режима.
  3. Эти агрегаты безопасны для окружающей среды и практически не производит шума при работе. Это значительно лучший вариант энергии, нежели тот, из-за которого уничтожается экосистема планеты.
  4. Ветряк очень хорош в техническом понимании. Ведь он может работать в сочетании с несколькими источниками энергии, например: дизельная электростанция, солнечные батареи и так далее. Это удобно, если какой-то источник электричества на полную силу не может обеспечить ваш дом энергией.

Минусы ветрогенераторов:

  1. Первый значительный минус – это конечно зависимость от погодных условий. Ветряк не станет работать там, где слабые потоки ветра. Устанавливать его разумно лишь на побережье моря и в местах, где повышена ветреность. Установив ветрогенератор у себя дома, на местности, где потоки ветра ниже среднего показателя, вы никогда не добьетесь того, чтобы этот вид добычи электричества был основным.
  2. Цена тоже не очень приятна. Стоит такое удовольствие очень и очень дорого. Окупиться этот агрегат сможет, в лучшем случаи спустя лишь 10 лет. Сам генератор, мачта и ветряк – это лишь 30 процентов стоимости всей конструкции, остальную долю берут на себе аккумуляторы и инвертор. К тому же сами аккумуляторы на сегодняшний день не долговечны, и вам придется очень часто производить их замену, что тоже будет сильными ударами бить по вашему карману.
  3. Безопасность этого альтернативного добытчика энергии не самая продвинутая. Лопасти при сильном износе попросту могут оторваться и принести значительный ущерб имуществу, или что еще хуже – жизни человека.

Видео по установке ветрогенератора:

Как относится законодательство к установке ветрогенератора у себя на участке?

  1. По закону всех стран бывшего СССР , законодательство по энергоресурсам не сертифицирует ветряки, поэтому при установке ветряка у себя на участке, вам не нужно брать какие-либо сертификаты у должностных учреждений.
  2. Если ваш ветряк мощностью до 75 кВт , то он приравнивается к бытовым электроприборам, то есть как дизельный или бензиновый генератор.
  3. В том случае, если ваш агрегат не превышает высоту 30 метров и мощность 75 кВт, то при его установке, вам не понадобится никаких документов, связанных с законодательными органами.
  4. Вся конструкция ветрогенератора экологически чиста для окружающей среды и для здоровья человека, поэтому никакие экологические фанатики не предъявят вам свои требования.

Видео по установке генератора своими руками:

Какой выбрать генератор для домашней ветроэлектростанции?

От автомобиля

  1. Достоинства : не дорогой, очень легко отыскать, уже полностью собран.
  2. Недостатки : для работы нужна большая скорость вращения, по этому требуется установка дополнительных шкив. Непродуктивен.

Цена : Зависит от модели и марки автомобиля.

  1. Достоинства : не высока стоимость всей комплектации, довольно хорошая продуктивность, относительно автомобильного генератора, при правильной сборке, возможно получение большой мощности, очень крепкая и неразрушимая сборка.
  2. Недостатки : очень сложная затея для не обученного человека, требует обработки на токарном станке.

Цена : Зависит от купленных вами запчастей и номинальной, желаемой мощности.

Переменного тока, асинхронный

  1. Достоинства : не высокая стоимость, очень легко найти и приобрести, не сложно переоборудовать под ветряк, при низких оборотах очень хорошая продуктивность.
  2. Недостатки : максимальная мощность ограниченная, так как агрегат имеет внутреннее сопротивление, при высоких оборотах лопасти, генератор не производит достаточное количество электроэнергии для того, чтобы установить на ветряк, нужно обработать на токарном станке.

Цена : можно найти от одной тысячи рублей.

Постоянного тока

  1. Достоинства : простая и понятная конструкция, уже собранный и готов к использованию, достаточно хорошо работает на низких оборотах.
  2. Недостатки : очень сложно найти генераторы нужной мощности, ведь маленькие агрегаты не выдают нужную мощность, очень похотливый.

Цена : начинается от 7 тысяч рублей.

С постоянными магнитами

  1. Достоинства : Очень высокая эффективность, есть возможность получить много мощности, конструкция крепкая и устойчивая.
  2. Недостатки : Если делать своими руками, то очень сложный проект, требуется обработка на токарском станке.

Цена : на 500 Вт конструкцию колеблется в районе 14 – 15 тысяч рублей.

Низкооборотный

  1. Достоинства : Простой в использовании, не требует больших затрат, хорошо работает на низких оборотах.
  2. Недостатки : Не будет работать на высоких оборотах, слабая мощность.

Цена : Около 10 тысяч рублей.

Асинхронный

  1. Достоинства : Не дорогой, легко найти, не сложно переоборудовать под ветряк, отлично работает на низких оборотах.
  2. Недостатки : Внутреннее сопротивление ограничивает мощность, малая эффективность на высоких скоростях.

Цена : Имеется очень огромный сортимент данного товара, цена колеблется в районе 5 тысяч рублей, до пятиста тысяч, ценовой диапазон ориентируется по мощности.

Ископаемые, которые дают человечеству энергию скоро закончатся, нам нужно искать выход. Одним из таких выходов и является ветрогенератор. Его конструкция и установка дорогая, однако, установив его сейчас, вы обеспечиваете светлое будущее своим детям.

Отправим материал вам на e-mail

В современном мире все больше денег приходится отдавать за коммунальные услуги, в перечень которых входит подача электроэнергии. Поэтому владельцы частных домов все чаще задумываются о том, как сделать ветрогенератор на 220В своими руками, который сможет обеспечить бесперебойной электроэнергией весь дом.

Все ветрогенераторы состоят из лопасти, ротора турбины, генератора, оси генератора, инвертора и аккумулятора. Условно можно разделить все модели на промышленные и домашние, при этом принцип работы у них будет одинаков.

Вращаясь, ротор создает переменный ток с тремя фазами, который идет через контроллер к аккумулятору, а дальше, в инверторе преобразуется в стабильный для подачи к электроприборам.

Вращение лопастей происходит за счет физического воздействия при помощи импульсной или подъемной силы, в результате чего в действие приходит маховик, а также под воздействием тормозящей силы. В процессе маховик начинает раскручиваться, а ротор создает поле магнитное на зафиксированной части генератора, после чего воспроизводится ток.

В целом разделяют ветрогенераторы на вертикальные и горизонтальные. Что связано с расположением оси вращения.

Вертикальный вариант

Планируя создания ветряка своими руками на 220В, в первую очередь продумайте именно вертикальные варианты. Среди них выделяют:

  • Ротор Савониуса. Самый простой, появившийся еще в 1924 году. В основе лежат два полуцилиндра на вертикальной оси. К недостаткам относят низкое использование энергии ветра.

  • С ротором Дарье. Появился в 1931 году, раскрутка происходит за счет разности сопротивления аэродинамического горба и кармана ленты, поэтому к недостаткам относится малый вращательный момент, а также необходимость монтировать нечетное количество лопастей.
  • Лопасти имею закрученную форму, уменьшая нагрузку на подшипник, увеличивая срок эксплуатации. Недостаток – высокая цена.

Самодельный вариант выйдет дешевле, если его правильно продумать и смонтировать.

Статья по теме:

Горизонтальные модели

Горизонтальные модели разделяют по количеству лопастей. КПД у них выше, но есть необходимость монтажа флюгера для постоянного поиска направления ветра. Обороты вращения все модели имеют высокие, вместо лопастей монтируют противовес, который оказывает влияние на сопротивление воздуху.

Многолопастные модели могут иметь до 50 лопастей с большой инерцией. Их можно применять для работы водяных насосов.

Как сделать ветрогенератор своими руками на 220В

Чтобы обеспечить частный дом постоянным потоком электроэнергии при средней скорости ветра в 4 м/с достаточно:

  • 0,15-0,2 кВт, который идут на основные потребности;
  • 1-5 кВт на электрооборудование;
  • 20 кВт на весь дом с отоплением.

При этом стоит учитывать, что ветер дует не всегда, поэтому своими руками ветряк для дома стоит обеспечить аккумулятором с контроллером заряда, а также инвертором, к которому подсоединяют приборы.

Для любой модели самодельного ветряка потребуются основные элементы:

  • ротор – часть, которая вращается от ветра;
  • лопасти, обычно их монтируют из дерева или легкого металла;
  • генератор, который будет преобразовать силу ветра в электроэнергию;
  • хвост, помогающий определить направления потоков воздуха (для горизонтального варианта);
  • горизонтальная рея для удержания генератора, хвоста и турбины;
  • матча;
  • провод соединительный и щиток.

В комплектации щитка будет аккумулятор, контроллер и инвертор. Рассмотрим два варианта, как вделать ветряной генератор своими руками.

Статья по теме:

Особенности сборки ветрогенератора из стиральной машины своими руками

Рассмотрим, как сделать ветрогенератор на 220В своими руками, используя двигатель старого образца.

Таблица 1. Подробная инструкция ветрогенератора из стиральной машины с фото

Что необходимо сделатьФотопример
Следует купить неодимовые магниты, которые монтируются в углубления на роторе двигателя. Сами выемки делаются на токарном станке, для правильного размещения используйте схему.
Приклеивать магниты надо на суперклей в подготовленные углубления. Затем, их следует обернуть бумагой, а остальное пространство залить эпоксидкой.
Далее готовим ось, которую лучше заказать у токаря. Внутри полой конструкции должно остаться место для кабеля и отверстие для его входа. Держатель монтируем из железного прута. Для него используем болгарку, которой отрезаем две трубки (на них закрепляете генератор), а с другого конца следует приварить.
Переходим к лопастям, которые можно изготовить из 16 см трубы для наружной канализации. В данном случае используйте лобзик.
Осталось собрать ветрогенератор, закрепив все элементы. Для начала на несущую рейку крепим генератор, лопасти, ротор и хвост. Не забудьте закрыть генератор кожухом.
Силовую установку следует крепить при помощи шарнирного механизма, а мачта монтируется в бетонное основание на 4 болта.
Проведите провод до распределительного щитка.
Подключите все элементы и проведите тестирование работоспособности.

Чтобы было проще понять всю последовательность действий при сборке ветряной электростанции своими руками из старой , посмотрите видео:

Особенности сборки вертикального ветрогенератора из автомобильного генератора своими руками

Когда «самоделкины» задумываются, как сделать ветрогенераторы на 220В своими руками, чаще всего используют именно автомобильные генераторы в качестве основы. Собрать его несложно, а для работы потребуются:

  • генератор в 12В от авто;
  • аккумулятор;
  • преобразователь с 12 на 220 Вт с мощностью 1,2 кВт;
  • бочка или ведро алюминиевое или стальное для лопастей;
  • контрольная лампочка от авто;
  • выключатель;
  • вольтметр;
  • провода из меди с сечением более 2 мм;
  • хомута для крепления.

Для сборки ветрогенератора вертикального своими руками потребуются рулетка и карандаш, набор ключей, электродрель и болгарка, а также ножницы по металлу. Подробная инструкция по монтажу приведена ниже.

Таблица 2. Сборка вертикального ветрогенератора из автомобильного генератора

ДействиеИзображение
Подготовленную металлическую емкость необходимо разметить и разрезать на 4 равные части, только делать это надо не до конца. В каждой детали просверлите отверстия для болтов, которые должны быть симметричными.
Не до конца прорезанные лопасти слегка отгибают, от этого процесса напрямую зависит скорость вращения, поэтому заранее решите в какую сторону должно вращаться оборудование.
Необходимо закрепить лопасти на шкиве, а генератор при помощи хомутов установить на мачту, а также собрать проводку по заготовленной схеме.
Главное правильно подсоединить провода, к которым в щитке подсоединяется аккумулятор, а также преобразователь.

Чтобы вам было проще сориентироваться, посмотрите видеоматериал по варианту сборке ветрогенератора из автомобильного генератора своими руками.

Автора уже давно интересовала идея использования альтернативной энергии. Поискав информацию о различных устройствах на эту тему, автор нашел для себя модель ветряка, которая легка в исполнении и не сильно затратная по деньгам.

Материалы использованные автором для создания ветряка:
1)провода 38-16
2)электронный контроллер зарядки
3) генератор GM 7127 от компании AutoZone
4) набор для усовершенствования статора — MTM cientific,
5) углеволоконные лопасти и ступица — Picou Builders Supply, Co Inc.,
6) трубы водопроводные
7) лентопротяжный мотор DC Ametek мощностью 38 В

Рассмотрим этапы создания ветрогенератора.
Для начала автор приобрел все необходимые комплектующие. В строительном магазине были куплены трубы и несколько метров проводов. Через интернет магазины были заказаны высоковольтные катушки статора и трансмиссия. Для индикации зарядки аккумулятора был приобретен электронный контроллер.

После этого автор приступил к сборке основной конструкции ветрогенератора.
Генератор был установлен на стойку, и на верхушку стойки турбины был установлен небольшой диод, который был присоединен проводами к катушке генератора. Так как это не генератор с постоянным магнитом, то лампочка позволяет катушке самовозбуждаться и покажет момент, когда генератор не выдает заряд, а следовательно может быть отключен от аккумулятора.

Затем были изготовлены лопасти из углеволокна. После чего автор приступил к покрасочным работам. сам генератор автор покрасил в красный цвет, а ступицу и крепежи лопастей в белый.

После сборки и покраски автору осталось лишь ждать безветренного дня для установки конструкции ветрогенератора.
Перед началом монтажа автор решил снять лопасти, для облегчения процесса установки генератора на верхушку вышки.

Проведя еще раз расчеты длины флагштока, автор обнаружил погрешность из-за которой не получиться установить механизм идеально. Поэтому согласно новых расчетов автор отрезал 16″ трубы, но она оказалась немного толще чем необходимо. Поэтому вооружившись напильников автор начал устранять все огрехи расчетов вручную.

Для удобства поднятия ветротурбины и ее установки автором был собран трехног-подъемник и при помощи помощника и самодельного подъемника вся конструкция была поднята на платформу стойки, где она была укреплена и сбалансирована.

Как видно на фотографии от генератора отходят три кабеля, которые автор будет подсоединять к системе накопления энергии от ветроустановки.

Первые тесты показали надежность конструкции. При сильном ветре около 35 мильчас генератор начинал шуметь, но крепления выдерживали. Однако в ходе испытаний был выявлен главный недостаток данного генератора, который упустил автор. дело в том, что автомобильный генератор не начинает вырабатывать ток пока ветер не достигнет 12 мильчас

Прошлой ночью дул достаточно сильный ветер, но турбина “была на высоте”. Временами порыв ветра достигал 35 — 40 миль/час. При таком ветре турбина создавала шум, но главное, что она выдержала такое испытание. Из-за заводского ограничения автомобильный генератор не начинает вырабатывать ток, пока сила ветра не достигнет 12 миль/час, а при нулевых оборотах он не вырабатывает энергию и не показывает напряжение. При ветре меньше 12 мильчас и низких оборотах генератора, он до момента начала выработки тока сам потребляет энергию аккумулятора, что практически испортило его. Поэтому для того чтобы исправить систему, и сберечь аккумуляторы автор решил модернизировать генератор таким образом, чтобы сделать из него генератор переменного тока с постоянным магнитом.

Обмотка статора была перемотана. Первоначально на статоре было 4 витка провода №14, они были заменены на 10 витков провода №18. Уложить последние 4 провода в последнем слое оказалось сложной задачей, автор даже попробовал при помощи пресса сделать углубления в статоре, однако это не принесло результатов.

По итогу вся затея с перемоткой статора провалилась, так как некоторые кольца обмотки соприкасались с металлическим сердечником и создавали короткое замыкание. Поэтому автор отбросил эту затею и приобрел лентопротяжный мотор DC Ametek мощностью 38 В. Автор пометил капы и развел их для большего удобства. Купленный ротор со скошенными пазами давал довольно неплохой пусковой момент, при испытаниях на ручной тяге вольтметр показывал чуть более 9 В.

Для того, чтобы присоединить генератор на то же крепление, которое использовалось для старого автомобильного генератора переменного тока, автор выточил фланец.

Новый статор относительно меньше своего предшественника в размерах, но зато начинает работать уже при самом слабом ветре. Для того, чтобы преодолеть сопротивление аккумулятора и начать зарядку достаточно силы ветра в 7-8 мильчас. При этом установленный диод не дает генератору перейти в режим мотора.

А вот фотография аккумуляторного блока системы.

Для того, чтобы ветряк мог поворачиваться относительно ветра автор сделал поворотный механизм. Генератор монтируется справа, а хвост крепиться на изогнутую часть трубы сзади.

Ветрогенератор своими руками

Приветствую вас на сайте о самодельных ветрогенераторах, солнечных панелях, электричестве от ветра и солнца. На страницах сайта есть много информации о том как в домашних условиях сделать ветрогенератор, начиная от генератора и заканчивая подключением, контроллером, аккумулятором. Так-же в разделе Мой небольшой опыт я выложил фото отчёты о своих ветряках. Вы я думаю найдёте ответы на все вопросы начиная от намотки катушек генератора , и до расчёта лопастей , и многое другое. Так-же на сайте есть информация о аккумуляторах, контроллерах, схемах защиты и т.д.

Ниже я опишу простой пример изготовления маломощного (100-300 ватт*ч) ветряка из автомобильного генератора, который изготавливал я.

Автомобильный генератор легко поддается переделке под низко-оборотный генератор без всяких мультипликаторов и других сложностей. Переделка заключается в перемотке статора, и переделке ротора на магниты, делов на пару дней и генератор готов.

Для начала работы понадобится любой авто-генератор, не важно сколько зубов на статоре и от какого автомобиля генератор, можно б/у или сгоревший. Так же понадобятся неодимовые магниты, которые можно поискать в местных магазинах радиодеталей, или заказать в интернет магазинах.

Содержание страницы:
[*]Ротор генератора на неодимовые магниты

Магнитов нужно набрать на 12 или 24 магнитных полюса, в зависимости от того на сколько «зубов» статор. Можно использовать или целые магниты подходящих размеров, например 25*10*6 мм, или брать более мелкие и составлять полюса чтобы заполнить всю свободную площадь на роторе. Чем больше площадь и толщина магнитов, тем мощнее в итоге получится генератор. Но всему есть придел, и при использовании слишком толстых и мощных магнитов будет большое залипание ротора к зубам статора. А лишнее магнитное поле выйдет за пределы статора и он станет магнитится снаружи, и это магнитное поле не будет участвовать в выработке электро-энергии. В большинстве случаев хватает даже тонких магнитов 20*10*2 мм. Подробнее смотрите как делать и расчёты генераторов в разделах сайта.

Ещё понадобится медный эмаль-провод. Если вы будете использовать магниты с силой притяжения не более 4 кг, то мотать лучше проводом 0,6мм, ну а если магниты по сильнее, то можно толщиной 0,8-1 мм мотать. Чем толще провод, тем в итоге меньше сопротивление обмотки генератора, а значит выше сила тока, но толстый провод даёт больше тока, и мало напряжения, по-этому нужно выбирать что-то среднее, чтобы и зарядка аккумулятора начиналась уже при 200-300 об/м, и сила мощность генератора была высокой.

К примеру генератор можно намотать проводом 0,3 мм , тогда зарядка начнётся практически сразу как только генератор начнёт вращаться, но сила тока будет очень маленькой, а если вообще не перематывать генератор , то сила тока будет большая, но напряжения не хватит для зарядки аккумулятора, так-как ветер не сможет раскрутить генератор до 1000-2000 об/м. Если будете мотать проводом 0,6-0,8 мм не ошибётесь, это оптимально с магнитами 25*10*6 мм / 30*10*5 мм /30*10*4 мм. При намотке в пазы нужно вкладывать витков как можно больше, чтобы не было промежутков, так войдёт больше витков, и значит напряжение будет выше. Подробнее про расчёт генератора можно прочитать здесь — Расчёт напряжения и мощности генератора

Когда магниты и провод есть можно брать ротор и идти к токарю, чтобы он проточил ротор под магниты. Ротор нужно проточить на толщину магнитов и гильзы. Гильза нужна для замыкания магнитного поля магнитов, это увеличивает мощность и эффективность использования магнитов. Толщина гильзы обычно равна толщине магнитов. Ротор просачивается, и одевается гильза, она или приваривается или заливается эпоксидной смолой.

Кстати готовьтесь к тому что токаря не любят точить роторы авто-генераторов, так-как «крабы» стучат при обработке, а это негативно сказывается на станке. Если токарь не хочет точить «крабы» ротора, то то попросите его выточить новый ротор из цельной болванки, сразу диаметром под магниты. Когда будете точить ротор, то рассчитывайте зазор между магнитами и статором и делайте его 1 мм, например статор авто-генератора от классики внутренним диаметром 89 мм, если магниты толщиной 5 мм, то скидываем 10 мм и 2 мм на зазор, и того в общем диаметр ротора должен быть меньше внутреннего диаметра статора на 12 мм.

В случае с авто-генератором магниты нужно клеить без всякого скоса, которым снижают залипание чтобы ротор страгивался при меньшем усилии. Скос приемлем для асинхронных двигателей так-как там длинный ротор, но у авто-генератора короткий ротор и чтобы добиться ощутимого снижения залипания нужно делать скос на ширину зуб+паз. На таком скосе потеряется 30-40% мощности из-за не эффективного расположения магнитов под скосом.

Магниты на ротор обычно клеят супер-клеем, а потом обматывают скотчем и заливают эпоксидной смолой, я вообще их не приклеиваю, а просто размещаю на роторе через бумажные прокладки между магнитами чтобы они не сдвигались, а потом обматываю скотчем и заливаю эпоксидной смолой.

Как перемотать статор генератора

Новая обмотка мотается не на три зуба, а каждая катушка зуб, и катушек получится не 18 шт., а 36 шт. если статор на 36 зубов. Можно делать всыпную обмотку, то-есть сначала на самодельном станочке намотать все катушки, а потом заправлять их в пазы. Но я мотаю прямо на зубы, предварительно вставляю изоляцию из плотного картона и мотаю прямо на зуб виток витку. Так получается ровнее и плотнее, правда времени надо много на этот кропотливый процесс, но так и меньше меди уходит и сопротивление генератора меньше из-за небольших лобовых частей катушек. Количество витков чем больше влезет тем лучше, чем больше меди, тем эффективнее генератор в общем.

Катушки мотаются по трехфазной схеме, все в одном направлении. Для примера если генератор на18 зубов, первая фаза 1,4,7,10,13,16 зуб , вторая 2,5,8,11,14,17 зуб третья 3,6,9,12,15,18 зуб . После намотки статор обычно пропитывают лаком, а я просто обмазываю эпоксидной смолой. Начала и концы фаз лучше вывести наружу генератора, должно быть шесть проводов, а далее уже соединять звездой или треугольником. Подробнее можно посмотреть здесь о схемах соединения Как сделать ветрогенератор из автомобильного генератора

Соединение обмоток трёх-фазного генератора

Звездой соединяется так: все начала или концы вместе, а оставшиеся три вывода на диодный мост. Звезда дает большее напряжение на тех-же оборотах в сравнении с треугольником, по-этому зарядка начинается раньше, а треугольник дает больший ток, но начало зарядки на более высоких оборотах. Разница между звездой и треугольником по току и напряжению примерно в 1.7 раза.

Треугольником соединяется так: конец первой фазы с началом второй, а конец второй с началом третьей, а конец третьей с началом первой, эти три точки на диодный мост Ларионова, это штатный мост авто-генератора.

Когда с генератором будет окончено, то-есть он работает и генерирует электроэнергию, кстати его покрутить желательно и измерить все данные. У вас должно получится при 300об/м порядка 20-30 вольт в холостую и 2-4 Ампер на АКБ. Если так, то с генератором всё в порядке. Померяйте момент страгивания ротора, если он около 0,2-0.4 Нм то всё хорошо, а если больше, то могут возникнуть проблемы со стартом винта на слабом ветре. Как сделать раму с хвостом и поворотную ось вы наверно и сами додумаете. А вот винт это дело сложное, и о нём немного по подробнее.

Изготовление лопастей ветрогенератора

Самодельные винты для ветрогенераторов небольшой мощности обычно делают из ПВХ труб 110, 160 мм. Я кстати делал ещё и из обычной оцинкованной жести диаметром до 1,2 м, но лучше трубы по прочности и простоте изготовления вроде ничего нет. Хотя можно изготовить деревянные лопасти, или стекло-пластиковые, или купить готовые подобранные под мощность и обороты генератора.

Винты для ветрогенераторов обычно рассчитывают так чтобы получить максимум мощности на определенных ветрах. От формы и геометрии лопасти сильно зависит так называемый КИЭВ ( коэффициент использования энергии ветра ). Но в расчёты вдаваться не будем, так-как есть уже готовый рассчитанный винт из ПВХ трубы диаметром1,5 м. На фото данные для изготовления лопастей.

Координаты для вырезания лопасти из трубы

Ветрогенератор своими руками Rasshet-vinta

Скриншот из программки для расчёта лопастей из ПВХ труб

Кстати его можно вырезать и из110-й трубы, просто в полтора раза уменьшить размеры, и винт будет прекрасно работать. Но 110-я труба имеет толщину стенки всего 3.2 мм, и на сильном ветру будет проявляться так называемый флаттер — рычание винта на больших оборотах из за прогиба лопастей, поэтому лучше делать из160-й трубы с толщиной стенки 4,9мм, с ней эффект флаттера не наблюдается.

Ниже новые фотографии моего генератора, от скуки решил поэкспериментировать с магнитами ротора, и заодно сделать фотографии ветрогенератора.

Автомобильный генератор

Ветрогенератор своими руками 365709090836

Разобранный генератор, где видно неодимовые магниты, статор и ротор, крышки генератора
На фото авто-генератор в разобранном виде. Половинки корпуса генератора, перемотанный статор проводом 0,6 мм, 3 фазы по 70 витков в катушках. 24 неодимовых магнита 30*10*5 мм для наклейки на ротор. Новый ротор выточенный из цельной болванки у токаря.

Автомобильный генератор

Ветрогенератор своими руками 1365709259447

Внешний вид генератора в собранном виде
Так выглядит переделанный авто-генератор, здесь я экспериментирую с магнитами на роторе, на данном фото я примотал скотчем 12 магнитов со скосом, проверяю на залипание. Таким способом я пробую разное количество полюсов (12-24), заматываю магниты скотчем и кручу верчу смотря на залипание и показания вольтметра.

Переделка автогенератора на магниты

Ветрогенератор своими руками Motor-gen

Новый ротор с неодимовыми магнитами

Самодельный ветрогенератор

Ветрогенератор своими руками 1365709219839

самодельный ветряк из авто-генератора
Вот так выглядит самодельный ветрогенератор. Мачта длинной всего 7м и три растяжки тросами диаметром 3 мм, я его один поднимаю. Лопасти из ПВХ трубы110 мм. Мощность на сильном ветру доходит до 100 ватт на акб 12 вольт, на акб 24 вольта до 300 ватт.

Самодельный ветрогенератор

Ветрогенератор своими руками 1365709326971

внешний вид ветрогенератора
Рама ветрогенератора сварена из профильной трубы 50*25 мм. Под крепление генератора приварены два отрезка 20-й трубы. Хвост сделан из двойной оцинкованной жести. Диодный мост я примотал скотчем к раме, так проще соединять провода, чем раскручивать корпус.

Конструкция ветряка

Ветрогенератор своими руками 1365709185178

самодельная поворотная ось ветряка

Ветрогенератор

Ветрогенератор своими руками Verryak-na-dahe

самодельный ветряк из автомобильного генератора

Далее на фото уже два моих ветряка, правда мачты и ветряки еще не покрашены.

Ветряки на даче

Ветрогенератор своими руками 1378331141385

два самодельных ветряка, установлены на дачном участке

На этом пока заканчиваю, подробнее об этих ветряках и о других смотрите в разделах, так-же если кому нужны расчёты предлагаю далее посмотреть другие статьи.

Расчет лопастей из ПВХ труб В статье много готовых, рассчитанных винтов для выбора под ваши ветрогенераторы. А так-же таблицы расчетов. Рассчитанные винты имеют все нужные данные включая координаты лекала лопастей для вырезания из труб.

Расчет складывающегося хвоста Защита ветрогенератора от сильного ветра методом смещения ветроголовки относительно поворотной оси и складывающимя хвостом. Таблицы расчета эксель, а так же формулы и описание принципа работы данной конструкции защиты ветряка от урагана.

Расчет генератора Простой пример расчета основных параметров трехфазного генератора на постоянных магнитах. Я постарался написать как можно понятнее для начинающих процесс расчета и что к чему, от чего зависят параметры генератора.

ветряные генераторы

Чтобы точно знать, какой ветрогенератор будет лучше всего соответствовать нуждам семьи и на всю катушку использовать условия местности, надо определиться с тем, какие ветрогенераторы бывают и в каких сферах применяются.

Промышленное использование ветрогенератора

Ветрогенератор, пригодный для промышленного использования, отличается большими размерами, потребностью в значительной силе ветра и соответственно вырабатываемой мощностью. О промышленном использовании ветрогенератора можно говорить, когда вырабатываемая мощность не опускается ниже 10 КВт – например, для вентиляции горячего цеха в кондитерской промышленности. Вот собственно и все, что нужно знать о таком ветрогенераторе для общего развития, поскольку мы заняты строительством народного ветряка, а наши читатели пока не планируют стать олигархами ветроэнергетики.

Частное использование ветровой электростанции

Как следует из названия, сюда относят ветрогенераторы меньшей мощности, обеспечивающие энергетические потребности небольшого числа частных лиц. Хотя мощности большой частной ветровой электростанции может хватить даже на «питание» целого поселка, мы оставим большие мощности в качестве будущих целей и займемся нашими народными ветряками. Их размеры, мощность и цена должны удовлетворять среднего потребителя электроэнергии или 1 – 2 дома. И здесь вновь стоит сказать, что предпочитаемый тип ветрогенератора напрямую зависит от условий местности.

Лопастник считается более эффективным в зонах, где стабильны сильные ветра – это в основном прибрежная полоса или горная местность. Оптимальная скорость ветра для работы лопастника – 9 – 12 м/с. При малом ветре полезность такого ветрогенератора, даже если он находится на традиционно высокой мачте, низка.

Парусник (парусный ветрогенератор) получил распространение в наших широтах. Он стартует при минимальном ветре и, хотя имеет меньшую по сравнению с лопастником быстроходность и соответственно, вырабатываемую мощность, исправно обеспечивает нас ветроэлектричеством тогда, когда «конкурент» задумчиво покачивает лопастями на своей мачте.

Продавцы лопастных ветрогенераторов часто указывают на неоспоримые конкурентные преимущества своего товара – быстроходность, мощность на выходе, износоустойчивость и устойчивость к штормовым ветрам. И мы согласны с ними.

В нашем парусном ветрогенераторе система ухода от сильного ветра реализована следующим образом: при усилении ветра давление на ветроколесо растет, и ось колеса опускается, при этом паруса имеют меньшую площадь и сопротивление ветру минимально.

Также они отмечают низкий КПД парусного ветряка при скорости ветра 1,5 м/с. И мы снова согласны с ними. Однако лопастный ветрогенератор в тех же условиях вовсе не вырабатывает энергии. Стоит ли критиковать низкий КПД парусного ветрогенератора при нулевом КПД лопастного ветрогенератора в тех же условиях? Наверное, нет. Тем более, что можно усилить ветряк накопительным элементом, который выступит в роли копилки. При маловетреной погоде туда будут падать эти «копейки, что рубль берегут».

Ветрогенератор в Украине

У каждого типа ветрогенератора свои преимущества, и мы прекрасно понимаем преимущества и недостатки каждого из них. Лопастный ветрогенератор будет прекрасно работать на высоте от 50 метров, поскольку там ветер относительно постоянный, не «рыскающего» типа. Другое дело, что в Украине средняя скорость ветра 4 – 5 м/с – и это все-таки «территория» эффективности парусного ветрогенератора. Преимущества лопастника просто потеряются в наших условиях, либо стоимость мачты для его установки превысит стоимость самого ветряка. Пусть они показывают свою эффективность в прибрежных районах, а мы будем готовить самодельный ветрогенератор для наших условий.

Ловля ветра на живца или Изобретаем ветряк второй раз

Чтобы лучше разобраться в причинах вдруг появившейся моды на ветрогенераторы, в том числе, домашние, надо вернуться на тысячелетия назад. Спиральное развитие истории позволяет найти в прошлом ответы на многие вопросы недалекого будущего.

Ветряки: дотопливная эра – наши дни

Ветер использовали задолго до того, как пришла и утвердилась топливная эра, более энергоэффективная по сравнению с примитивными тогда конструкциями ветряков. Да и стоимость ископаемых ресурсов была совсем иной.
Сначала ветер направлял парусные суда древних мореплавателей, намного позже помогал молоть зерно ветряным машинам с вертикальной осью вращения. Критское колесо, прообраз современных ветряков, обеспечивало функционирование ирригационной системы стран Средиземноморья. В 14 веке ветряные мельницы были усовершенствованы в Голландии, и в том же неизменном виде «всплыли» в США образца 1854 года. Американцы разнообразно использовали ветряки, в том числе и для выработки электроэнергии, и к середине 20 века армия ветряков на одной только территории США выросла до 6 млн. единиц. Однако на этом победное шествие ветроэнергетики приостановилось. Гораздо проще и эффективнее оказалось использование продуктов нефтепереработки. Их энергетическая эффективность не зависела от сезона ветров и местности, а экология тогда волновала человечество меньше, чем скорость оборота деньги – нефть – энергия.

Ветряки возвращаются?

Нынешний интерес к ветрогенераторам также возник не на волне исключительной сознательности людей и заботе об экологии. В первую очередь, вернуться к ветроэнергетике заставили нефтяные кризисы, высокие цены на топливо и обещанный к двадцатым годам нынешнего века кризис нехватки ресурсов. Правительства стран отдают себе отчет, что нефтехранилища, заполняемые под завязку, в действительности ничем не помогут, когда нефтересурсы будут исчерпаны. Их строительство – явление скорее психотерапевтического порядка, нежели стабилизационного. И потому нет ничего удивительного, что именно сейчас правительственное субсидирование ветроэнергетики идет в самых крупных государствах мира.

Государства за «зеленую» энергетику

Сразу после избрания Барак Обама обнародовал свое видение решения проблемы исчерпаемых ресурсов. Демократы предложили пакет экономических стимулов (787 миллиардов долларов) на разработку и усовершенствование использования возобновляемых источников энергии в штате Колорадо. В США, где 3% вырабатываемой электроэнергии приходится на долю ветряков, планируется увеличить этот процент до 6-ти к 2012 году, а к 2025 довести его до 25! Дания уже сейчас генерирует 20% электричества при помощи ветряков и в ближайшем будущем собирается увеличить это число до 50%. Все эти меры говорят о том, что человечество вынуждено вновь изобретать ветряк, а вернее, обращаться к неисчерпаемым ресурсам «зеленой» энергетики.

Народный ветряк – энергонезависимость дома

Если пойти от государственного к частному, то не менее резонной выглядит и ставка многих домовладельцев на энергонезависимость своего жилища, которая обеспечивается «домашним» ветрогенератором. Первоначальное вложение капитала компенсируется очень долгой службой ветряка, отсутствием дополнительных вложений в топливо, которые неизбежны при эксплуатации, например, дизельгенератора, экологичностью аппарата и независимостью жилища от центральных источников питания. Простота конструкции делает ветряк по-настоящему народным, поскольку позволяет собрать его самостоятельно.

Валерия Федоренко, специально для www.vetronet.com

Ветряки на Меганоме

Недавно побывал на судакской ветроэлектростанции на Меганоме. Вот что о ней пишут:

Над Меганомом постоянно дует ветер. Его энергию используют: в 2002 году на вершине Меганома открыли ветровую электростанцию. Ее официальное название – Судакский участок государственного предприятия “Донузлавская ветровая электростанция”. 58 ветряков Меганома издали смотрятся заманчиво, почти сказочно, но рядом с ними находиться опасно. Ветровые агрегаты издают сильный шум, свист и, как установлено медиками, тяжелые для психики инфразвуки. Может, эти неслышимые человеческим слухом звуки и являются причиной того, что эти места овеяны почему-то печальной славой.

На Меганоме установлено 58 ветро-генераторов, каждый из которых когда-то стоил 250 тыс. $ и выдавал 500 мегават в год, что позволяло полностью снабжать электричеством практически весь Судакский район: Судак, Новый Свет, Веселое, Рыбачье, Морское, Капсель.

Зрелище, конечно, величественное. Но особенно поразило, что почти все они стоят! При всем моем скепсисе относительно лопастных ветряков, при таком ветре они обязаны крутиться! Я пораспрашивал у местных жителей – оказалось что в прошлом году на Меганоме случился пожар. Огонь был такой, что металлические конструкции и дале лопасти просто поплавились и ветряки вышли из строя. Сейчас тендер на реконструкцию ветрофермы выиграла какая-то запорожская фирма, их будут скорее всего менять.

у ветрякаВетряки на Меганоме (Судак)Ветряки на Меганоме (Судак)

Лопасть ветряка (Меганом, Судак)

Степные пожары – это страшная вещь. А горные – особенно, потому что потушить их практически невозможно в ввиду отсутствия сооветствующей техники и финансирования у нашего МЧС – для этого нужны вертолеты. А ведь пожары происходят не сами по себе – это умышленные поджоги недоумков, которым нравится, как горит трава, или поджигателей мусора. Буквально на следующий же день я наблюдал как горел Карадагский заповедник (фото внизу). Как сказали жители, кто-то поджог мусор (местную свалку, которую устроили сами же жители), и огонь перекинулся на траву в горах. Сгорела огромная площадь – десятки гектар. Надо отдать должное МЧСникам – пожар таки потушили в течение нескольких часов… Чтобы вы понимали масштабы бедствия, я отметил фигурки пожарников: (далее…)

Сухопутная парусная флотилия

Без энергии невозможна никакая деятельность каждого человека в отдельности и человечества в целом. По сути дела, любая деятельность человека является деятельностью экономической, так как экономика – это процесс обмена между людьми порциями энергии или их информационными отражениями в виде так называемой стоимости, ибо стоимость – это информация о затраченной на производство товара или услуги энергии. За последние 30-35 лет потребление энергии в мире удваивается каждые 10 лет, этим подтверждается, что научно-техническое и экономическое развитие – это, прежде всего, развитие энергетическое.

Будет прирост энергии – будет и прирост ВВП, нехватка энергии находит своё отражение в так называемых финансовых и экономических кризисах. Люди пытаются найти причину таких кризисов в чем угодно, но только малое число экономистов и политических деятелей понимают роль энергии в экономических и финансовых катаклизмах последних 20 лет. Те, кто не понимает роль энергии, решает экономические проблемы уничтожением «лишнего» населения в военных конфликтах. Тот же, кто понимает толк в энергетике, решает экономические проблемы через научно-техническое развитие, важной составной частью которого является развитие энергетического комплекса.

Увеличивающееся энергопотребление в течение последних десятилетий удовлетворяется в основном за счет использования традиционных энергоносителей – угля, нефти, газа, торфа, воды (гидроэнергетика) и атомной энергии. Быстрый рост энергопотребления, паника на рынках энергоносителей в виде резкого удорожания топлива и энергии, обострение геополитических, экономических и экологических проблем топливно-энергетического комплекса (ТЭК) требуют более обоснованной и тщательной проработки принципов использования природных ресурсов и стратегии развития энергетики. Поэтому с каждым годом все более актуален поиск и освоение альтернативных нетрадиционных источников энергии, к которым, в частности, относится ветроэнергетика.

Доля нетрадиционных возобновляемых безтопливных источников энергии (солнечной, ветровой, геотермальной, малых водных потоков и др.) в общем объеме мирового производства электроэнергии составляла в 2006 году около 2%. При этом, просто смешно, в Российской Федерации эта доля составляла доли процента. Одновременно Россия может гордиться своей отсталостью хотя бы в том, что более семидесяти процентов электроэнергии вырабатывается на тепловых станциях, работающих на мазуте или угле. И это тогда, когда запасы углеводородов (угля, нефти и газа) таят буквально на глазах, а половина добытой нефти и газа прямиком идет за рубеж нашим историческим конкурентам, с которыми у России может в будущем возникнуть военных конфликт. По оценкам специалистов российские запасы нефти иссякнут приблизительно через тринадцать лет, а запасы газа – через шестьдесят лет.

Все установки, перерабатывающие кинетическую энергию прямолинейного движения массы ветрового потока в энергию вращения ротора генератора с последующим превращением ее в электрическое напряжение на выходных клеммах электронного инвертора, делятся на несколько типов. Основными из них являются ВЭУ с горизонтальной и вертикальной осью вращения. Согласно международным стандартам (IEC 61400, Требования по Ллойду) мощность ВЭУ принимается за номинал на скорости ветра 11.4 м/сек. КПД ветроэнергетической установки (эффективность использования энергии ветра) – величина, показывающая, сколько процентов энергии ветра ветро-ротор отбирает и передает на генератор. Эту величину принято считать КПД ВЭУ (КИЭВ – коэффициент использования энергии ветра), хотя на самом деле это КПД ветро-ротора (ветроколеса). Реальный КПД всей ветроустановки установки можно подсчитать, приняв во внимание КПД генератора (70-90%), КПД инвертора (если таковой имеется, 80-90%) и КПД передачи энергии на расстояние.

Лопастные ВЭУ с горизонтальной осью вращения легко сделать, если мощность ВЭС не превышает 10 кватт, но при увеличении мощности ВЭУ возникают большие технические сложности. Этот тип установок получил наибольшее (традиционное) распространение в связи с рядом причин: наибольшая эффективность (КПД) использования ветра (до 42% на практике, но только при наличии должного направления ветра) по сравнению с другими конструкциями, благодаря «подъемной силе» крыла; традиционность мышления людей, принимающих решения. Среди ВЭУ с горизонтальной осью вращения существуют несколько подтипов – крыльчатые (лопастные) различных конструкций, с эффектом Магнуса, и другие. Самые известные своей эффективностью являются крыльчатые лопастные ВЭУ.

Однако у лопастных ВЭУ с горизонтальной осью вращения имеются один, но очень существенный недостаток – заметная инерционность при ориентировке на ветер. Изобретатели, разработчики и фирмы-производители сознательно замалчивают этот факт от потребителя, информируя его только о достоинствах установки, которые проявляются только в аэродинамической трубе, т.е. в специально созданных условиях. Но на деле же получается следующее. Мощность ВЭУ рассчитывается, исходя из того, что направление ветра всегда совпадает с осью вращения ветро-ротора, т.е. ветер дует непосредственно на расчетную поверхность лопастей. В результате получается расчетная мощность ВЭУ. Однако из жизни известно, что направление ветра не является константой, ветер постоянно меняет свое направление. Скорость изменения направления ветра во много раз превышает реакцию лопастных ветроустановок в ответ на изменение направления ветра. В итоге создается ситуация, когда лопасти вращаются просто по инерции в то время, когда ветер дует перпендикулярно оси вращения лопастей.

У мощных лопастных ветряков система управления изменяет направление флюгера, если ветер в новом направлении дует более 15 сек. Если поток воздуха будет менять свое направление с интервалом менее 15 сек, то ветряк просто не меняет своего направления. Следовательно, лопасти могут перестать вращаться. Да и в том случае, если направление ветра меняется с интервалом более 15 секунд, нет никакой гарантии, что после поворота ветряка ветер к этому моменту будет дуть во вновь выбранном направлении. При повороте лопастей начинают проявляться силы Кориолиса, будет сказываться инерция всей гондолы с генератором, редуктором и т.д. При высокой частоте вращения лопастей выявляются малейшие неточности в центровке лопастей, неравномерность мощности ветра по высоте, что ведет к поломке лопастей или разрушению всей ветроэнергоустановки.

Существенным недостатком является сложность технологического процесса производства лопастей, т.к. профиль лопасти (винта) не является одинаковым по сечению вдоль ее длины. Начиная с 3 кВт, такие ВЭУ требуют специальное раскручивающее устройство, т.е. стартовать сами такие установки не могут. Это приводит к усложнению системы старта и управления, а значит, к удорожанию ВЭУ. На Западе много влияния уделяется тому факту, что ВЭУ с горизонтальной осью вращения являются опасными для птиц. Это происходит в связи с тем, что внешняя часть лопасти движется быстрее, чем внутренняя и птицы не могут своевременно «рассчитать» ее скорость, чтобы увернуться. ВЭУ большой мощности становятся источниками инфразвука, который оказывает негативное воздействие на людей и животных, может вызывать появление нежелательных колебаний в близко расположенных зданиях, вплоть до их разрушения. (далее…)

Критерии идеального ветрогенератора

Таким образом, задача «построить хороший ветряк» трансформируется в задачу «построить «правильный» ветряк для конкретного места и конкретного потребителя». Здесь уместно посмотреть на существующий рынок и прояснить для себя плюсы и минусы существующих конструкций.

Для того чтобы сравнивать, нужно остановиться на каких-то параметрах (желательно цифровых) и приложить эти параметры к районам эксплуатации. Важнейшей характеристикой места эксплуатации является его «производительность», т.е. количество энергии, которое потенциально имеет ветер. Достаточно определенно эту «производительность» характеризует скорость ветра, например за год. Районы СНГ можно условно разбить на три, по среднегодовой скорости ветра:
– менее 3 м/с;
– от 3 до 5 м/с;
– более 5 м/с.

При этом нужно помнить, что скорость ветра распределена неравномерно по времени. Для просторов СНГ чаще всего общей является зависимость – слабые ветра 70-80% времени, средние ветра – 15-20% времени, сильные ветра – 5-7%, очень сильные ветра – 2-3%, штормы – 1%. Таким образом, чаще всего дует ветер 1-3 м/с. Штормы встречаются очень редко. Отсюда следует, что разумно ориентироваться на слабые ветра, даже если при сильных и штормовых ветрах придется ветряк остановить или сложить. Система увода ветряка из-под сильного ветра, конечно усложняет его конструкцию, но это уже следующий вопрос.

Теперь само время посмотреть на предложение. Большинство предлагаемых моделей – лопастные ветряки с горизонтальной осью разных размеров и соответственно мощности с двумя, тремя и четырьмя лопастями. Реже встречаются ветряки с большим количеством лопастей. Фирмы предлагают разнообразную комплектацию: от отдельных узлов до полного комплекта с монтажом и наладкой у заказчика. Некоторые модели собственного производства, много предложений импортных агрегатов – от китайских до уважаемых европейских производителей.

Если обратиться к цифровым показателям – видно, что заявленные мощности ветрогенераторы «выдают» при скоростях ветра 8-15 м/с; при этом минимальная скорость ветра (так называемая скорость страгивания) 2,5-4 м/с., максимальная эксплуатационная – 25-45 м/с. Несколько другие показатели имеют многолопастные и стаксельные ветряки. Минимальная скорость ветра 0,5-1,5 м/с. Максимальная мощность при скоростях ветра 6-20 м/с. максимальная эксплуатационная скорость ветра – 15-30 м/с.
Разница характеристик определяется в основном «заполненностью» окружности, которую описывают лопасти. Когда лопасти вращаются достаточно быстро, вся окружность используется достаточно эффективно и мало зависит от количества и площади лопастей. А вот на слабых ветрах многолопастные и стаксельные ветряки явно выигрывают. Им есть чем «ловить» ветер, они способны преобразовать в полезную работу очень слабые потоки воздуха. При усилении ветра они теряют преимущество, а на сильных ветрах проигрывают «лопастникам». Потери на трение растут вместе со скоростью.

Теперь попытаемся характеристики ветряков «привязать к местности». Становится понятно что в большинстве районов СНГ «лопастники» как правило стоят или работают в пол-силы. Исключение составлять будут прибрежные районы. Об этом же говорят и отзывы потребителей – часто ветроагрегаты не оправдывают ожидания потребителей. Мощность оказывается недостаточной на больших промежутках времени.
По многолопастным и стаксельным ветрякам опыта эксплуатации меньше, но расчетные показатели и тот опыт что есть говорят о более высокой эффективности на большей территории СНГ.

Проблемы эксплуатации и их решения

Если обобщить проблемы эксплуатации ветряков то их две: слабый ветер и сильный ветер. Потребителя раздражает, когда дорогостоящее устройство простаивает из-за слабого ветра или после поломки от сильного ветра. Причем тут важно правильно оценивать последствия. Разработчики умаляют последствия простоя от безветрия и сильно преувеличивают последствия от сильного ветра. В реальности простой – это прямые потери. И несколько недель безветрия могут принести больше потерь чем замена детали в течении пары дней после поломки от шторма.

Увеличивать запас по мощности тоже не выход. Если покупать ветрогенератор максимальной мощностью в 10 кВт для того, чтобы он вырабатывал 2 кВт, как минимум дороговато. А в конечном итоге лишние затраты ложатся на стоимость энергии.
С другой стороны, способность противостоять штормовым ветрам тоже ложится бременем на цену из-за утяжеления конструкции. А может быть не нужно противостоять шторму? Трава ведь не борется с ветром! Она ложится на землю, а потом поднимается, как ветер стихнет. А пальма «отдает» все листья, но спасает ствол. Листья быстро отрастают заново.

Можно попытаться описать «идеальный» ветряк:
– простая генераторная головка заданной мощности, способная работать на малых скоростях;
– легкие лопасти большой площади, чтобы «снять» энергию с минимального ветра;
– система складывания лопастей при усилении ветра;
– опора, опускающая генератор с лопастями при усилении ветра;
– нужно иметь возможность увеличивать/уменьшать мощность ветроагрегата в некоторых пределах, не перестраивая всю конструкцию.

Конструкция генератора для ветряка должна удовлетворять одновременно нескольким основным требованиям:
– генератор должен быть тихоходным;
– никаких щеток и скользящих контактов;
– возможность коммутирования обмоток с целью удержания напряжения в определенных пределах;
– простота;
– технологичность;
– ремонтопригодность.

Сайт постоянно обновляется! См. также рубрики:

Вадим Беляев,
главный конструктор компании “Ветронет”

Микро-новости

  • Нам пишут
    29.11.2011 | 12:35

Здравтвуйте! Меня зовут Василий. Я пристально слежу за вашими проектами, т.к. тема альтернативной энергетики для меня очень интересна. Я понимаю в каких тяжелых финансовых условиях приходиться творить инновации, ценные для всего человечества. Будучи сочувствующим вашим рвениям, я предлагаю вам ознакомиться с новыми веб-сервисами, которые были созданы специально для поддержки подобных проектов, и надеюсь, что таким […]

Наши коллеги из Сибири продолжают работу над экспериментальным образцом парусного мега-ветряка мощностью 15 кВт. Клепают шкафы управления, испытывают power-анемометры (мы бы такой купили). В общем – работа кипит, огромный объем работы! И хотя мы считаем их конструкцию (на базе идей гравио) неудачной, все равно ребятам респект, за напор, энтузиазм и множество непревзойденных новаций.

Источник http://happy-nokia.ru/wires-and-cables/iz-chego-mozhno-sdelat-vetrogenerator-pravilnyi-vybor.html

Источник http://paketa.forum2x2.ru/t111-topic

Источник http://vetronet.com/tag/%D0%B2%D0%B5%D1%82%D1%80%D1%8F%D0%BD%D1%8B%D0%B5-%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B/