Как грамотно выбрать контроллер для ветрогенератора или сделать самому

Содержание

Как грамотно выбрать контроллер для ветрогенератора или сделать самому

Для получения электрической энергии из кинетической нужен ветряк. С его помощью энергия ветра превращается в электричество. Сам ветряк состоит из нескольких элементов: ветрогенератора, аккумуляторов, преобразователя и контроллера. Контроллер необходим для оптимизации работы аккумуляторных батарей. Иными словами, это системная часть ветрогенератора, которая отвечает за оптимальное распределение электрической энергии и заряда аккумуляторов в соответствии с мощностью ветровой установки.

Контроллер для ветрогенератора: зачем нужен и как работает

Без контроллера ветровая установка не будет адекватно функционировать. Устройство выполняет такие задачи:

  • контроль вращающихся лопастей ветряка (регулировка энергии);
  • контроль заряда АКБ, которые накапливают собираемую ветряком энергию;
  • преобразование переменного тока в постоянный, чтобы питать аккумуляторы;
  • распределение электричества (отталкиваясь от уровня заряда аккумуляторов и количества полученной энергии).

Ветровые установки бывают большой и малой мощности. Для высокомощных ветрогенераторов в комплект к контроллеру идет балластное сопротивление (трубчатые электронагреватели и другие виды резисторов с высоким уровнем сопротивления). Плюс, при превышении мощности в АКБ до 15В прибор перенаправляет заряд с аккумуляторов на балласт.

Для маломощных ветровых генераторов контроллер служит своеобразной страховкой от перенапряжения. При полном заряде аккумуляторов он тормозит вращение лопастей ветрогенератора, чтобы прекратить активную выработку энергии. Так АКБ не пострадают от перегрузок, а электричество будет распределено равномерно. Это увеличит срок службы электроприборов, в том числе и аккумуляторных батарей.

Технические характеристики

При покупке контроллера заряда для ветрогенератора необходимо внимательно изучить его техпаспорт. При выборе важны характеристики:

  • мощность — должна соответствовать мощности ветровой установки;
  • напряжение — должно соответствовать напряжению АКБ, установленных на ветряк;
  • макс. мощность — обозначает максимально допустимую мощность для модели контроллера;
  • макс. ток — обозначает, с какими максимальными мощностями ветрогенератора может работать контроллер;
  • диапазон напряжения — показатели макс. и мин. напряжения АКБ для адекватной работы устройства;
  • возможности дисплея — какие данные об устройстве и его работе выводятся на дисплей у той или иной модели;
  • условия эксплуатации — при каких температурах, уровне влажности может работать выбранное устройство.

Если вы не можете подобрать устройство контроля заряда самостоятельно, свяжитесь с консультантом и покажите ему технический паспорт своего ветряка. Прибор выбирается в соответствии с возможностями ветровой установки. Неправильные условия эксплуатации и отклонения от диапазона напряжения пагубно скажутся на работе всей ветровой системы.

Электрическая схема контроллера заряда ветрогенератора своими руками

Чтобы изготовить прибор самостоятельно, вам необходимо владеть навыками сборки электроприборов. У этого устройства сложная схема, и неправильная сборка может привести к выведению из строя всех подключенных к сети приборов, в том числе и ветровую установку. Если вы не уверены в своей квалификации, лучше купить заводской прибор. Цена на рынке стартует от 4000 рублей. Устройства китайского производства могут обойтись в 1000 рублей. Цена зависит от страны производства и укомплектованности устройства.

Электрическая схема контроллера заряда ветрогенератора своими руками

Что понадобится для самостоятельной сборки:

  • схема устройства, соответствующая техническим характеристикам вашего ветряка;
  • комплектующие для сборки схемы (регуляторы, лампочки, резисторы, провода);
  • рисунок монтажной платы (сделать самостоятельно).

Дальнейшие действия — дело техники. Нужную схему можно найти в интернете. Перед поисками определите необходимую мощность и напряжение для вашей ветровой установки, и от этого отталкивайтесь в подборе схемы инвертора. Если у вас самодельный ветрогенератор, измерьте его мощность и напряжение самостоятельно. Для этого вам понадобится мультиметр (функция измерения тока). Сила тока и напряжение меряются в проводе от ветряка. Умножьте друг на друга эти величины и получите мощность ветровой установки (в Ваттах).

Что понадобится для самостоятельной сборки:

На самой схеме в условных обозначениях будет написано, какие комплектующие и в каком количестве вам понадобятся. Все это продается в магазинах электрики. Некоторые элементы, например, светодиодные лампочки или провода, можно извлечь из ненужных вам приборов. После этого нарисуйте монтажную плату, продумав, где будет находиться каждый элемент прибора в соответствии с требованиями схемы. Соберите устройство и протестируйте.

  • Человек может всё, но не большеЧеловек может всё, но не больше
  • Ветрогенераторы нового поколенияВетрогенераторы нового поколения
  • Как получить энергию ветраКак получить энергию ветра
  • Как выбрать ветрогенератор для частного домаКак выбрать ветрогенератор для частного дома

Контроллер для ветрогенератора своими руками. Контроллер для ветрогенератора своими руками

балластный регулятор>

Оба пороговых напряжения, 11.9 В и 14 В, можно изменять подстроечными резисторами. Интересуясь в Интернете, какими же должны быть эти пороги для свинцовых аккумуляторов, я обнаружил некоторые расхождения у различных авторов. Для своей схемы я взял усредненные значения.

При напряжении аккумулятора между 11.9 В и 14 В, контроллер может переключать систему между зарядом и отдачей тока в нагрузку. Пара кнопок позволяет мне делать эти переключения в любое время, независимо от контроллера. Очень удобно при наладке устройства.

Желтый светодиод зажигается во время зарядки аккумулятора. Когда аккумулятор заряжен, и избыточная мощность отводится в дополнительную нагрузку, загорается зеленый светодиод. Таким образом, я имею минимальную обратную связь, позволяющую понять, что происходит в системе. Кроме того, с помощью мультиметра я могу измерять напряжения в любых точках. Все это не очень удобно.

Как только у меня дойдут руки до того, чтобы упаковать конструкцию в подходящий корпус, я непременно добавлю вольтметр и амперметр, возможно, от автомобильного приборного щитка.

Я использовал свою собранную на листе фанеры схему, что бы с помощью внешнего источника питания имитировать различные режимы заряда и разряда аккумулятора, и настроить контроллер. Устанавливая напряжение 11.9 В, а затем 14 В, я выставил подстроечными резисторами требуемые пороги. Сделать это следовало до отъезда, так как заниматься настройкой в поле никакой возможности у меня не было бы.

Доработка.Исследовав подробнее правила заряда свинцовых аккумуляторов, верхний порог я установил равным 14.8 В. Кроме того, от брата мне достались герметичные свинцовые аккумуляторы, которыми я и заменил обычные, использовавшиеся первоначально.

Важно ! —Я понял, что в первую очередь, надо подключать к контроллеру аккумулятор, и только потом ветрогенератор или солнечную батарею. Если генератор подключить первым, волны напряжения не будут сглаживаться аккумулятором, контроллер будет работать неправильно, реле хаотически переключаться, а броски напряжения, в конце концов, приведут к выходу из строя микросхем. Короче, всегда подключайте аккумуляторную батарею первой, а ветрогенератор вслед за ней. И наоборот, разбирая систему, убедитесь в первую очередь, что генератор отключен. Батарею отключайте последней.

Наконец, представлю вам принципиальную схему. Она лишь немного отличается от прототипа, ссылку на который я приводил выше. Как я говорил раньше, некоторые детали я заменил на те, которые уже были у меня, чтобы не тратиться на покупку новых. Советую вам поступать также. Совершенно не обязательно повторять схему один в один.

схема управления ветрогенератором>

Перевод текстов на рисунке,Замечание: C3c и IC3d не используются.Заземлите их входы,а выходы оставьте свободными. Входы подключения ветряных турбин и солнечных батарей Battery Bank+ «+» аккумуляторной батареи Dummy Load+ «+» дополнительной нагрузки.

Battery Bank- «-» аккумуляторной батареи Dummy Load- «-» дополнительной нагрузки IC1 LM7808 +8V Voltage Regulator, IC1 LM7808 стабилизатор напряжения +8 В,IC2 LM1458 Dual operational amplifier IC2 LM1458

сдвоенный операционный усилитель,IC3 4001 Quad 2-input NOR Gate,IC3 CD4001 4 логических элемента «2И-НЕ»,Q1 IRF540 MOSFET,Q1 IRF540 MOSFET,D1-3 Blocking diodes rated for the maximum current each source could produce,D1…D3 блокировочные диоды, рассчитанные на максимальный ток подключаемых источников D4 1N4007,D4 1N4007. LED1 Yellow LED . LED1 желтый светодиод, LED2 Green LED, LED2 зеленый светодиод. F1 Fuse rated at total expected current all sources combined will produce. F1 предохранитель, рассчитанный на максимальный суммарный ток всех подключаемых источников. F2 1 Amp Fuse for controller electronics. F2 предохранитель 1 А в шине питания электроники контроллера. RLY1 40 Amp SPDT automotive relay . RLY1 автомобильное реле на коммутируемый ток 40 А . PB1-2 Momentary contact NO pushbuttons. PB1-2 кнопки без фиксации.

All resistors are % Watt 10%. Все резисторы ? Вт 10%. Test Point A should read 7.4V. Контрольная точка A. Напряжение в точке 7.4 В. Test Point B should read 5.95V. Контрольная точка B. Напряжение в точке 5.95 В

Наконец, проект завершен. До моего отъезда осталась всего неделя. Пролетела она быстро. Я разобрал турбину и тщательно упаковал все детали и инструменты, необходимые, чтобы собрать турбину после поездки через всю страну. Погрузив все в машину, я во второй раз поехал на свой участок в Аризоне, на этот раз с надеждой, что хоть какое-то электричество у меня там будет.

продолжение — читать далее.

Контроллер для ветрогенератора своими руками

Мачта для ветроустановки применяется телескопическая, изготовленная из водопроводных труб близких по размеру диаметров. Самая тонкая труба не менее 40 мм внутреннего диаметра.

Управление работой осуществляется блоком управления, который должен быть всегда подключен к ветроустановке, чтобы избежать работы ветроколеса «в разнос».

Ниже принципиальная схема контроля ветрогенератора и зарядки АКБ

Блок управления выполняет три задачи:

1 — стабилизирует напряжение зарядки аккумулятора и предотвращает превышение тока зарядки сверх допустимых значений;

2 — стабилизирует нагрузку ветроустановки, при полностью заряженном аккумуляторе и отсутствия внешних потребителей энергии, путем подключения балластной нагрузки, вследствие чего ветроустановка не уходит в разнос без нагрузки;

3 — выполняет функцию электротормоза.

Постараюсь пояснить работу устройства управления (схема принципиальная прилагается). Состоит из двух модулей. Модуль на ОУ2 импульсный стабилизатор напряжения с ограничителем по току настроенном на максимальный ток равный 10 процентам емкости аккумулятора.

Напряжение на выходе стабилизатора = 14.2 В. Модуль на ОУ1 — импульсный коммутатор нагрузки. Он вступает в работу при появлении напряжения на входе порядка 18v. Вырасти, оно может до этого значения, если потребители и заряд аккумулятора не выбирают производимую в данный момент мощность.

Тогда коммутатор подключает в ключевом импульсном режиме резистор нагрузки, который выбирается с таким расчетом, чтобы обеспечить отбор максимальной мощности от генератора. При необходимости затормозить вращение ветроколеса, плавно переменным резистором снижаем напряжение на выводе 4 ОУ1, открываем полевой транзистор Т4 и подключенной нагрузкой его останавливаем.

Описываемая ветроустановка соответствует параметрам приведенным в таблице.

Для обеспечения себя электроэнергинй на даче илидаже для частного дома не обезательно тратить большие деньги на зоводские ветроустановки, всё можно изготовить из ненужного материала, еоторый обычно имеетря у каждого на участке. Паремеры и размеры моего ветряка не критичны и могут легко изменяться или заменяться.

Самое главное понять принципы работы ветрогенератора. А остольное делается из того что есть, а значит и по цене практически ничего не соит. В качестве генератора можно использовать практически любые двигатели, но двигатели на постоянных магнитах подходят лучше, так как уже имеют встроеные магниты.

Так-же можно использовать и автогенераторы, но правда передаточное соотношение редуктора в этом случае должно быть гораздо больше, лучше 1:30, к слову сказать и для моего ветряка надо-бы редуктор с большим передаточным числом, но это в будущем.

Так-же всвизи с доступностью редкоземельных неодим магнитов появилось возможность самостоятельного изготовления генератора полностью с нуля. Такой вареант значительно эффективнее чем одаптация моторов, так как таким генераторам на постоянных магнитах не требуются редукторы. Обычно они собираются на автомобильных ступицах. Правда единственный минус это всё-таки цена магнитов.

А так главное желание, и обеспечение себя независимым источником электроэнергии не состовляет ничего трудного.

вернуться к началу статьи переход

Персональный сайт — контролёры заряда для ветрогенератора и СБ

Рекомендую купить ДИСК об альтернативной энергетике. Информация на диске более обширна, чем у меня на сайте.

Диск содержит много программ, также много литературы, в общем, смотрим презентацию.

Появилась третья версия этого диска, теперь Диск имеет еще более мощное содержание,(более 20-ти программ, 37 фильмов,22 книги, одна интерактивная,подробное описание 3-х ветрогенераторов, а также содержит подробное описание для изготовление солнечных батарей). И это еще далеко не все, Диск имеет доступ к бесплатной интернет библиотеке, к форуму по альтернативной энергетике, и к моему сайту. Порадует удобный интерфейс). Для тех, у кого есть доступ к интернету, и нет ограничений на скачивание, Вы можете приобрести файлы этого диска,- эквивалент 10$. Для этого свяжитесь со мной через Email- [email protected] Как только я получаю деньги, сразу отсылаю на Ваш адрес файл, и пароли к нему. Диск содержит информацию о расчетах и постройке ветрогенераторов. Очень много фото,видео, есть видео в 3-D деталировке генератора,много книг, и программного обеспечения. Всё по честному. Мой сайт http://veter-yak.narod.ru/

Для обеспечения номинального заряда на АКБ необходимо следящие устройство.

Рано или поздно , но придется задуматься об контролёре заряда для АКБ, либо перезаряд, как и недозаряд пагубно влияет на срок службы дорогого нам АКБ.

Здесь я попробую собрать в едино конструкции регуляторов, которые пригодятся любому ветролову. Многие из этих конструкций были мною испытаны, думаю, что повторить их будет не сложно. Любую из приведённых схем можно использовать как для работы с ветрогенератором, так и для работы с солнечными панелями, с одной лишь разницей – для ветрогенератора необходимо подключать нагрузку к генератору, а вот солнечные батареи необходимо отсоединять от нагрузки.

Первая схема, наверное, самая простая которую можно придумать. Она отлично подойдёт к ветрогенератору мощностью до 200 Ватт. Эта схема была испытана , и успешно работала на моём первом ветрогенераторе

вид собраной конструкции

Все транзисторы были взяты с многократным запасом по мощности, и для уверенности применялись с радиаторами. Вместо транзистора КТ935а отлично подойдет полевой транзистор типа IRFZ44N или IRFZ48N либо другой подходящий по мощности. Нагрузкой (балласт) в этом регуляторе изначально было два витка нихромового провода намотанного на керамическом сопротивлении. Но, как показала практика в данном случае лучше применять в качестве нагрузки обычную автомобильную лампу (с фары авто) . с запаралелеными нитями накала. Возможно подключение сразу нескольких ламп, но это уже подбирается от мощности генератора. Недостатком этой схемы является отсутствие петли гистерезиса, т.е. отсутствие регулировки нижнего предела, так как схема работает по принципу стабилизатора напряжения.

Так же очень простая схема, причем очень даже старая схема. Автор эту схему использовал для автоматической поддержки заряда АКБ. Вот здесь можно подробно почитать. http://laps-aleksandr.narod.ru/Data/Avto/Avto.htm

Я делал эту схему, довольно работоспособная конструкция.

Транзисторы использовал KF517 и на выходе перед реле КТ817

Вот моя печатная плата

Эта схема, наверное, скорее подойдёт для управления зарядом АКБ от солнечных батарей. В этой схеме уже есть регулировка нижнего предела, которая происходит при срабатывании реле, а оно своими контактами закорачивает R4 (см. схему).Достоинство этой схемы, это легкое переделывание на большее напряжение заряда АКБ. Для этого достаточно включить последовательно с стабилитроном VD5 еще один стабилитрон. Схема работает довольно в широком диапазоне входных напряжений. Большим недостатком такой схемы есть наличие реле, причем реле должно иметь две пары контактов.

Это уже более совершенна схема. Она работает у меня сейчас, я ею очень доволен

На выходе я применил мощный полевой транзистор IRFZ48N , что позволило отказаться от реле, тем самым повысить надёжность конструкции

.Отлично регулируется верхний и нижний предел заряда . Микросхемы не дорогие без проблем можно купить. Причем есть много аналогов этих микросхем. Паять микросхемы лучше на панельках, чтобы в аварийном случае без проблем можно было заменить

Подробнее об этой схеме здесь http://www.rlocman.ru/shem/schematics.html?di=61489

Обратите внимание печатную плату необходимо развернуть зеркально!

в готовом виде это устроуство выглядит так

Эту схему я также делал, также отлично работает, по сути это аналог схемы №3, но на одной микросхеме, а это еще упрощает конструкцию. При изготовлении этого устройства уделите внимание регулировке пределов, при правильной регулировке схема работает сразу и без проблем. В этой схеме я также не использовал реле, а нагрузкой управляет полевой транзистор IRFZ48N .Микросхема очень доступная и недорогая.

.Наверное, лучший способ настроиться цепь приложить переменное источник питания постоянного тока к клеммам аккумулятора.Установите блок питания к 11.9V. Измерьте напряжение на штуцере 1. Отрегулируйте R1, пока напряжение в контрольной точке не как близко к 1.667V, как вы можете получить его. Теперь установить регулируемый источник питания к 14.9V и измерить напряжение на штуцере 2. Отрегулируйте R2, пока напряжение в контрольной точке не как близко к 3.333V, как вы можете получить его.,смотрите оригинал,сылка ниже

C1 — 7805 5 Вольт положительный регулятор напряженияR3, R4, R5 — 1K Ом 1/8 Вт 10%IC2 — NE555 Таймер ЧипR6 — 330 Ом 1/8 Вт 10%PB1, PB2 — НЕТ кратковременный контакт КнопкиR7 — 100 Ом 1/8 Вт 10%LED1 — Зеленый светодиодQ1 — 2N2222 или аналогичный NPN транзисторИндикатор 2 — желтый светодиодQ2 — IRF540 похожих Power MOSFETRLY1 — 40 Amp SPDT Автомобильные релеС1 — 0.33uF 35V 10%D1 — 1N4001 или аналогичныйС2 — 0,1 мкФ 35В 10%R1, R2 — 10K Многооборотные Trim-горшкиR8 *-R9 * — Дополнительный 330 Ом 1/2 W резисторы (см. текст)

Печатаная плата выглядит так (на сайте в зеркале)

Подробно Вы можете прочитать здесь http://translate.google.ru/translate?hl=ru&sl=auto&tl=ru&u=http%3A//www.mdpub.com/555Controller/

Вот схема по которой я собирал регулятор на ветрогенератор и на солнечную панель

недостаток этой конструкции это применение реле для отключения солнечной батареи.

Наверное эта схема самая повторяемая, и мало того еще и самая надёжная в работе

С разрешения Рябухи Игоря, его ник на форумах GOGA65 (это его девайс), я попытаюсь вкратце рассказать об этой схеме.

Особого труда повторить эту схему я думаю, у Вас не будет. Реле взято заводское, с автомобиля *ВОЛГА* или подобное, главное чтобы управление было по минусу (-)..

Сопротивление между + и Ш можно ставить от 1ком до 150ком, меняется только петля гистерезиса, я ставил 36ком,это дает возможность очень плавно сливать излишки энергии на балласт

. Эту же схему я использовал и для работы ветрогенератора на 24 вольта, т.е. просто ставим 24-х вольтовое реле и никаких проблем

Вот моя схема которую я чаще всего использую для контроля заряда от ветрогенератора.Такая схемка отлично работает с ветряками до 500 ватт, достаточно проста в изготовлении и практически не убиваемая.

Также можно использовать это же реле и для любого нужного нам напряжения, т.е. как сделал я вот на этой схеме. Преимущества такого решения, это быстрый переход как на 12 вольт, так и на 24вольта, для этого просто вместо второго АКБ ставим перемычку. По такой схеме можно сделать систему и на 48 и больше вольт.

Такой вид в нутри

Ну и готовое изделие,я использовал цифровые приборы отображения инфрмации.

небольшое видео работы даного устройства

более детальное обсуждение этого девайса Вы найдете на форуме

Контроллер для ветрогенератора своими руками

Мачта для ветроустановки применяется телескопическая, изготовленная из водопроводных труб близких по размеру диаметров. Самая тонкая труба не менее 40 мм внутреннего диаметра.

Управление работой осуществляется блоком управления, который должен быть всегда подключен к ветроустановке, чтобы избежать работы ветроколеса «в разнос».

Ниже принципиальная схема контроля ветрогенератора и зарядки АКБ

Блок управления выполняет три задачи:

1 — стабилизирует напряжение зарядки аккумулятора и предотвращает превышение тока зарядки сверх допустимых значений;

2 — стабилизирует нагрузку ветроустановки, при полностью заряженном аккумуляторе и отсутствия внешних потребителей энергии, путем подключения балластной нагрузки, вследствие чего ветроустановка не уходит в разнос без нагрузки;

3 — выполняет функцию электротормоза.

Постараюсь пояснить работу устройства управления (схема принципиальная прилагается). Состоит из двух модулей. Модуль на ОУ2 импульсный стабилизатор напряжения с ограничителем по току настроенном на максимальный ток равный 10 процентам емкости аккумулятора.

Напряжение на выходе стабилизатора = 14.2 В. Модуль на ОУ1 — импульсный коммутатор нагрузки. Он вступает в работу при появлении напряжения на входе порядка 18v. Вырасти, оно может до этого значения, если потребители и заряд аккумулятора не выбирают производимую в данный момент мощность.

Тогда коммутатор подключает в ключевом импульсном режиме резистор нагрузки, который выбирается с таким расчетом, чтобы обеспечить отбор максимальной мощности от генератора. При необходимости затормозить вращение ветроколеса, плавно переменным резистором снижаем напряжение на выводе 4 ОУ1, открываем полевой транзистор Т4 и подключенной нагрузкой его останавливаем.

Описываемая ветроустановка соответствует параметрам приведенным в таблице.

Для обеспечения себя электроэнергинй на даче илидаже для частного дома не обезательно тратить большие деньги на зоводские ветроустановки, всё можно изготовить из ненужного материала, еоторый обычно имеетря у каждого на участке. Паремеры и размеры моего ветряка не критичны и могут легко изменяться или заменяться.

Самое главное понять принципы работы ветрогенератора. А остольное делается из того что есть, а значит и по цене практически ничего не соит. В качестве генератора можно использовать практически любые двигатели, но двигатели на постоянных магнитах подходят лучше, так как уже имеют встроеные магниты.

Так-же можно использовать и автогенераторы, но правда передаточное соотношение редуктора в этом случае должно быть гораздо больше, лучше 1:30, к слову сказать и для моего ветряка надо-бы редуктор с большим передаточным числом, но это в будущем.

Так-же всвизи с доступностью редкоземельных неодим магнитов появилось возможность самостоятельного изготовления генератора полностью с нуля. Такой вареант значительно эффективнее чем одаптация моторов, так как таким генераторам на постоянных магнитах не требуются редукторы. Обычно они собираются на автомобильных ступицах. Правда единственный минус это всё-таки цена магнитов.

А так главное желание, и обеспечение себя независимым источником электроэнергии не состовляет ничего трудного.

вернуться к началу статьи переход

Былластный регулятор для ветрогенератора схема фото регулятора

По прозьбам пользователей сайта попробую еще раз объяснить как работает данная схема балластного регулятора для ветряка и зачем нужен резистор. Через исток-сток транзистора течет минусовой ток к лампочке (балласту). Затвор транзистора открыт через резистор плюсом, то-есть к затвору подано плюсовое напрядение через резистор, резистор обязательно нужен, так-как он ограничивает ток. И в тоже время от реле-регулятора на затвор транзистора подан минус, который закрывает транзистор, и он закрыт пока от реле-регулятора идет минусовое напряжение на затвор.

Получается что к затвору транзистора одноврменно подается и плюс, и минус, и чтобы небыло короткого замыкания поюс подается через резистор. Затвор транзистора закрывается минусом, а открывается плюсом. Когда от реле-регулятора подан минус, то затвор закрывается , так-как плюс подан через резистор и его ток очень слабый. Но когда напряжение поднимается до 14 вольт, реле-регулятор отрубает минус (Ш), и на затвор транзистора больше не идет минусовой ток, а так-как плюс через резистор подан, то он тут-же открывается и через исток-сток к лампочке идет ток и она горит.

Сам транзистор по сути как конденсатор, переход исток-сток каторого заряжаясь пропускает ток, а если разрядить, то он не пропускает ток. Если на его затвор подать плюс, то он заряжается и пропускает ток, а если минус, по разряжается и не пропускает ток. Процесс заряда и разряда очень быстрый и транзистор може так за секунду разряжаться и заряжаться несколько сотен раз.

В схеме затвор транзистора постоянно через резистор заряжен поюсом, но от реле-регулятора к нему подсоеденен минус, который полностью разряжает переход исток-сток и он не пропускает ток. Но как только пропадает минусовой ток, переход транзистора моментально заряжается плюсовым током через резистор и открывается.

Ниже я размести несколько фото своего балластного регулятора. Упростил если можно так-сказать, хотя проше некуда. Раньше балласт можно было отдельно подключать на выбор, или к ветряку, или к аккумулятору. А сейчас к схеме идет всего один провод от аккумулятора плюс и минус, тоесть вся схема подключается к аккумлятору, и при повышении напряжения выше 14 вольт сжигает все излишки энергии.

Дополнение и видеоролик, работа самодельного балластного регулятора.

На видео немного усовершенствованый контроллер, вместо одного транзистора поставил два, и вместо резистора повесил маленькую светодиодную лампочку. Два транзистора чтобы на балласт подключить еще одну лампочку, один транзистор боюсь греться будет сильно, ну а два надежнее.

Ветряк | Пелинг Инфо солнечные батареи

В данном видео я вам покажу и расскажу на своем примере почему ветрогенераторы не работают в пасмурную погоду. Ибо еще не все знают законы физики, а покупают подобные вещи из-за непогоды. Думая, раз нет солнца ветряк будет работать, но, к сожалению, это не так. Покупая большинство заводских ветрогенераторов нужно пользоваться не тем что цена на него высока и не тем какую он выдает пиковую мощность, а параметры ТХХ – техническими характеристиками ветрогенератора, по которым можно узнать все про ветряк, опять таки если продавец или производитель не преувеличении эти данные.

Поделиться ссылкой:

Подключил ветряк на АКБ 60Ач и при сильных порывах ветра решил замерить какой будет ток, увидел 12А и решил попробовать подключить вертяк не на 12 вольтовый АКБ, а посмотреть как поведет себя контроллер инвертора Сила на 24 вольтах. Сразу скажу повторять не рекомендую, мне было любопытно будет ли прибавка по току или нет, поэтому я и произвел подобное подключение. А точнее запараллелил выход с диодного моста ветрогенератора с выходом солнечных панелей поликристалла на 1000 ватт, подключенных в 24 вольта на РВМ контроллер инвертора Сила. Прирост тока я наблюдал. Соответственно, ветрогенератор при наличии необходимой силы ветра способен работать на системах как 12 так и 24 Вольта.

Поделиться ссылкой:

Итак, я решил разобрать ветрогенератор и посмотреть на возможные смещения, и попытаться устранить сильную вибрацию на мачте генератора. Как оказалось, проблема была на поверхности и скорей всего возникла при транспортировке. Статор находился не ровно в посадочном месте и подшипники вала были немного смещены. Если с подшипниками ротора все решилось одним ударом молотка. То со статором все маленько сложнее. Со статором я немного поигрался и вот к чему я пришел.

Поделиться ссылкой:

В данном ролике я заснял пиковую мощность, при которой ветрогенератор смог выдать целых 160 ватт при 12 вольтах на аккумуляторе, при этом напряжение повышалось до 13.7 вольт. Кстати, напряжение 13.7-13.8 вольт является для контроллера почти пиковым. Если говорить точнее, то у данного контроллера, который подключен к ветрогенератору, есть температурная работающая компенсация, которая скажем при +30 градусах Цельсия в помещении 13.7-13.8 Вольт может уже посчитать пиковым напряжением и включить тормоз.

Поделиться ссылкой:

Итак, стал наблюдать за работой установленного ранее ветрогенератора на 12 вольтовую систему с уже разряженным аккумулятором. С 11.9 вольт Ветряк смог зарядить всего до 12.2 Вольт, а вот дальше ветер кончился. Как бы я не старался найти плюсы ветрогенераторов все равно получается то, что получается. Как бы они небыли круто собраны или надежно и качественно, все равно хоть ты тресни, основной показатель – это не цена и качество ветрогенератора, а условия эксплуатации ветрогенератора. И самое важное, наличие прямого ветра, а не ветра, который огибая разные препятствия до ветряка , дует куда угодно, но только не равномерно в лоб ветрагенератору. Вот и получается, что если раньше хоть как-то у меня ветрогенераторы работали, то с самостроем 4х этажного дома в неразрешенном месте на соседском участке, вообще свело использование и установку ветрогенераторов у меня просто на нет. Ну до ладно, данные я все равно какие-то могу получать с любого ветрогенератора. А моя ситуация надеюсь послужит другим уроком, может тогда люди будут думать шире перед покупкой ветрогенератора.

Поделиться ссылкой:

Всегда, когда долго не сталкиваться, например, с ветряками, начинаешь терять хватку и что-то в памяти начинает замыливаться, поэтому приходится понемногу все наверстывать. Разобрался я с контроллером заряда, а именно почему он не заряжал и на какое он напряжение заряда. Большинство китайских контроллеров заряда еще совсем недавно были универсальными и очень редко работали на одно напряжение. Но время идет все меняется и для удешевления, и увеличения стабильности контроллеров, зачастую именно для ветрогенератора, стали продаваться на конкретное напряжение.

Поделиться ссылкой:

Продолжаю наблюдать за ветрогенератором и выяснять причину вибрации, по последним данным, труба под мачты легко входит в резонанс от любого приложенного усилия, а это значит, необходимо делать растяжки под мачту либо ее укорачивать, либо усиливать. Растяжки в настоящее время сделать не получится, так как в продаже из- за закрытых магазинов сложно найти дешевый товар и главное качественный, да и ставить их просто некуда.

Поделиться ссылкой:

Наконец- то, я установил Ветрогенератор на 400 ватт 12 вольт, при этом возникла проблема с контроллером, как я узнал только экспериментальным путем, контроллер заряда не может работать в авто режиме, то бишь на 2 типа АКБ 12/24 Вольта. Да мое упущение, сколько лет уже прошло, когда я пользовался последний раз контроллерами для ветрогенератора. Но ничего, это упущение я заполню, установлен сбор данных день первый. Сразу отмечу, что ролики отсняты давно, но из-за возникшей проблемы с ветрогенератором, о чем вы узнаете в будущих сериях по нему, откладывался. И лишь после решения проблемы ролики будут выкладываться по дате съемки.

Поделиться ссылкой:

Мой старенький ветрячок от JDX P300 как и ожидалось из-за подсевших магнитов теперь работает только в штормовые ветра, а начинает он хоть что-то заливать в акб от 1 до 200 мА уже при ветре от 8 до 12 м/с. Сегодня у нас был жуткий ветер, толь у соседей пыталось сорвать с крыши, а я занимался кровлей и в одного закидывал большие листы на крышу, и там же их прикручивал. Когда ветер усилился, мне стало страшно из-за воя ветрогенератора и я пошёл в дом, и за одно решил посмотреть сколько тока он выдает. Я увидел ток больше

Поделиться ссылкой:

Пересмотрел прошлое видео и сравнил его с данным ветрогенератором, могу сказать одно, у каждого ветряка есть свои плюсы и даже несмотря на то, что у предыдущего ветрогенератора тоже стояли неплохие неодимовые магниты. Но вот по качеству исполнения данный ветрогенератор явно выигрывает. Да, плохо когда через руки проходит много ветряков и занимаешься множеством направлении, в основном по каждой модели закрепляется либо положительная информация, либо отрицательная. Отсюда, конечно же, при просмотре любого моего видео, нужно хотя бы понимать про то

Поделиться ссылкой:

Креативный ветрогенератор своими руками

Винт делали из дерева, деревянные лопасти изготавливали с помощью электроножовки и обычного инструмента по дереву. Мы делаем уже не первый такой ветрогенератор, и на этот раз мы решили придать оригинальность нашим ветрогенераторам, в частности мы вырезали хвост ветрогенератора в виде животных, а так-же раскрасили ветрогенераторы в разноцветные цвета. Здесь некоторые фото наших последних работ.

> > > > > > Для статора была изготовлена форма, в которую мы выложили катушки по заранее размеченным секторам. Под катушки уложили круг из стеклоткани, а потом и поверх катушек, это для прочности статора. После заливки смолой сверху форму накрыли металлической крышкой и притянули ее через отверстие в центре. После высыхания у нас получился такой вот статор, но фото я соединяю катушки статора в звезду. > > Место для ветрогенератора мы выбрали на возвышенности, так-как местность у нас холмистая. Сварили невысокую простую мачту, подняли ветрогенератор, натянули растяжки чтобы мачту не сдуло ветром. Как это обычно бывает ветер после подъема ветряка пропал и небыло его четыре дня. Когда он появился ветрогенератор весело заработал, но обнаружилась проблема, так-как хвост слишком рано складывался и ветрогенератор не успевал набирать обороты. Эту неприятность мы оперативно исправили, опустили мачту и добавили грузики на хвост, и снова подняли на ветер.

На слабом ветру генератор выдавал 30-100ватт/ч, на ветру 7-8м/с порядка 200ватт/ч, а максимальная мощность генератора доходила до 400ватт/ч., а дальше срабатывала защита складыванием хвоста и винт отворачивался от ветра сбрасывая обороты.

Ниже на фото мы делаем следующий ветрогенератор, точно такой-же. Такие ветротурбины делать просто, и выгодно, и мы делаем по два-три таких ветрогенератора, так-как это проще чем один большой на 2-3Кв/ч., так-как для большого ветрогенератора нужен серьезный подход, мощная мачта и другие трудности, которые легко решаемы когда размеры небольшие.

Один такой ветрогенератор в среднем вырабатывает 50-80Кв/ч в месяц. Энергия накапливается в буферных аккумуляторах, в качестве которых мы ставим обычные автомобильные аккумуляторы, часто б/у, которые уже не могут крутить стартера, но прекрасно накопляют и отдают электроэнергию. Контролируем зарядку аккумуляторов сами без контроллеров, просто вывели вольтметр за которым изредка поглядываем. Если напряжение падает до 10 вольт, то мы прекращаем качать энергию из аккумуляторов ( такое бывает очень редко), а если напряжение подскакивает до 14 вольт и аккумуляторы начинают пере-заряжаться, то отключаем ветрогенератор и закорачиваем его чтобы не крутился в холостую.

Подробнее о постройке и расчеты таких ветрогенераторов ищите в других статьях сайта.

Как сделать контроллер для ветрогенератора своими руками

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять.

Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток.

Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Что такое контроллер заряда?

Функцию контроля за величиной заряда выполняет балластный регулятор, или контроллер.

Это электронное устройство, отключающее аккумулятор при возрастании напряжения, или сбрасывающее излишки энергии на потребитель — ТЭН, лампу или иной простой и нетребовательный к некоторым изменениям питания прибор.

При падении заряда контроллер переключает АКБ в режим заряда, способствуя восполнению запаса энергии.

Как сделать контроллер для ветрогенератора своими руками

Первые конструкции контроллеров были простыми и позволяли только включать торможение вала. Впоследствии функции устройства были пересмотрены, и лишнюю энергию начали использовать более рационально.

А с началом использования ветрогенераторов в качестве основного источника питания для дачных или частных домов проблема в использовании лишней энергии отпала сама собой, так как в настоящее время в любом доме всегда найдется, что подключить.

Существуют разные конструкции контроллеров. Можно приобрести готовый прибор, изготовленный в производственных условиях и точно выполняющий свои функции. Но чаще владельцы самодельных ветряков предпочитают собирать контроллеры самостоятельно, что обходится гораздо дешевле, проще ремонтируется и намного понятнее, чем устройство заводского изготовления.

Основа домашнего ветрогенератора

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической энергии от природных источников.

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Как сделать контроллер для ветрогенератора своими руками

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

  • Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.
  • При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.
  • Поэтому оптимальный подбор электродвигателя к домашнему ветрогенератору логичен при следующих показателях:
  1. Высокий параметр рабочего напряжения.
  2. Низкий параметр RPM (угловая скорость вращения).
  3. Высокое значение рабочего тока.

Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин.

Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

Как сделать контроллер для ветрогенератора своими руками

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Устройство и принцип работы

Одним из простых вариантов сборки контроллера является использование автомобильного реле-регулятора. Это устройство само по себе уже является готовым контроллером, дополнительных элементов для создания нужного прибора требуется совсем немного. Использовать только одно реле нельзя, поскольку оно не рассчитано на высокую частоту срабатываний и сразу выйдет из строя.

Генератор

Генератор является сердцем проекта и важно взять хороший! Сейчас вы смотрите на промышленный двигатель с постоянным магнитом.

Он был куплен примерно за 65$, пришел с просверленной ступицей для крепления лопастей ветровой турбины, что сохранило мне много времени, которое было бы потрачено на просверливание отверстий.

Как сделать контроллер для ветрогенератора своими руками

Мотор рассчитан на 90В при 1750 оборотов в минуту. Используя его в качестве генератора, эффективность данной системы составит 80%. Поэтому при вращении вала со скоростью 1750 оборотов за минуту, он будет производить 72В электричества. Посмотрим правде в глаза, вал не будет крутится с такой скоростью, но можно прийти к консенсусу. Для того, чтобы зарядить 12В батарею глубоким циклом заряда, генератор должен производить по крайней мере 12В. Воспользуемся математикой для расчета необходимой скорости вращения. Вал должен вращаться как минимум 233 оборота в минуту для зарядки 12В батареи.

С пластиковыми лопастями при 24 км/ч ветер легко вращает вал 233+ оборотов в минуту, что позволит заряжать батареи.

Схемы балластного регулятора

Существует несколько базовых схем контроллеров, имеющих собственную специфику:

Прерывание по минусовому контакту

Нагрузка через транзистор подается на реле.

Оно пропускает ток до достижения максимального заряда, но как только нужное значение будет достигнуто (автомобильное ВАЗовское реле отсекает 14,5 В), то реле отключает минус, а транзистор открывается и пропускает ток на балласт.

Как только напряжение упадет, транзистор закрывается, а реле вновь соединяет минус и начинается зарядка АКБ. В качестве балластного потребителя обычно используется обычная лампочка.

Прерывание по плюсу

Эта схема намного проще, но действует не менее эффективно. При использовании плюсового контакта в качестве управляющего транзисторы обычно заменяют твердотельным реле типа GTH6048ZA2 или подобного. Соединение генератора и АКБ получается прямым, как и контроллер.

При превышении заряда устройство автоматически подключает нагрузку к аккумулятору, обеспечивая расход излишнего заряда. При достижении критического напряжения 14,5 В реле-регулятор включает твердотельное реле, подключающее нагрузку. Схема проста и поэтому она весьма надежна.

Усложнённый вариант схемы контроллера

Этот вариант применяется для трехфазных генераторов. Схема намного сложнее, так как в ней используются микросхемы и дополнительные элементы, обеспечивающие их работу. В качестве балласта используется нихромовый резистор, намотанный на керамике.

Принцип действия устройства состоит в выпрямлении полученного от генератора трехфазного тока, который через реле поступает на микросхему. При понижении напряжения триггер переключает схему в режим загрузки, при повышении — включается балласт, отбирающий лишний заряд. Можно собрать схему как для 12, так и для 24-вольтовых устройств.

Внимание! В настоящее время на рынок поступило множество китайских контроллеров, вполне доступных по цене и способных работать с разными устройствами от 12 до 30 В. Они вполне функциональны и способны избавить от самостоятельной сборки с неясным результатом.

Лопасти

Как сделать контроллер для ветрогенератора своими руками

Вместо того, чтобы тратить сотни долларов на лопасти для ветрового генератора, они были сделаны из пластиковых труб, что валялись в гараже.

Как сделать контроллер для ветрогенератора своими руками

Все говорят о том, что лучше использовать трубы диаметром 20 см для лопастей ветрогенератора. Позвольте мне сказать о том, что они действительно работают гораздо лучше чем трубы 15 см. Но так как в моем распоряжении были 15 см трубы, к вопросу нужно было бы подойти творчески (у них меньшая кривизна чем у 20 см).

Как сделать контроллер для ветрогенератора своими руками

Приступаем к резки ПВХ трубы. Сделаем прямоугольники размерами 14 на 61 см. Затем вырежьте из них треугольники, где короткий катет в длину 3 см.

Как сделать контроллер для ветрогенератора своими руками

Советы:

  • Используйте металлический угольник, для маркировки мест, что необходимо вырезать (угольник поможет получить прямые линии).
  • Вы можете использовать ручную пилу, но рекомендую взять «сабельную пилу».
  • Используйте пилки предназначенные для стали (мелкие зубья).

Лопасти — продолжение

Как сделать контроллер для ветрогенератора своими руками

Как сделать контроллер для ветрогенератора своими руками

Для того, чтобы доработать трубу 15 см, была добавлена конструкция. На фотографиях показано, что была использована стальная садовая окантовка с просверленными отверстиями для продления длины лопастей.

  1. Зажмем окантовку в тисках, для того чтобы подравнять поверхность и просверлить отверстия, чтобы они были приблизительно в одном месте.
  2. Наиболее важной частью этого все было то, что вставки были наклонены относительно лопастей под углом 30-45 градусов к ступице, позволяя ветру толкать их боком, нежели назад, снимая при этом лишнее напряжение с натяжных тросов и основания, и производить больше электроэнергии.

Добавляем флюгер

Перед тем как начать работу по производству флюгера, рекомендую покрасить 122 см квадратную трубу. В моем случае она была не оцинкованной и поэтому поржавела в течении нескольких месяцев, поэтому приходилось все разбирать заново, шлифовать и красить.

Отметьте линию, ниже центра на 2.5 см квадратной трубы, сделайте разрез с одного края длиной в 30 см.

Просверлите два отверстия через трубу и лист стали, скрутите все это вместе.

Установка генератора

Во-первых, установите мотор на верху квадратной трубы (мотор должен быть на одном уровне с концом трубы). Просверлите отверстие для шнура питания.

Рекомендую просверлить отверстие большего диаметра, чтобы убедится в том, что металл не врезается в провод. Следующей операцией будет прикрепление 3 см фланца к квадратной трубе.

Фланец должен находится сзади того места, где смонтирован двигатель (это все должно быть довольно близко к друг другу, для балансировки точки равновесия трубы). Просверлите два отверстия и прикрутите фланец к трубе.

Просверлите третье отверстие в центре фланца для провода, чтобы пропустить его внутри по флагштоку. Заправьте провод от мотора во внутрь через оба отверстия, что вы просверлили и прикрепите мотор к трубе используя большие хомуты (убедитесь в том, что хомуты плотно затянуты).

Примечание: мотор, что использовался в проекта был с штепсельной вилкой на конце шнура, но мне пришлось его удалить для того, чтобы продеть его через трубу.

После того, как все это сделано проденьте трубу диаметром 3 см во фланец. Используем трубу длиной 61 см. Она будет выступать в качестве основы для ветрогенератора.

Фундамент

По моему личному опыту рама основания просто уложенная на землю не является хорошей опорой при сильном ветре и не защищает ветрогенератор от опрокидывания, повреждая при этом как саму установку, так и лопасти генератора.

Для этого чтобы выдерживать сильные ветры без проблем, нужно вырыть фундамент и залить его раствором в ключевых местах. Разместив в основании стальную трубу и выройте яму вокруг её.

Налейте раствор вокруг 4 вертикальных труб, остаток распределили по своему усмотрению. Может быть, было бы более эффективно сделать фундамент для основы, но это уже идея для другого проекта.

Как только все окажется в земле, наружная труба будет торчать не слишком далеко от земли. Главная труба турбины иметь внутреннею резьбу, поэтому возьмем 2,5 см тройник для соединения труб. Это служит двойной целью: скрепляющий элемент, через него проходит провод от генератора.

Примечание: шнур, что использовался в проекте, был отрезан он старого удлинителя.

Растяжки

Для растяжек первоначально использовался высокопрочных паракорд, но он лопнул при сильном ветре, поэтому было принято решение перейти на плетеный трос, что шёл в комплекте с прочными крепежными винтами. Прикрепив их к главной трубе с помощью двух заземляющих зажимов. Зажимы оснащены болтами, но заменим эти болты на карабины, таким образом растяжки могут быть быстро сняты.

Зарядка батарей

Ветряк заряжает две батареи, что соединены параллельно.

Просто подсоединяем контакты генератора к клеммам батарей, при этом стоит впаять диод в провод питания, чтобы убедится в том, что электричество не пойдет от батареи к мотору, вращая его словно вентилятор, также необходимо установить контроллер заряда. Это беспроигрышный вариант для тех, у кого нет возможности часто проверять заряд батарей.

Рекомендую также приобрести к установке нагрузочное сопротивление. Контроллер будет перенаправлять электрический ток, от генератора к сопротивлению, когда батареи полностью заряжены.

Необходимо убедится в том, что ветрогенератор всегда должен быть под нагрузкой, для предотвращения выхода из строя мотора.

В моем случае нагрузочное сопротивление не выполняет своей функции по той причине, что мои батареи никогда не заряжаются полностью (они всегда под нагрузкой).

Проводка в моем проекте выглядит ужасно, но не переживайте в интернете полно схем подключения контроллера заряда.

Как грамотно выбрать контроллер для ветрогенератора или сделать самому

Для получения электрической энергии из кинетической нужен ветряк. С его помощью энергия ветра превращается в электричество. Сам ветряк состоит из нескольких элементов: ветрогенератора, аккумуляторов, преобразователя и контроллера.

Контроллер необходим для оптимизации работы аккумуляторных батарей.

Иными словами, это системная часть ветрогенератора, которая отвечает за оптимальное распределение электрической энергии и заряда аккумуляторов в соответствии с мощностью ветровой установки.

Контроллер для ветрогенератора: зачем нужен и как работает

Без контроллера ветровая установка не будет адекватно функционировать. Устройство выполняет такие задачи:

  • контроль вращающихся лопастей ветряка (регулировка энергии);
  • контроль заряда АКБ, которые накапливают собираемую ветряком энергию;
  • преобразование переменного тока в постоянный, чтобы питать аккумуляторы;
  • распределение электричества (отталкиваясь от уровня заряда аккумуляторов и количества полученной энергии).

Ветровые установки бывают большой и малой мощности. Для высокомощных ветрогенераторов в комплект к контроллеру идет балластное сопротивление (трубчатые электронагреватели и другие виды резисторов с высоким уровнем сопротивления). Плюс, при превышении мощности в АКБ до 15В прибор перенаправляет заряд с аккумуляторов на балласт.

Как сделать контроллер для ветрогенератора своими руками

Для маломощных ветровых генераторов контроллер служит своеобразной страховкой от перенапряжения. При полном заряде аккумуляторов он тормозит вращение лопастей ветрогенератора, чтобы прекратить активную выработку энергии. Так АКБ не пострадают от перегрузок, а электричество будет распределено равномерно. Это увеличит срок службы электроприборов, в том числе и аккумуляторных батарей.

Технические характеристики

При покупке контроллера заряда для ветрогенератора необходимо внимательно изучить его техпаспорт. При выборе важны характеристики:

  • мощность — должна соответствовать мощности ветровой установки;
  • напряжение — должно соответствовать напряжению АКБ, установленных на ветряк;
  • макс. мощность — обозначает максимально допустимую мощность для модели контроллера;
  • макс. ток — обозначает, с какими максимальными мощностями ветрогенератора может работать контроллер;
  • диапазон напряжения — показатели макс. и мин. напряжения АКБ для адекватной работы устройства;
  • возможности дисплея — какие данные об устройстве и его работе выводятся на дисплей у той или иной модели;
  • условия эксплуатации — при каких температурах, уровне влажности может работать выбранное устройство.

Если вы не можете подобрать устройство контроля заряда самостоятельно, свяжитесь с консультантом и покажите ему технический паспорт своего ветряка. Прибор выбирается в соответствии с возможностями ветровой установки. Неправильные условия эксплуатации и отклонения от диапазона напряжения пагубно скажутся на работе всей ветровой системы.

Электрическая схема контроллера заряда ветрогенератора своими руками

Чтобы изготовить прибор самостоятельно, вам необходимо владеть навыками сборки электроприборов.

У этого устройства сложная схема, и неправильная сборка может привести к выведению из строя всех подключенных к сети приборов, в том числе и ветровую установку. Если вы не уверены в своей квалификации, лучше купить заводской прибор.

Цена на рынке стартует от 4000 рублей. Устройства китайского производства могут обойтись в 1000 рублей. Цена зависит от страны производства и укомплектованности устройства.

Как сделать контроллер для ветрогенератора своими руками

Что понадобится для самостоятельной сборки:

  • схема устройства, соответствующая техническим характеристикам вашего ветряка;
  • комплектующие для сборки схемы (регуляторы, лампочки, резисторы, провода);
  • рисунок монтажной платы (сделать самостоятельно).

Дальнейшие действия — дело техники. Нужную схему можно найти в интернете. Перед поисками определите необходимую мощность и напряжение для вашей ветровой установки, и от этого отталкивайтесь в подборе схемы инвертора.

Если у вас самодельный ветрогенератор, измерьте его мощность и напряжение самостоятельно. Для этого вам понадобится мультиметр (функция измерения тока). Сила тока и напряжение меряются в проводе от ветряка.

Умножьте друг на друга эти величины и получите мощность ветровой установки (в Ваттах).

Как сделать контроллер для ветрогенератора своими руками

На самой схеме в условных обозначениях будет написано, какие комплектующие и в каком количестве вам понадобятся. Все это продается в магазинах электрики.

Некоторые элементы, например, светодиодные лампочки или провода, можно извлечь из ненужных вам приборов.

После этого нарисуйте монтажную плату, продумав, где будет находиться каждый элемент прибора в соответствии с требованиями схемы. Соберите устройство и протестируйте.

Контроллер для ветрогенератора

Контроллер – это электронное устройство, отвечающее за преобразование переменного напряжения, вырабатываемого генератором в постоянное, и контроль заряда аккумуляторных батарей.

Наличие контроллера в схеме работы ветровой установки позволяет осуществлять работу ветрового генератора в автоматическом режиме вне зависимости от внешних факторов (скорость ветра, погодные условия и т.д.).

Принцип действия

Для различных типов ветровых генераторов используют различные виды и конструкции контроллеров, но основные принципы работы подобных устройств, можно разделить на два типа, это:

  1. Для ветровых установок относительно не большой мощности: при достижении напряжения на клеммах аккумуляторных батарей выше 15,0 В, контроллер перемыкает обмотки генератора, что приводит к остановке вращения лопастей ветровой установки. При снижении напряжения до 13,5 В, контроллер дает команду на разблокировку обмоток, и установка начинает работать в нормальном режиме.
  2. Для мощных ветровых установок – в комплекте с электронным блоком контроллера монтируется балластный резистор с большим сопротивлением. При достижении напряжения на клеммах аккумуляторов в 14,0 – 15,0 В, контроллер не отключает ветровую установку, а «лишнюю» энергию сжигает на балластном сопротивлении. В качестве балласта могут быть использованы нагревательные элементы (ТЭНы), служащие для нагрева воды в системах горячего водоснабжения или отопления зданий и сооружений.

Основные характеристики

При выборе контроллера, используемого в схемах ветровых генераторов, необходимо изучить технические характеристики данного электронного устройства.

Основными характеристиками, которые указывает производитель, служащими критериями выбора подобных устройств, являются:

  • Номинальное напряжение, измеряемое в Вольтах;
  • Рабочая мощность, измеряемая в Ваттах;
  • Максимальная мощность, измеряемая в Ваттах;
  • Максимальный ток, измеряемый в Амперах;
  • Сброс балластной энергии (что может быть использовано);
  • Условия эксплуатации (рабочая температура, влажность, высота над уровнем моря);
  • Способность к дистанционной передаче данных о работе ветровой установки;
  • Габаритные размеры;
  • Вес устройства.

В настоящее время отечественные и зарубежные компании, специализирующиеся на производстве альтернативных источников энергии, а также их комплектующих, выпускают несколько видов контроллеров, успешно работающих в ветровых установках, это:

  • PWM (ШИМ) контроллеры – устройства с широтно-импульсной модуляцией (ШИМ). В аппаратах данного вида осуществляется процесс управления мощностью, путём изменения импульсов, при постоянной частоте.

Достоинствами данного вида являются:

  • Относительно не большие габаритные размеры, в сравнении с аналогами;
  • Способность к быстродействию в процессе работы;
  • Надежность конструкции.
  • МРРТ контроллеры – как правило используются в солнечных установках, но могут применяться и в комплекте с ветровыми генераторами. Основой работы устройств данного вида является способность определять точку максимальной мощности, которая характеризуется напряжением и силой тока в конкретный момент времени.

Достоинствами данного вида являются:

  • Являются наиболее эффективными устройствами, в сравнении с аналогами.

Основной недостаток – более высокая стоимость.

Контроллер для ветрогенератора и солнечных панелей

Для работы с ветровым генератором можно использовать контроллер, изначально предназначенный для работы с солнечной электростанцией, главным условием для этого, является наличие возможности, у конкретной модели, выполнить настройку «выхода» (load).

Ветровой генератор подключается на вход используемого контроллера, единственное, что необходимо сделать, это установить диодный мост, для преобразования переменного напряжения, вырабатываемого генератором в постоянное, на котором осуществляется работа аккумуляторных батарей.

В контроллерах, используемых в солнечных электростанциях, отсутствует диодный мост на входной группе, т.к. солнечные батареи производят постоянный электрический ток.

Аккумуляторные батареи подключаются в соответствие со схемой используемого контроллера, а на «выход» подключается балластное сопротивление, в качестве которого может быть использована любая нагрузка, единственное условие при этом – мощность нагрузки должна соответствовать мощности генератора.

После того, как контроллер включен по выше обозначенной схеме, необходимо выполнить настройки режимов работы, задающие пороги отключения и включения балласта.

Контроллер своими руками (схема)

Как сделать контроллер для ветрогенератора своими руками

  • Зная основы электротехники и умея работать паяльников, можно изготовить контроллер ветровой установки самостоятельно.
  • В настоящее время есть возможность найти различные схемы подобных устройств различных видов, мощности и прочих технических характеристик, для этого достаточно зайти в сеть интернет и обраться к поиску по требуемому заданию или найти техническую литературу в специализированных магазинах и издательствах.
  • Один из вариантов схемы контроллера и включение его в схему работы ветрогенератора, приведен ниже:
  • Данная схема отличается простотой, но способна обеспечить работу ветровой установки в автоматическом режиме.

Средние цены

Как правило контроллер для ветровой установки изготавливается компанией, производящей ветровые генераторы и поставляется комплектно с прочим оборудование.

Однако, по ряду причин, иногда появляется потребность приобрести данный прибор отдельно от основного комплекта.

В этом случае необходимо выбрать устройство в соответствии с техническими характеристиками системы и бренда производителя, который является предпочтительнее для каждого индивидуального пользователя.

На рынке данного оборудования представлены следующие, наиболее популярные модели:

  • «WWS03A-12», производство Китай.

Технические характеристики:

  • Мощность — 0.2 кВт;
  • Максимальная входная мощность – 0,3 кВт;
  • Напряжение постоянного тока – 12,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 9000,00 рублей.

  • «WWS04A-12», производство Китай.
  • Мощность — 0.4 кВт;
  • Максимальная входная мощность – 0,6 кВт;
  • Напряжение постоянного тока – 12,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 12000,00 рублей.

  • «WWS10A-24-E», производство Китай.
  • Мощность — 1.0 кВт;
  • Максимальная входная мощность – 2,0 кВт;
  • Напряжение постоянного тока – 24,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 22000,00 рублей.

  • «Exmork ZKJ-B 1.5 KW-48 Vdc», производство Россия.
  • Мощность — 1.5 кВт;
  • Максимальная входная мощность – 2,0 кВт;
  • Напряжение постоянного тока – 48,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +65,0 ℃;
  • Габаритные размеры – 430х340х220 мм;
  • Габаритные размеры внешнего блока ТЭНов – 360х330х200 мм;
  • Вес контроллера – 9,0 кг;
  • Вес блока внешних ТЭНов – 5,0 кг.

Стоимость устройства – от 27000,00 рублей.

  • «Exmork ZKJ-B 2KW-24 Vdc», производство Россия.
  • Мощность — 2.0 кВт;
  • Максимальная входная мощность – 2,5 кВт;
  • Напряжение постоянного тока – 24,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +40,0 ℃;
  • Габаритные размеры – 590х490х315 мм;
  • Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
  • Вес контроллера – 23,0 кг;
  • Вес блока внешних ТЭНов – 15,5 кг.

Стоимость устройства – от 46000,00 рублей.

  • «Exmork ZKJ-B 5KW-48Vdc», производство Россия.
  • Мощность — 5.0 кВт;
  • Максимальная входная мощность – 5,5 кВт;
  • Напряжение постоянного тока – 48,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +40,0 ℃;
  • Габаритные размеры – 590х490х315 мм;
  • Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
  • Вес контроллера – 43,0 кг;
  • Вес блока внешних ТЭНов – 17,0 кг.

Стоимость устройства – от 89000,00 рублей.

Где купить

При необходимости приобрести контроллер для находящейся в эксплуатации ветровой установки, лучше всего обратиться к предприятию ее изготовившую или дилерам этой организации.

Это поможет избежать ошибок при подключение приобретаемого устройства и позволит избежать лишних финансовых затрат, т.к.

компании стараются поддерживать своих клиентов, создавая себе положительный имидж и нарабатывая клиентскую базу.

При желании купить более дешевый аппарат, можно обратиться к сети интернет, где представлено достаточное количество подобных изделий китайского производства. Кроме этого, в сети можно ознакомиться с характеристиками предлагаемых к реализации контроллеров различных брендов и компаний производителей из различных стран.

Плюсы и минусы

Наличие дополнительных устройств, в схеме работы ветровых установок, позволяет улучшить параметры получаемой электрической энергии.

Контроллеру, как элементу подобной схемы, присущи следующие достоинства:

  • Позволяет осуществлять работу ветровой установки в автоматическом режиме.
  • Использование контроллера, продлевает сроки эксплуатации аккумуляторных батарей, обеспечивая, для них, безопасные режимы работы.
  • Способность наиболее полного использования вырабатываемой ветровым генератором энергии – нагрев ТЭНов, или иной нагрузки, в моменты, когда аккумуляторы полностью заряжены.
  • Улучшаются условия эксплуатации ветровой установки (легкий запуск при слабом ветре и т.д.).

К недостаткам контроллера, установленного в схему работы ветрового генератора, можно отнести увеличение стоимости комплекта оборудования, а также вероятность поломки ветровой установки, работающей в автоматическом режиме, в случае выхода их строя данного элемента схемы управления.

Как я построил ветряной генератор. Часть 5. Контроллер заряда — схема

Продолжение Начало читайте здесь:

Часть 1. Выбор электромотора Часть 2. Изготовление ветроколеса Часть 3. Изготовление флюгера и окончательная сборка Часть 4. Контроллер заряда — поиск решения

Генератор турбины подключается к контроллеру. От контроллера идут провода к аккумулятору. Туда же подключается и нагрузка. Если напряжение на аккумуляторе падает ниже 11.9 В, контроллер подключает генератор к аккумулятору, и последний начинает заряжаться.

Если напряжение аккумулятора достигает 14 В, контроллер подключает к нему дополнительную нагрузку. Оба пороговых напряжения, 11.9 В и 14 В, можно изменять подстроечными резисторами.

Интересуясь в Интернете, какими же должны быть эти пороги для свинцовых аккумуляторов, я обнаружил некоторые расхождения у различных авторов. Для своей схемы я взял усредненные значения.

При напряжении аккумулятора между 11.9 В и 14 В, контроллер может переключать систему между зарядом и отдачей тока в нагрузку. Пара кнопок позволяет мне делать эти переключения в любое время, независимо от контроллера. Очень удобно при наладке устройства.

Желтый светодиод зажигается во время зарядки аккумулятора. Когда аккумулятор заряжен, и избыточная мощность отводится в дополнительную нагрузку, загорается зеленый светодиод. Таким образом, я имею минимальную обратную связь, позволяющую понять, что происходит в системе.

Кроме того, с помощью мультиметра я могу измерять напряжения в любых точках. Все это не очень удобно.

Как только у меня дойдут руки до того, чтобы упаковать конструкцию в подходящий корпус, я непременно добавлю вольтметр и амперметр, возможно, от автомобильного приборного щитка.

Я использовал свою собранную на листе фанеры схему, что бы с помощью внешнего источника питания имитировать различные режимы заряда и разряда аккумулятора, и настроить контроллер. Устанавливая напряжение 11.9 В, а затем 14 В, я выставил подстроечными резисторами требуемые пороги. Сделать это следовало до отъезда, так как заниматься настройкой в поле никакой возможности у меня не было бы.

Доработка

Исследовав подробнее правила заряда свинцовых аккумуляторов, верхний порог я установил равным 14.8 В. Кроме того, от брата мне достались герметичные свинцовые аккумуляторы, которыми я и заменил обычные, использовавшиеся первоначально.

Важно !

Я понял, что в первую очередь, надо подключать к контроллеру аккумулятор, и только потом ветрогенератор или солнечную батарею.

Если генератор подключить первым, волны напряжения не будут сглаживаться аккумулятором, контроллер будет работать неправильно, реле хаотически переключаться, а броски напряжения, в конце концов, приведут к выходу из строя микросхем.

Короче, всегда подключайте аккумуляторную батарею первой, а ветрогенератор вслед за ней. И наоборот, разбирая систему, убедитесь в первую очередь, что генератор отключен. Батарею отключайте последней.

Наконец, представлю вам принципиальную схему. Она лишь немного отличается от прототипа, ссылку на который я приводил выше. Как я говорил раньше, некоторые детали я заменил на те, которые уже были у меня, чтобы не тратиться на покупку новых. Советую вам поступать также. Совершенно не обязательно повторять схему один в один.

Как сделать контроллер для ветрогенератора своими руками

  • Кликните для увеличения
  • Перевод текстов на рисунке
  1. Note: IC3c & IC3d are unused. Ground their inputs and leave
  2. the outputs unconnected.
  • Замечание: C3c и IC3d не используются. Заземлите их входы,
  • а выходы оставьте свободными.

Наконец, проект завершен. До моего отъезда осталась всего неделя. Пролетела она быстро. Я разобрал турбину и тщательно упаковал все детали и инструменты, необходимые, чтобы собрать турбину после поездки через всю страну. Погрузив все в машину, я во второй раз поехал на свой участок в Аризоне, на этот раз с надеждой, что хоть какое-то электричество у меня там будет.

Продолжение читайте здесь

Схема контроллера универсальный Ветрогенератор солнечная панель. | | Пелинг — Солнечные батареи, электротранспорт, Аккумуляторы, светодиоды, поделки, обучение, ремонт авто и многое другое

Случайно в сети наткнулся на очень интересную и в тоже время самую простую схему ШИМ контроллера. Большинство людей кому не под силу тратить более тысячи рублей на покупку заводского контроллера заряда, при помощи паяльника вполне способны самостоятельно, собрать контроллер заряда для солнечных панелей или ветрогенератора.

Алгоритмы работы этих контроллеров весьма просты. как только напряжение достигает выставленного верхнего значения, контроллер отключит заряд. И второе это если я не ошибаюсь, это включение и отключение нагрузки диапазон которой так же регулируется.

К сожалению сам я так и не собрал данную схему, из за отсутствия некоторых компонентов, как по первой схеме так и по второй. Но подобные схемы я встречал. Поэтому точно знаю, что они вполне рабочие, и для каких то маленьких систем вполне могут подойти. Тем более они весьма дешевы в исполнении, ну и имеют ручной диапазон который можно выставить.

У обоих контроллеров нет режима поддержания, только заряда!

Все контроллеры устанавливаем на напряжение 14.2 вольт 14.4 Вольта.

А лучше ознакомьтесь с рекомендациями производителя того АКБ который у вас установлен, не для обслуживания, а для режима эксплуатации, чтобы АКБ прослужили долго. Почему именно 14.2- 14.5 В.

Да просто это рабочее и мах напряжение заряда АКБ многих кислотных (автомобильных). При таких напряжениях, АКБ заряжается полностью и работают на 100%.

  • рисунок 1 — схема контроллера , печатная плата

Рисунок 2 — схема контроллера , печатная плата, вид спасенного…..

  1. Используемые детали рис 2
  2. IC1 — 7805 5 Volt positive Voltage Regulator
  3. R3, R4, R5 — 1K Ohm 1/8 Watt 10%
    IC2 — NE555 Timer Chip
  4. R6 — 330 Ohm 1/8 Watt 10%
    PB1, PB2 — NO Momentary Contact Push Buttons
  5. R7 — 100 Ohm 1/8 Watt 10%
    LED1 — Green LED Q1 — 2N2222 Or Similar NPN Transistor
    LED2 — Yellow LED Q2 — IRF540 Or Similar Power MOSFET
    RLY1 — 40 Amp SPDT Automotive Relay
  6. C1 — 0.33uF 35V 10%
    D1 — 1N4001 or similar
  7. С2 — 0.1uF 35V 10%
    R1, R2 — 10K Multi-Turn Trim-Pots

Похожее

Балластный регулятор для ветрогенератора (ветряка)

. 11.05.10 . 507 . 40 353 . 6 После того, как ветряк построен и работает, рано или поздно встает вопрос об утилизации лишней энергии. Хотелось бы ее увидеть! То есть, АКБ уже заряжен, а ветрогенератор продолжает вырабатывать энергию.

Чем это грозит?Да просто через небольшое время, аккумулятор закипит, и его можно выбросить. Но это еще не все, вернее не все самое страшное. Ветроколесо начинает набирать неконтролируемые обороты и может пойти в разнос. Поверьте, не самое приятное зрелище! Как с этим бороться? В идеале нужен умный и сложный контроллер (над созданием такового, работает группа энтузиастов из граждан). Но не все (и я тоже) могут его собрать и запрограммировать. Что делать? Остается идти по сокращенному варианту. Как то попалась простая схема в интернете, на англоязычном форуме. Собрал- нормально работает.

В их исполнении она выглядит так:

Работает он так:Диод D1 защищает переполюсовки по питанию. Зеленый светодиод показывает, что цепь подключена к аккумулятору. Желтый светодиод показывает, что включен балласт. На стабилитроне ZD 1 выполнен делитель напряжения для контроля напряжения батареи. Стабилитрон ZD 2 защищает ZM и 2N7000, MOSFET от высокого напряжения. Когда напряжение на ZM меньше 4.6V, 2N7000 закрыт, остальная часть схемы выключена. Когда напряжение на ZM 4.6V, то ZM открыт и 2N7000 5.1V, Р канал MOSFET видит низкое напряжение на его входе, подается напряжение питания на вход MOSFET и он включает балласт. Конденсатор сглаживает импульсы. Резистор RX определяет гистерезис. Чем меньше сопротивление RX, жестче гистерезис. Нормальный уровень 0.6 или 0.8V.

Перечень элементов

Блокирующий диод D1 = 1N4001 или 1N4007. Светодиоды зеленый и желтый -любые подходящие. Резисторы R1 и R2 = 3.3K (от 2K и 10K), Конденсатор C1 = 10uF 16V (между 2,2 и 47uF, 10V минимум) Стабилитроны ZD1 и ZD2 = 5.

1 V R3 = 51K, R4 = 0 до 500 Ом ( в среднем от 50 до 100 Ом) R5 = 3K до 10K (3K меньше гистерезиса, 10K с высокий гистерезис) Транзистор N-Фет = 2N7000 или аналогичные 20V Транзистор P-Фет = BSS92, BS250 или аналогичный 20V

Транзистор = IRFZ44N или аналогичный.

Можно ставить параллельно несколько для получения более высокого тока нагрузки.

Стабилизатор ZM -LM317, MC33064 Резистор RX. Сопротивление/гистерезис 1.8K/1.0V, 3K/0.8V, 3.9K/0.62V, 51K/0.14V, 100K/0.1V, 150K/0.08V, 180K/0.06V, 220K/0.04V. Значения RX ниже 1.8K становятся возле опасной зоны и не рекомендуется.

Значения выше 220K просто не нужно и может вызвать проблемы.

Важно! Провода нагрузки отделить от проводов включения балласта. В противном случае схема увидит падение напряжения как уменьшение напряжения на клеммах аккумулятора.

Провода должны быть отделены друг от друга.

Калибровка прибора

Проводить калибровки без включения балластной нагрузки. Если желтый светодиод светится, нагрузка включена. Можно использовать бортовую сеть автомобиля для получения 14.15V. • 0.08V гистерезис для нагрузки. • 0.62V для LVD. Позволяет за загружен батареи достичь 12.

2V Устройство может быть использовано для контроля нагрузки, один LVD, контроллер для зарядки второй батареи или третьей, или любое сочетание указанных выше. Схема рассчитана для мощности до 150W.Прошу не пинать, за корявый перевод, и возможные ошибки. Ну, а вот то, что собрал я. Собирал на макетке, неказисто, но все исправно работает!

Россия, Московская область, Солнечногорск.

Просто человек. Мне сорок один год. Работаю. Люблю рыбалку. Живу в подмосковье. Делаю на досуге ветряки, поэтому и паяльник приходится держать. Возможно мой опыт в этом направлении может кому то пригодиться.

Источник http://altenergiya.ru/veter/kak-gramotno-vybrat-kontroller-dlya-vetrogeneratora.html

Источник http://10i5.ru/raznoe/kontroller-dlya-vetrogeneratora-svoimi-rukami.html

Источник http://enerob.ru/otoplenie/kak-sdelat-kontroller-dlya-vetrogeneratora-svoimi-rukami.html