Сделал ветрогенератор своими руками (21 фото)

Содержание

Сделал ветрогенератор своими руками (21 фото)

Идея сделать ветрогенератор своими руками, возникла, когда был получен земельный участок, где не подведено электричество.

На участке не было подведено электричество, и каждый решал эту проблему по своему, в основном за счет солнечных панелей и бензогенераторов.

Как только был построен домик, то первым делом надо было подумать о освещении, и была приобретена солнечная панель 120 ватт. Летом она хорошо работала, но зимой её эффективность сильно упала и в пасмурные дни она давала ток всего 0,3-0,5А/ч, это никак ни устраивало, так-как даже на свет еле хватало, а еще надо было питать ноутбук и другую мелкую электронику.

Поэтому было решено построить ветрогенератор в домашних условиях, чтобы использовать еще и энергию ветра.

Сначала было желание построить парусный ветрогенератор. Такой тип ветрогенераторов очень понравился, и после некоторого времени проведенного в интернете в голове и на компьютере накопилось много материалов по этим ветрогенераторам. Но строить парусный ветрогенератор довольно затратное дело, так-как такие ветрогенераторы маленькие не строят и диаметр винта для ветрогенератора такого типа должен быть как минимум метров пять.
Большой ветрогенератор не было возможности потянуть, но все-таки очень хотелось попробовать сделать ветрогенератор, хотя бы небольшой мощности, для зарядки аккумулятора. Горизонтальный пропеллерный ветрогенератор сразу отпал так-как они шумные, есть сложности с изготовлением токосьемных колец и защитой ветрогенератора от сильного ветра, а так-же трудно изготовить правильные лопасти.

Хотелось чего-то простого и тихоходного, посмотрев некоторые видеоролики в интернете очень понравились вертикальные ветрогенераторы типа Савониус.

По сути это аналоги разрезанной бочки, половинки которой раздвинуты в противоположные стороны. В поисках информации нашел более продвинутый вид этих ветрогенераторов — ротор Угринского.

Обычные Савониусы имеют очень маленький КИЭВ ( коэффициент использования энергии ветра), он обычно всего 10-20%, а ротор Угринского имеет более высокий КИЭВ за счет использования отражённой от лопастей энергии ветра.

Ниже наглядные картинки для понимания принципа роботы данного ротора

Схема разметки координат лопастей

КИЭВ ротора Угринского заявлен аш до 46% , а значит он не уступает горизонтальным ветрогенераторам. Ну а практика покажет что и как.

Изготовление лопастей ветрогенератора

Прежде чем приниматься за изготовление ротора, сначала были изготовлены модельки из пивных банок двух роторов. Одна моделька классического Савониуса, а Вторая Угринского. На модельках было заметно что ротор Угринского работает заметно на более высоких оборотах в сравнении с Савониусом, и было принято решение в пользу Угринского.

Решено было сделать двойной ротор, один над вторым с разворотом под 90 градусов чтобы добиться более ровного крутящего момента и лучшего старта.

Материалы для ротора выбраны самые простые и дешевые. Лопасти сделаны из алюминиевого листа толщиной 0,5мм. Из фанеры толщиной 10мм вырезаны три круга. Круги были расчерчены по рисунку выше и были сделаны бороздки глубиной 3 мм для вставки лопастей. Крепление лопастей сделано на маленьких уголочках и стянуто на болтики. Дополнительно для прочности всей сборки фанерные диски стянуты шпильками по краям и в центре, получилось очень жёстко и прочно.

Размер получившегося ротора 75*160см, на материалы ротора потрачено примерно 3600 рублей.

Изготовление генератора

Перед тем как делать генератор было много поисков готового генератора, но их в продаже почти нет, а то что можно заказать через интернет стоило приличных денег. У вертикальных ветрогенераторов небольшие обороты и в среднем для этой конструкции около 150-200 об/м. А для таких оборотов трудно найти что-то готовое и не требующее мультипликатора.

В поисках информации на форумах оказалось многие люди делают генераторы сами и в этом нет ничего сложного. Решение было принято в пользу самодельного генератора на постоянных магнитах. За основу была взята классическая конструкция аксиального генератора на постоянных магнитах, сделанная на автомобильной ступице.

Первым делом были заказаны неодимовые магниты шайбы для этого генератора в количестве 32 шт размером 10*30мм. Пока шли магниты изготавливались другие детали генератора. Вычислив все размеры статора под ротор, который собран из двух тормозных дисков от автомобиля ВАЗ на ступице заднего колеса, были намотаны катушки.

Для намотки катушек сделан простенький ручной станочек. Количество катушек 12 по три на фазу, так-как генератор трехфазный. На дисках ротора будет по 16 магнитов, это соотношение 4/3 вместо 2/3, так генератор получится тихоходнее и мощнее.

Для намотки катушек сделан простой станочек.

На бумаге размечены места расположения катушек статора.

Для заливки статора смолой изготовлена форма из фанеры. Перед заливкой все катушки были спаяны в звезду, а провода выведены наружу по прорезанным канальцам.

ветрогенератор в домашних условиях

Катушки статора перед заливкой.

Свеже залитый статор, перед заливкой на дно был постелен кружок из стеклосетки, и после укладки катушек и заливкой эпоксидной смолой поверх них был уложен второй кружок, это для дополнительной прочности. В смолу добавлен тальк для крепости, от этого она белая.

Так-же смолой залиты и магниты на дисках.

А вот уже собранный генератор, основа тоже из фанеры.

После изготовления генератор сразу был покручен руками на предмет вольт-амперной характеристики. К нему был подключен мотоциклетный аккумулятор 12 вольт. К генератору была приделана ручка и смотря на секундную стрелку и вращая генератор были получены некоторые данные. На аккумулятор при 120 об/м получилось 15 вольт 3,5А, быстрее раскрутить рукой не позволяет сильное сопротивление генератора. Максимум в холостую на 240 об/м 43 вольта.

Подключение генератора

Для генератора был собран диодный мост, который был упакован в корпус, а на корпусе были смонтированы два прибора это вольтметр и амперметр. Так-же знакомый электронщик спаял простенький контроллер для него. Принцип контроллера прост, при полном заряде аккумуляторов контроллер подключает дополнительную нагрузку, которая съедает все излишки энергии чтобы аккумуляторы не перезарядились.

Первый контроллер спаянный знакомым не совсем устраивал, по этому был спаян более надежный программный контроллер.

Установка ветрогенератора

Для ветрогенератора был сделан мощный каркас из деревянных брусков 10*5 см. Для надежности опорные бруски были вкопаны в землю на 50 см, а так-же вся конструкция была дополнительно усилена растяжками, которые привязывались к уголкам вбитым в землю. Такая конструкция очень практична и быстро устанавливается, а так-же в изготовлении проще чем сварная. Поэтому было принято решение строить из дерева, а металл дорого и сварку некуда включать пока.

вертикальный ветрогенератор

Вот уже готовый ветрогенератор.

На этом фото привод генератора прямой, но в последствии был сделан мультипликатор для поднятия оборотов генератора.

ветрогенератор своими руками

самодельный ветрогенератор

Привод генератора ременной, передаточное соотношение можно менять заменой шкивов.

ветрогенератор

В последствии генератор был соединен с ротором через мультипликатор. В общем итоге ветрогенератор выдает 50 ватт на ветру 7-8 м/с, зарядка начинается на ветру 5 м/с, хотя начинает вращаться на ветре 2-3 м/с, но обороты слишком маленькие для зарядки аккумулятора.

ветрогенератор своими руками

Со временем, планируется поднять ветрогенератор по выше и переработать некоторые узлы установки, а также возможно изготовление нового более большого ротора.

Ветрогенератор простой домашний своими руками

Как сделать ветрогенератор своими руками: опыт бывалых

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика — заманчивая идея. Установка даже простейшего домашнего ветрогенератора уже даёт реальную возможность получать бесплатно электрический ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать ветер? Попробуем получить ответ на вопросы через опыт бывалых электромехаников.

Основа домашнего ветрогенератора

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической энергии от природных источников.

Теоретическая методика устройства (установки) ветрогенераторов уже достаточно давно известна и вполне понятна. А вот как обстоят дела практически для бытового сектора – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника электротока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Переделка электродвигателя под генератор

Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени. Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме работы генератором, от таких моторов вполне реально получить примерно 50% питающего напряжения от заявленного рабочего напряжения двигателя.

При работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый электромотор из десятка одинаковых экземпляров, нередко показывает совершенно разные эксплуатационные характеристики.

Поэтому оптимальный подбор электродвигателя к домашнему ветрогенератору логичен при следующих показателях:

  1. Высокий параметр рабочего напряжения.
  2. Низкий параметр RPM (угловая скорость вращения).
  3. Высокое значение рабочего тока.

Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин. Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

Мотор для ветрогенератора

Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Ветрогенератор в домашнем конструкторском наборе

Итак, можно считать, что выбран генератор — главная деталь системы регенерации энергии ветра. Остаётся добавить:

  • винт на три лопасти,
  • флюгерную систему,
  • мачту металлическую,
  • контроллер заряда АКБ.

Желательно, но не обязательно, соблюсти последовательность производства всех оставшихся частей ветряного генератора. Последовательность – это порядок, который необходим в любом деле для достижения результативности. Очевидно: существенную помощь в строительстве энергетической машины оказывают готовые наборы:

Изготовление лопастей пропеллера

Достаточно лёгким и простым видится изготовление лопастей винта генератора из пластиковой трубы диаметром 150-200 мм. Для описываемой конструкции домашнего ветрогенератора были сделаны (вырезаны) три лопасти. Материал: 152-миллиметровая сантехническая труба. Длина каждой лопасти – 610 мм.

Лопасти для пропеллера ветрогенератора

Лопасти для пропеллера домашнего ветрогенератора. Элементы пропеллера изготовлены из обычной сантехнической трубы, что широко используется в хозяйстве ЖКХ

Сантехническая труба изначально отрезается по размеру длины с небольшим запасом на обработку. Затем отрезанный кусок рассекается по осевой линии на четыре одинаковых части. Каждая часть вырезается по несложному шаблону рабочей пропеллерной лопасти. Все кромки резов необходимо тщательно зачистить – отполировать для лучшей аэродинамики.

Элементы пропеллера ветрогенератора – пластиковые лопасти, закрепляются на шкиве, собранном из двух отдельных дисков. Шкив насаживается на вал мотора и притягивается винтом. Та часть ступицы, на которой крепятся лопасти, имеет диаметр 127 мм. Другая часть – шестерня, в диаметре имеет размер 85 мм. Обе детали ступицы не изготавливались специально.

Собранный пропеллер ветрогенератора для дома

Закреплённые на ступице лопасти винта домашнего ветряка. Собранный из подручных деталей и готовый к установке на домашний ветрогенератор простейший винт

Металлический диск и шестерню удалось найти в старом техническом хламе. Но диск был без отверстия под вал, а шестерня имела малый диаметр. Объединением этих деталей в единое целое удалось решить проблему соотношения массы и диаметра. После закрепления лопастей, осталось лишь закрыть торец ступицы пластиковым обтекателем (опять же для аэродинамики).

Программатор TL866II Plus UniversalRaspberry Pi 4 Model BRT809H EMMC-NAND FLASH USB

Флюгерная основа ветрогенератора

Обычный деревянный брусок (желательно из твёрдых пород) длиной 600 мм подойдёт для флюгерной основы. На одном конце бруска хомутами закрепляется электродвигатель, на другом монтируется «хвост».

Флюгер двигатель и хвост ветряка

Флюгерная часть установки, куда поставлены двигатель и хвост ветряка. Мотор дополнительно закрепляется хомутами, хвост накладными брусочками

Хвостовая часть сделана из листового алюминия. По сути, форма представляет вырезанный прямоугольный кусок металла, который попросту устанавливается между наставными брусочками, после чего скрепляется винтами.

Для улучшения свойств долговечности, деревянный брусок рекомендуется дополнительно обработать пропиткой и покрыть сверху лаком. На нижней плоскости бруска, на расстоянии 190 мм от заднего торца бруса, через опорный фланец закрепляется трубчатый отвод под соединение с мачтой.

Флюгерная система домашнего ветряка

Флюгерная система домашнего ветряка (нижняя её часть), изготовленная из простых доступных деталей. Такие детали найдутся у каждого владельца домашнего хозяйства

Недалеко от точки закрепления фланца, на стенке трубы высверливается отверстие d=10-12 мм под вывод кабеля сквозь трубу от ветрогенератора к накопителю энергии.

Основание и шарнирная мачта

Тогда как уже готова флюгерная часть домашнего ветрогенератора, наступает очередь производства опорной мачты. Домашнюю установку вполне достаточно поднять на высоту 5-7 метров. Металлическая труба d=50 мм (внешний d=57 мм) в самый раз подходит под мачту этого проекта ветрогенератора для дома.

Опорная тарелка под нижнюю часть мачты домашнего ветряка сделана из толстой листовой фанеры (20 мм). Диаметр блина 650 мм. По краям фанерного блина, равномерно по кругу и с отступом 25-30 мм просверлены 4 отверстия d=12 мм.

Нижняя и верхняя части между мачтой

Нижняя и верхняя части, которые встанут между мачтой. Слева опорная площадка с установленным на поверхности шарнирным механизмом подъёма/спуска ветрогенератора

Эти отверстия предназначены под временное (или постоянное) штыревое крепление на грунт. Для прочности установки фанеру снизу можно усилить стальным листом. На поверхности опорной тарелки прикреплена конструкция, собранная из металлических сантехнических фланцев, патрубков, уголков и муфты-тройника.

Между уголками и муфтой-тройником резьбовое сочленение выполнено не до конца. Это сделано специально, чтобы получить эффект шарнира. Таким образом, подъём или спуск ветрогенератора можно осуществлять без труда в любой момент.

Подставка под мачту ветряка

Подставка под мачту ветряка оснащается четырьмя отверстиями для дополнительного крепления штырями на грунт. Так, примерно, выглядит состояние опорного элемента, когда мачта установлена и поднята

Муфта-тройник центральным отводом соединена с куском трубы, в нижней части которой установлен ограничитель для трубы мачты. Мачтовая труба надевается на трубчатый кусок меньшего диаметра до упора в ограничитель.

Примерно таким же образом соединяется верхняя часть мачты и флюгерная система домашнего ветряка. Но там, в качестве ограничителя, внутри мачтовой трубы установлены подшипники.

Крепление мачты растяжками

Крепление мачты растяжками выполняется стандартно с применением обычных хомутов, которые несложно сделать своими руками из листового металла

Так что, для сборки всей мачтовой системы потребуется без каких-либо креплений всего лишь соединить нижнюю и верхнюю части с мачтовой трубой. Затем, посредством шарнирного устройства ветрогенераторная установка поднимается, после чего мачта фиксируется растяжками.

Удобство шарнирной системы очевидно. К примеру, на случай непогоды ветрогенератор можно быстро «уложить» на землю, сохранив от разрушения и так же быстро установить в рабочее положение.

Домашний ветрогенератор и схема контроллера

Контроль напряжений и токов, снимаемых с генератора домашней ветряной энергетической установки и подаваемых на аккумуляторные батареи, необходим обязательно. Иначе АКБ быстро выйдет из строя.

Причина очевидна: нестабильность зарядного цикла и нарушения параметров зарядки. Или же следует применять, к примеру, новые аква-аккумуляторы, которым не страшны хаотичные циклы, завышенные напряжения и токи.

Функции контроля достигаются сборкой и включением в конструкцию домашнего ветрогенератора простой электронной схемы. Домашние ветряные установки обычно комплектуются относительно простыми схемами.

Схема контроллера заряда АКБ ветроэнергетической установки

Принципиальная схема контроллера заряда АКБ ветроэнергетической установки, сборка которой описывается в этой публикации. Минимум электронных компонентов и высокая надёжность

Главное назначение схем – управление реле, переключающего выходы ветрогенератора на аккумуляторную батарею или на балластную нагрузку. Переключение выполняется в зависимости от текущего уровня напряжения на клеммах АКБ.

Традиционная для домашних ветряков схема контроллера применялась и в этом случае. Электронная плата содержит небольшое число электронных компонентов. Схему достаточно просто спаять своими руками в домашних условиях.

Принцип построения обеспечивает зарядку аккумуляторов до момента, пока не будет достигнут граничный предел напряжения на клеммах. Затем реле переключает линию на установленный балласт. Реле нужно брать с контактной группой под высокие токи, не менее 40-60А.

Настройка схемы предполагает регулировку триммеров под установку соответствующих напряжений контрольных точек «А» и «В». Оптимальные значения напряжений в этих точках равны: для «А» — 7,25 вольт; для «В» — 5,9 вольт.

Если схема настроена под такие параметры, аккумуляторная батарея будет отключаться при достижении на клеммах напряжения 14,5 В и вновь подключаться к линии ветрогенератора при напряжении на клеммах 11,8 В.

Структурная электросхема домашнего ветряка

Структурная электрическая схема домашнего ветряка: А1…А3 — аккумуляторная батарея; В1 — вентилятор; Ф1 — сглаживающий фильтр; Л1…Л3 — лампы накаливания (балласт); Д1…Д3 — мощные диоды

Схемой ветрогенератора предусмотрено управление вентилятором «3» (может использоваться для вентиляции газов АКБ) и альтернативной нагрузкой «4» через силовые транзисторы серии IRF.

Состояние выходов отмечают светодиоды красного и зелёного свечения. Предусмотрена установка ручного управления состоянием контроллера через кнопки «1» и «2».

Ветрогенератор и особенности подключения системы

Завершая публикацию, следует отметить одну важную особенность. Подключение контроллера (при условии уже работающей турбины) необходимо проводить следующей последовательностью:

  1. Подключить контакты «АКБ» на клеммы аккумулятора.
  2. Подключить контакты ветрогенератора на клеммы реле.

Если такую последовательность не соблюдать, существует высокий риск вывода контроллера из строя.

Как устроен ветряк. Как сделать ветряную электростанцию своими руками

Я начал с поиска в Google. Нашлось огромное разнообразие конструкций, схем, чертежей, видео вертикальных и роторных моделей. У всех был общий принцип, который я и использовал в своем ветряке.

Все схемы имели пять общих черт:

1. Генератор
2. Лопасти
3. Монтаж установки, превращающей ветер в энергию
4. Башня, чтобы поднять установку и поймать ветер
5. Батареи и электронная система управления

Я уменьшил проект создания всего к пяти маленьким шагам. Если за раз рассматривать только один из пунктов, проект не кажется слишком трудным. Но обо все по-порядку.

Генератор

Первым делом, я приступил к выбору генератора. Мои интернет-исследования показали, что многие собирали самостоятельно ветряки. Как понял из их рассказов, это казалось им очень сложным, по крайней мере, первая попытка. Другие предпочитали схему на магнитах постоянного тока. Такое решение казалось проще. Поэтому начал искать двигатели, лучше всего подходящие для данной задачи.

Многие, оказалось, использовали для создания своего ветряка старые компьютерные моторы с ленточным приводом (раритет времен, когда компьютеры имели большие катушечные ленточные накопители). Лучшие, по-видимому, варианты моделей такого двигателя были у компании Ametek. Самый подходящий, по-моему, из них — 99 вольтный движок постоянного тока. Он прекрасно работает как генератор небольшой электростанции. К великому сожалению, ныне их почти невозможно найти. Хотя есть немало похожих аналогов, которые еще можно отыскать, например, на Ebay. Также имеется описание о преимуществах и недостатках различных двигателей Ametek (описание на анг.: https://www.tlgwindpower.com/ametek.htm).

Как вы уже догадались, найдется немало других доступных подходящих моделей. Такие магниты постоянного тока могут прилично работать, но они не были предназначены для ветряной установки изначально. Двигатели приходится раскручивать гораздо быстрее, чем их номинальная скорость, чтобы произвести что-нибудь схожее с их номинальным напряжением.

Я искал модель, рассчитанную на высокое напряжение постоянного тока, низкие обороты и высокий ток , воздерживаясь от низкого напряжения и высоких оборотов. Нужен был движок, который выведет более 12 вольт при довольно низких оборотах.

Так, к примеру, от двигателя, рассчитанного на 325 оборотов за минуту 30 вольт, можно ожидать выработки 12+ вольт при разумно-низких оборотах. С другой стороны, двигатель мощностью 7200 оборотов за минуту 24 вольт, вряд ли будет производить 12 вольт, пока он крутится со скоростью несколько тысяч оборотов за минуту. Это слишком быстро для ветряной установки.

Мне удалось прикупить один из подходящих движков Ametek 30 вольт на Ebay всего за 26$. Они стоят дешево, т.к. большинство охотится за более мощными. Можно найти также других изготовителей, так что не волнуйтесь о цене Ameteks. Во всяком случае, мой приобретенный мотор был в хорошем состоянии и работал отменно. Даже при простом толчке руками он набирал достаточно оборотов, чтоб зажечь лампу 12 вольт достаточно ярко. Я устроил ему настоящее испытание на сверлильном станке, подключив к соответственной нагрузке. Убедился, что если смогу пристроить хорошие лопасти, он будет производить большое количество энергии.

Лопасти

Очередные онлайн-исследования показали, что многие вырезали лопасти из дерева. Это показалось мне возмутительным объемом работы. Также обнаружил, что другие домашние мастера использовали трубы ПВХ. Такой вариант выглядел более простым.

Я последовал найденному описанию. Сначала нужно было определить необходимую длину.

Например, если вам нужны лопасти длиной 50 см, то труба должна иметь диаметр 10 см. С одного отрезка получится четыре штуки.

Для своего использовал черную трубу, которую смог найти в местном магазине, диаметром 15 см, длиной 60 см. Сначала разрезал ее вдоль на четыре равных части. Затем вырезал одну лопасть, удалив квадрат примерно 5 см у основания, где она будет крепиться. Срезал лишнее вдоль по диагонали. Прежде чем вырезать квадрат, просверлите отверстие в углу, где нужно будет сделать надрез. Это поможет не сломать материал и не порезать дальше требуемого.

Вырезанное крыло послужило шаблоном для следующих. Итого у меня получилось четыре штуки (3 для моей установки, плюс одна запасная).

Затем немного сгладил края на шлифовальном станке и чуток наждаком. Не знаю, насколько это улучшит работу ветряка, но выглядит неплохо.

Монтаж

Довольный результатом, я приступил к сборке электростанции из полученных запчастей.

Покопавшись в своей мастерской, обнаружил зубчатый шкив крепления вала двигателя. Но он оказался слишком мал диаметром, чтобы закрепить лопасти болтами. Среди своего металлолома также нашел алюминиевый диск 13 см диаметром – достаточного размера, но его некак прикрепить к валу двигателя. Самым простым решением было, конечно, скрепить эти две части вместе. Для этого просверлил требуемые отверстия в дисках.

Закрепил болтами лопасти и диски.

В местном магазине нашел этот колпак для винта.

Сразу подумал о добавлении счетчика. Такая конструкция уже действительно выглядела как профессионально сделанная ветровая электростанция. Вряд ли смогу убедить даже друзей, что построил ее из подручных средств, найденных среди хлама в моей мастерской да сантехнических деталей. Потом нашел сайт, который утверждал, что такие счетчики нарушают циркуляцию воздуха и снижают эффективность лопастей. Кто знает, насколько такое заявление обосновано, но решил отказаться от счетчика, по крайней мере, сейчас.

Теперь нужно установить турбину. Я решил поставить ее на деревянной подставке. Размер досточки был рассчитан путем высокого научного метода да выбора наиболее подходящего куска из имеющегося хлама.

Отрезал кусок пластиковой трубы диаметром 10 см, чтобы сделать щит двигателю, защищающий его от дождя. Для хвостовой части, поворачивающей винты по направлению ветра, просто использовал кусок тяжелого алюминиевого листа. Я переживал, что хвост не достаточно большого размера, но на практике оказалось, работает очень хорошо. Хвост поворачивает ветряную установку прямо навстречу ветру каждый раз, когда он меняет направление.

Кому интересны точные чертежи и схемы — я указал основные размеры хвостовой части на фото. Хотя думаю, вряд ли какие-то из этих размеров являются критическими.

Башня для установки

Процесс создания подошел к установке на башню. Башня позволит свободно вращаться навстречу ветру. После некоторых размышлений и штурма местных магазинов, наконец, пришел к решению, которое, кажется, должно хорошо работать.

Железная труба диаметром 2.5 см дает хорошее скольжение внутри 3 см стальной ЕМТ электрического трубопровода. Можно было бы взять длинный кусок трубопровода как башню и 2.5 см фитинги труб с обоих концов. Главному устройству подключил 2.5 см железный фланец по центру, 19 см от конца генератора, ввернул конец железной трубы. Провода будут проходить через отверстие по центру трубы, а затем выходить у основания башни.

Для основания вырезал из фанеры диск диаметром 60 см. Сделал U-образную форму сборки из 2.5 см трубопроводной арматуры. Посередине поставил 3.5 см тройник. Теперь он может свободно поворачиваться, а также позволяет поднимать и опускать башню. В деревянном диске просверлил отверстия для стальных вставок, чтобы зафиксировать его к земле.

На фото — верхняя часть с креплением основания. Думаю, вы уже догадались, как они будут стыковаться вместе. Представьте себе трехметровую трубу, соединяющую обе части.

Так как строил ветрогенерор дома, а использовать собирался в горном домике, решил повременить с покупкой опорной трехметровой трубы, пока не приеду к месту. Это означало, что конструкция будет собрана лишь частично, а поэтому провести надлежащее испытание перед установкой на месте не получится. Конечно, такой поворот меня немного беспокоил, поскольку до последнего момента не мог быть уверен до начала испытаний, действительно ли подтвердятся все мои расчеты и система заработает надлежащим образом.

Затем покрыл все деревянные части несколькими слоями белой краски, оставшейся у меня после ремонта, чтобы защитить древесину от дождя и гниения. Прикрутил крылья, добавил к хвостовой части противовес, чтобы сбалансировать систему.

Меня разбирало любопытство, как это все-таки будет работать. Чтобы протестировать систему, выйдя на улицу одним ветреным днем, просто поднял повыше над головой. Лопасти раскрутились за считанные секунды (без подключения к генератору). Я держал в своих руках бешено вращающуюся юлу смерти, не зная, как опустить ее, чтоб лопасти не четвертовали меня. К счастью, в какой-то момент порыв ветра стих и мне удалось остановить эту махину. Вряд ли еще когда-нибудь повторю эту ошибку.

Батареи и электронная система управления

Теперь, когда все механические части готовы, настало время приступить к пятому пункту моего плана — электронная система.

Ветровая электростанция состоит из ветровой турбины ; одной или нескольких батарей хранения энергии , произведенной генератором; блокирующего диода , предотвращающего вращение двигателя от запасенной электроэнергии аккумулятора и балластной нагрузки избыточной энергии, когда батареи полностью заряжены; контроллера заряда для запуска всей системы.

Есть много контроллеров солнечных и ветряных электростанций. Anyplace предоставляет механизмы систем получения альтернативной энергии, которые продаются на Ebay. Я решил все же попробовать сделать контроллер своими руками. Погуглив немного, нашел много информации, в том числе некоторые полные схемы контроллера. Они показались не сложными, поэтому довольно легко собрал свой блок.

Так как увлекаюсь электроникой с раннего детства, множество компонентов у меня уже было. Поэтому осталось прикупить самую малость, чтобы завершить систему. Немного изменил схему в соответствии с имеющимся запасом, чтобы использовать уже имеющиеся компоненты. Но все же, мне пришлось купить реле.

Моя схема контроллера

Как уже говорил выше, пришлось изменить найденную схему под себя, чтобы использовать детали, которые у меня есть. Совсем не обязательно все точно дублировать. Большинство значений резисторов не являются критическими. Если у вас есть соответствующие знания, вы можете подобрать свои оптимальные варианты. Не бойтесь экспериментировать.

Решите ли вы купить готовый контроллер, или сделать его самостоятельно, он обязательно необходим для ветроустановки, так как должен контролировать напряжение батареи, либо направлять энергию туда для подзарядки, или балласту избыточной энергии, когда аккумулятор полностью заряжен (чтобы предотвратить чрезмерную зарядку и поломку батареи).

Так выглядит мой контроллер, который я сделал сам. При первоначальном тестировании просто закрепил его болтами к фанере. Впоследствии закрою защищенным от непогоды корпусом.

Наконец, все элементы готовы. Осталось отвезти их в мой домик в горах и установить. Все части устройства аккуратно упаковал, собрал необходимые инструменты, приготовился к поездке с надеждой на этот раз получить электричество для своего удаленного домика.

Окончательная сборка установки

После прибытия на место моей первой задачей было создание, а затем крепления несущей башни ветряка. В ближайшем магазине приобрел трубу три метра длиной, 35 мм толщиной, чтобы сделать стояк. Сборка прошла быстро. Я использовал нейлоновые веревки и деревянные колья, чтобы с четырех сторон закрепить стояк.

Диск основания башни лежит прямо на земле. Провод выйдет через отверстие наружу для подключения турбины к контроллеру. Чтобы протянуть провод через трубу, воспользовался жесткой проволокой – одним концом проволоки прикрутил провод, вставил проволоку в трубу и протянул провод.

Заработало! Хотя ветерок этим днем был совсем небольшим, лопасти отлично разогнались.

Фото остальных устройств: контроллер, аккумулятор, электроника. 120 вольтный инвертор подключен к батарее, а также мультиметр для отслеживания напряжения батареи и выходного напряжения из ветрогенератора. Помимо этого, к инвертору подключено зарядное устройство, преобразующее 120 вольт переменного тока.

Крупным планом использованная электроника. По данным мультиметра, ветряк вырабатывает 13,32 вольт. Электробритва и зарядное устройство – тестовые приборы, обеспечивающие нагрузку на систему через инвертор переменного тока.

Разумеется, оставлять всю электронику вот так вот на фанерной доске под открытым небом довольно опасно. При таком то высоком напряжении тока, да множестве соединений проводов опасность короткого замыкания слишком высока. После первого тестирования подберу хороший удлинитель и перенесу устройства в защищенное место.

Наконец установка моего самодельного ветряка закончена! У меня есть электричество! Теперь смогу зарядить свой телефон, фотоаппарат, подключить ноутбук и прочую бытовую технику. И больше не зависеть от традиционных источников питания, по крайней мере, пока дует ветер.

С каждым годом люди ведут поиски альтернативных источников. Самодельная электростанция из старого автомобильного генератора будет кстати в отдалённых участках, где нет подключения к общей сети. Она сможет свободно заряжать аккумуляторные батареи, а также обеспечит работу нескольких бытовых приборов и освещения. Куда использовать энергию, что будет вырабатываться решаете вы, а также собрать его своими руками или приобрести у производителей, которых на рынке предостаточно. В этой статье мы поможем вам разобраться со схемой сборки ветрогенератора своими руками из тех материалов которые всегда есть у любого хозяина.

Рассмотрим принцип работы ветро-электростанции. Под быстрым ветровым потоком активируется ротор и винты, после в движение приходит основной вал, вращающий редуктор, а потом происходит генерация. На выходе мы получаем электричество. Следовательно, чем выше скорость вращения механизма, тем больше производительности. Соответственно, при расположении конструкций учитывайте местность, рельеф, знать участки территорий, где большая скорость вихря.

Инструкция сборки из автомобильного генератора

Для этого вам потребуется заранее приготовить всё комплектующие. Самым важным элементом является генератор. Лучше всего брать тракторный или автобусный, он способен выработать намного больше энергии. Но если такой возможности нет, то вероятнее стоит обойтись и более слабыми агрегатами. Для сборки аппарата вам понадобится:
вольтметр
реле аккумуляторной зарядки
сталь для изготовления лопастей
12 вольтовый аккумулятор
коробка для проводов
4 болта с гайками и шайбами
хомуты для крепления

Сборка устройства для дома на 220в

Когда все потребное готово переходите к сборке. Каждый из вариантов может иметь дополнительные детали, но они чётко оговариваются непосредственно в руководстве.
Первым делом соберите ветряное колесо — главный элемент конструкции, ведь именно эта деталь будет преображать энергию ветра в механическую. Лучше всего, чтобы у него было 4 лопасти. Запомните, что чем меньше их количество, тем больше механической вибрации и тем сложней будет его сбалансировать. Делают их из листовой стали или железной бочки. Форму они должны носить не такую, как вы видели в старых мельницах, а напоминающие крыльчатый тип. У них аэродинамическое сопротивление намного ниже, а эффективность выше. После того как вы с помощью болгарки, вырежете ветряк с лопастями диаметром 1.2-1.8 метра, его вместе с ротором требуется прикрепить с осью генератора, просверлив отверстия и соединив болтами.

Сборка электрической схемы

Закрепляем провода и подключаем их непосредственно к аккумулятору и преобразователю напряжения. Требуется использовать все, что в школе на уроках физики вас учили мастерить при сборке электрической схемы. Перед началом разработки подумайте, какие кВт вам нужны. Важно отметить, что без последующей переделки и перемотки статора вовсе не пригодны, рабочие обороты составляют 1,2 тыс-6 тыс. об/м, а этого недостаточно для производства энергии. Именно по этой причине требуется избавится от катушки возбуждения. Чтобы поднять уровень напряжения, перемотайте статор тонким проводом. Как правило, в результате мощность будет при 10 м/с 150-300 ватт. После сборки ротор хорошо будет магнитить, будто к нему подключили питание.

Роторные самодельные ветрогенераторы очень надёжны в работе и экономично выгодны, единственным их несовершенством является страх сильных порывов ветра. Принцип работы имеет простой — вихрь через лопасти заставляет механизм крутиться. В процессе этих интенсивных вращений вырабатывается энергия, необходимого вам напряжения. Такая электростанция – это очень удачный способ обеспечить электричеством небольшой дом, конечно, чтобы выкачивать воду из скважины его мощности будет недостаточно, но посмотреть телевизор или включить свет во всех помещениях с его помощью возможно.

Из домашнего вентилятора

Сам вентилятор может быть в нерабочем состоянии, но из него требуется всего несколько деталей — это стойка и сам винт. Для конструкции понадобиться небольшой шаговый двигатель спаянный диодным мостиком для того, чтобы он выдавал постоянное напряжение, бутылочка от шампуня, пластиковая водопроводная трубка длиной примерно 50 см, заглушка для неё и крышка от пластикового ведра.


/>
На станке делают втулку и фиксируют в разъёме от крыльев разобранного вентилятора. В эту втулку будет крепиться генератор. После закрепления, нужно заняться изготовлением корпуса. Срезают с помощью станка или в ручном режиме дно от бутылки шампуня. Во время отрезания, требуется также оставить отверстие на 10, чтобы в него вставить ось, выточенную из алюминиевого прута. Прикрепляют её с помощью болта и гайки к бутылочке. После того как была выполнена припайка всех проводов, в корпусе бутылочки проделывают ещё одно отверстие для вывода этих самых проводов. Протягиваем их и закрепляем в бутылочке сверху на генераторе. По форме они должны совпадать и корпус бутылки должен надёжно скрывать все его части.

Хвостовик для нашего устройства

Чтобы в будущем он улавливал потоки ветра с разных сторон, соберите хвостовик, использовав заранее подготовленную трубку. Хвостовая часть будет крепиться с помощью откручиваемой крышки от шампуня. В ней тоже делают отверстие и, предварительно надев на один конец трубки заглушку, протягивают её и закрепляют к основному корпусу бутылочки. С другой стороны, трубку пропиливают ножовкой и вырезают ножницами из крышки пластикового ведра крыло хвостовика, оно должно иметь круглую форму. Все что вам нужно, это попросту обрезать края ведра, которыми оно прикреплялось к основной ёмкости.


/>

На заднюю панель подставки прикрепляем USB выход и складываем все полученные детали в одну. Крепить радио или подзаряжать телефон можно будет через этот вмонтированный USB порт. Конечно, сильной мощностью он от бытового вентилятора не обладает, но все же освещение одной лампочки может обеспечить.

Ветрогенератор своими руками из шагового двигателя

Устройство из шагового двигателя даже при небольшой скорости вращения вырабатывает около 3 Вт. Напряжение может подниматься выше 12 В, а это позволяет заряжать небольшой аккумулятор. В качестве генератора можно вставить шаговый двигатель от принтера. В таком режиме у шагового двигателя вырабатывается переменный ток, а его без труда преобразовать в постоянный, используя несколько диодных мостов и конденсаторы. Схему вы можете собрать собственноручно. Стабилизатор устанавливают за мостами, в следствии получим постоянное выходное напряжение. Чтобы контролировать зрительно напряжение, можно установить светодиод. С целью уменьшения потери 220 В, для его выпрямления, применяются диоды Шоттки.


Лопасти будут из трубы ПВХ. Заготовку рисуют на трубе, а затем вырезают отрезным диском. Размах винта должен составлять около 50 см, а ширина — 10 см. Нужно выточить втулку с фланцем под размер вала ШД. Она насаживается на вал двигателя и крепится с помощью винтов, непосредственно к фланцам будут крепиться пластиковые “винты”. Также проведите балансировку – от концов крыльев отрезаются кусочки пластика, угол наклона изменить посредством нагрева и изгиба. В само устройство вставляют кусок трубы, к которому его тоже прикрепляют болтами. Что касается электрической платы, то её лучше разместить внизу, а к ней вывести питание. С шагового двигателя выходят до 6 проводов, которые соответствуют двум катушкам. Для них потребуются токосъёмные кольца для передачи электроэнергии от подвижной части. Соединив все детали между собой переходим к тестированию конструкции, которая будет начинать обороты при 1 м/с.

Ветряк из мотор-колесо и магнитов

Не каждый знает, что ветрогенератор из мотор-колеса можно собрать своими руками за короткое время, главное заранее запастись нужными материалами. Для него лучше всего подходит ротор Савониуса, его можно приобрести готовый или же самостоятельно. Он состоит из двух полуцилиндрических лопастей и перекрытия, из которых и получаются оси вращения ротора. Материал для их изделия выбирайте самостоятельно: дерево, стеклоткань или пвх-трубу, что является самым простым и оптимальным вариантом. Изготовляем место соединения деталей, на котором нужно проделать отверстия для крепления в соответствии с количеством лопастей. Потребуется стальной поворотный механизм, чтобы устройство могло выдерживать любую погоду.

Из ферритовых магнитов

Ветрогенератор на магнитах будет сложно освоить малоопытным мастерам, но все же можно попробовать. Итак, должны быть четыре полюса, в каждом будет находиться по два ферритовых магнита. Покрывать их будут накладки из металла толщиной чуть меньше миллиметра для распределения более равномерного потока. Основных катушек должно быть 6 штук, перемотаны толстым проводом и должны находиться через каждый магнит, занимая пространство, соответствующее длине поля. Крепление схем обмотки может быть на ступице от болгарки, в середину которой установлен заранее выточенный болт.

Регулируется поток подачи энергии высотой закрепления статора над ротором, чем он выше, тем меньше залипаний, соответственно мощность понижается. Для ветряка нужно сварить опору-стойку, а на диске статора закрепить 4 больших лопасти, которые вы можете вырезать из старой металлической бочки или крышки от пластикового ведра. При средней скорости вращения выдаёт примерно до 20 ватт.

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

При этом, почему-то игнорируется факт, что в других местах той же Европы, подобных ветроэлектростанций практически нет. С чего бы это?
Вот именно об этом, когда, где и как ветряки использовать выгодно, а когда нет, и пойдет речь в статье.

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

И дабы вы не тратили понапрасну свои деньги, расскажем с выкладкой всех цифр, почему это именно так.

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Если в вашем районе ветер 7м/с, то генератор будет работать максимум на 50% от своего номинала. А если всего 2м/с, то и вовсе на 5%.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Так, при увеличении давления ветра в два раза, генерируемая мощность возрастает в восемь раз!

Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:

  • и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Аккумуляторные батареи для ветряков

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Где лучше установить

Еще о чем стоит серьезно задуматься — это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

Цена за 1квт мощности

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Срок окупаемости и расчет экономии

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Для вашей индивидуальной ветровой установки этот срок – НИКОГДА.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Но если вспомнить начальные траты в 200тыс., то вернете вы их через тридцать два года!

И все это без учета эксплуатационных затрат. А если прикинуть, что средний срок службы хорошего ветряка – около 20лет, то получается, что он окончательно и безвозвратно поломается еще до того, как выйдет на окупаемость.

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Когда стоит покупать ветряк

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Какие ветряки выбирать

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

При наличии дома, старого кулера от компьютера, можно соорудить отличную ветровую установку, которая будет производить электричество. Мини ветрогенератор — отличная вещь, особенно для местности с частыми и сильными ветрами. Об особенностях и технологии его изготовления узнаем далее.

Как сделать мини ветрогенератор своими руками

Начинать работу над мини ветрогенератором следует с изготовления чертежей будущей ветровой установки. Кроме того, следует подготовить материалы в виде:

  • толстой бутылки из пластика;
  • старого охладительного кулера или вентилятора, от его размеров и мощности, напрямую зависит мощность самого генератора;
  • слаботочный провод в количестве 5-8 метров;
  • деревянный брус, сечение и размеры которого определяются индивидуально;
  • две стальные трубы, которые заходят одна в одну;
  • диоды;
  • клей на эпоксидной основе и супер клеевой состав;
  • крепежные элементы в виде затяжных галстуков;
  • старый СД диск.

Прежде всего, начать работу нужно с поиска подходящего охладительного механизма. Предлагаем использовать кулер от старого компьютера. Изначально кулер разбирается, пропеллерная его часть находится на электрическом двигателе. Чаще всего, он фиксируется на стопорном кольце, оно находится под уплотнителем из резины. После демонтажа кольцевого уплотнителя, снимите лопасти на вентиляторе.

Далее следует процесс пайки кабелей, обеспечивающих работу генераторной установки. На медных катушках вентилятора находятся два соединения для проводов, они являются коннекторами на катушках. Один из участков отличается наличием подсоединяемого провода из меди, а второй имеет два провода. Два провода соединяются с ножками одного провода методом пайки.

На следующем этапе создания небольшого ветрогенератора, выполняется создание выпрямителя. Основной функцией данного прибора является преобразование переменного тока в постоянный. Для этих целей потребуется наличие четырех диодов, они обрезаются таким образом, чтобы одна пара от черной отметки осталась с 10 см отрезком. Длинный конец диода загибается, таким образом, получится п-образное соединение. Все диоды соединяются между собой методом спаивания. Для тестирования ветрового генератора, подсоедините к нему диоды, если светодиод работает, то ветрогенератор функционирует правильно. Наружная пластиковая часть кулера удаляется, для обработки всех неровностей, используйте нож.

Далее следует процесс изготовления лопасти ветрогенератора. Для изготовления лопастей, используйте старую бутылку, например, из-под шампуня. Верхняя и нижняя части бутылки срезаются. Получится изделие цилиндрической формы, его нужно разрезать вдоль. Предварительно изготовьте чертеж в виде лопастей, согласно ему, вырежьте из бутылки лопасти для ветрогенератора. Учтите, что конечная часть лопастей должна быть срезана под углом в сто двадцать градусов. Далее следует процесс фиксации лопастей на кулере.

На следующем этапе выполняется изготовление хвостовика ветряка. Для фиксации мотора используется брус, выполненный из дерева. Его вращение выполняется с помощью стальных трубок. Для изготовления хвостовика используйте ненужный диск. Деревянный брусок оборудуется сквозным отверстием, его диаметр должен быть чуть больше диаметра стальной трубы. При не плотной установке трубки, зафиксируйте ее с помощью клея на эпоксидной основе. На конечной части бруска обустраивается пропил для монтажа диска. Место, на котором соединяется мотор с бруском, необходимо также обработать клеевым составом. Провода и пайку, рекомендуется также покрыть клеем, для предотвращения появления коррозии.

Далее следует процесс, на котором изготавливается опора. Для ее сооружения используйте две трубки. Одна из них зафиксирована на деревянном бруске, а вторая устанавливается в соотношении с вращением. Для их соединения можно использовать подшипники, а для улучшения скольжения воспользуйтесь фторопластом.

Мини ветрогенератор своими руками из моторчика

Предлагаем вариант изготовления ветрогенератора от мотора из старого принтера. Данная модель отличается средней производительностью и работает, даже при малейшем ветре. Для работы ветрогенератора потребуется также аккумулятор, максимальная мощность прибора составляет 100мА.

В качестве основной детали ветряка используется моторчик, от неработающего принтера струйного типа. Предварительно принтер необходимо разобрать и вынуть из него мотор.

Для фиксаторов лопастей используется транзистор. Его необходимо просверлить в соотношении с размером устанавливаемого вала. Далее все детали фиксируются с помощью клеевого состава на эпоксидной основе. Кроме того, с помощью данного состава обеспечивается защита особо важных частей устройства от влаги и непогоды.

Используя отрезок пластиковой трубы, диаметром около 12 см, вырежьте лопасти для ветряка. Для этих целей используется отрезная машинка. Оптимальное значение ширины детали составляет 90 мм, отверстия сооружаются специальным приспособлением, а затем вал устанавливается на генераторный мотор с помощью винтовых соединений.

В качестве основы для изготовления ветряка используется труба диаметром 55 мм. Для изготовления хвоста используйте фанеру. Мотор устанавливается внутри трубы, Далее выполняется сооружение выпрямителя. Так как мотор не воспроизводит большое количество электричества при небольшом ветре. Таким образом, удается применить схему удвоения, включаемую последовательно.

Схему устанавливается в полиэтиленовый пакет и устанавливается во внутрь трубы вместе с выпрямителем. Далее выполняется фиксация мотора с помощью проволоки. Кроме того, все отверстия заделываются силиконовым пистолетом. Одно отверстие используется для стока воды, а второе для испарения конденсатных масс.

Для фиксации хвоста ветрового генератора используется болт и проволока. Таким образом, удастся надежно зафиксировать установку. Следите за жесткостью полученных соединений.

Для того, чтобы соорудить мачту для установки ветряка используйте брусья, соединенные между собой с помощью саморезов. Зафиксируйте ветряк на мачте и установите на предварительно отведенное место. С помощью такой установки удается зарядить мобильный телефон или организовать подсветку.

Делаем мини ветрогенератор своими руками

Перед началом работы над ветровым генератором, необходимо определиться с количеством ветров в вашем климатическом регионе. Серо-зеленые — безветренные зоны подразумевают использование исключительно ветрогенераторов парусного типа. При необходимости в обеспечении постоянного тока, к ним добавляется прибор в виде бустрера. Данное устройство выполняет функцию выпрямителя, а также стабилизирует напряжение. Также потребуется наличие зарядного устройства, высокомощной батареи, преобразователя. Стоимость изготовления данной установки запредельно высокая и не всегда оправдывается.

В зонах со слабыми ветрами, обозначенных желтым цветом, возможен вариант изготовления ветрогенератора тихоходного типа. Данные устройства отличаются хорошей производительностью.

Для ветреных регионов подойдут любые ветровые установки. Чаще всего, используются приборы вертикального типа — лопастники или парусники.

Для того, чтобы выполнить расчеты по определению мощности ветровой установки, необходимо учесть такие факторы как:

  • постоянная скорость ветра в том или ином регионе;
  • воздух является сплошной средой, поэтому от качества и производительности ротора зависит мощность ветрогенератора;
  • воздушные потоки обладают кинетической энергией.

Предлагаем рассмотреть особенности парусных ветрогенераторов. Данные устройства изготавливают из износостойкого материала, которые отлично противостоят ветрам. Если вы решили изготовить такую установку самостоятельно, то необходимо прежде всего, провести ряд подсчетов, связанных с данными приборами.

В качестве материалом для изготовления ветрогенератора, можно использовать различные железки, которые завалялись у вас дома. Самый дорогостоящий элемент — аккумулятор. Его мощность определяет размеры установки и ее производительность.

Самодельный ветрогенератор аксиального типа изготовить в домашних условиях довольно просто. Начинать работу следует с мачты. Для ее изготовления чаще всего используют трубы, по диаметру они должны быть разными. Для соединения труб между собой используется сварочный аппарат. Мачта устанавливается на забетонированную площадку. При этом, несколько ее метров углубляются в землю, для получения устойчивой конструкции. На отдельных деталях установки нужно наклеить два магнита, Для более прочной фиксации они дополнительно заливаются с помощью эпоксидной смолы.

Далее следует процесс изготовления формы и фанеры. Для этих целей используются катушки, соединенные между собой фазой. Процесс изготовления статора выглядит таким образом: на ранее вырезанный квадрат из фанеры устанавливается вощеная бумага. Далее следует монтаж фанеры, на которой предварительно вырезаны отверстия под монтаж статора. Далее следует процесс монтажа кружка из стеклоткани и устанавливаются катушки.

После этого, производится извлечение готового статора из ранее подготовленной формы. Для изготовления винта используется дюралюминиевая труба. Винт изготавливается диаметром в один метр. Для вырезания лопастей используйте электрический лобзик. В центральной части установки оборудуйте отверстие, с помощью которого будет фиксироваться винт на генераторе.

Ветрогенератор имеет смещенный по отношению к оси хвостовой элемент. При сильных порывах ветра происходит давление на поверхность ветрового генератора и он смещается в сторону. Данная схема позволяет защитить устройство от сильных ветров. Данная модель ветрогенератора позволяет вырабатывать достаточное количество энергии для обеспечения уличной подсветки дома. Сделать ветрогенератор не сложно, главное условие получения качественного прибора — сопоставление силы ветра в вашем регионе с его мощностью.

Технология изготовления мини ветрогенератора своими руками

Для ветрогенератора изготовления необходим минимальный запас инструментов и материалов. Предлагаем вариант сооружения мини ветрогенератора для дачи. Данный прибор способен обеспечить небольшой дом с минимальным количеством электроприборов — электричеством.

Для изготовления такого ветрогенератора потребуется прежде всего диск, на котором устанавливаются магниты. Далее следует процесс наматывания медных катушек, которые заливаются с помощью смолы. Для осуществления вращения, генератор устанавливается на ранее предусмотренном основании.

Данные ветрогенераторы отличаются хорошей производительностью и качественной работой. Соотношение магнита с полюсами составляет два к трем, если ветрогенератор имеет две фазы, для однофазного устройства достаточно соотношение один к трем. Все полюса соотносятся между собой в зависимости от используемых вариантов катушек.

Мощность ветрового генератора определяется прежде всего размерами используемых в его конструировании магнитов. В качестве мачты под генератор достаточно использования стальной трубы или бревна. Аккумуляторы не обязательно использовать новые, сгодятся и любые, подходящие по мощности приборы.

Возможен вариант изготовления сразу нескольких ветрогенераторов, при этом, каждый из них будет выполнять определенные функции — один обеспечивает жилище светом, второй отвечает за работу телевизора, а третий — за ночное освещение.

Одним из самых доступных вариантов использования возобновляемых источников энергии — является использование энергии ветра. О том, как самостоятельно сделать расчёт, собрать и установить ветряк, читайте в этой статье.

Классификация ветряных генераторов

Установки классифицируются исходя из следующих критериев ветродвигателя:

  • расположение оси вращения;
  • число лопастей;
  • материал элементов;
  • шаг винта.

ВЭУ, как правило, имеют конструктивное исполнение с горизонтальной и вертикальной осью вращения.

Исполнение с горизонтальной осью — пропеллерная конструкция с одной-двумя-тремя и более лопастями. Это самое распространенное исполнение воздушных энергетических установок по причине высокого КПД.

Исполнение с вертикальной осью — ортогональные и карусельные конструкции на примере роторов Дарье и Савониуса. Последние два понятия следует пояснить, так как оба имеют определенную значимость в деле конструирования ветряных генераторов.

Ротор Дарье — ортогональная конструкция ветродвигателя, где аэродинамические лопасти (две или более), расположены симметрично друг другу на некотором расстоянии и укреплены на радиальных балках. Достаточно сложный вариант ветродвигателя, требующий тщательного аэродинамического исполнения лопастей.

Ротор Савониуса — конструкции ветродвигателя карусельного типа, где две лопасти полуцилиндрической формы расположены одна против другой, образуя в целом форму синусоиды. Коэффициент полезного действия конструкций невысок (около 15%), но может быть увеличен практически вдвое, если лопасти ставить по направлению волны не горизонтально, а вертикально и применять многоярусное исполнение с угловым смещением каждой пары лопастей относительно других пар.

Преимущества и недостатки «ветряков»

Преимущества данных устройств очевидны, особенно применительно к бытовым условиям эксплуатации. Пользователи «ветряков» фактически получают возможность воспроизводства бесплатной электрической энергии, если не считать небольших издержек на сооружение и обслуживание. Однако очевидны также и недостатки ветроэлектрических установок.

Так, чтобы добиться эффективной работы установки, требуется выполнение условий стабильности ветровых потоков. Такие условия человек создать не в силах. Это чисто прерогатива природы. Ещё одним, но уже техническим недостатком, отмечается низкое качество вырабатываемого электричества, в результате чего приходится дополнять систему дорогостоящими электрическими модулями (мультипликаторами, зарядными устройствами, аккумуляторами, преобразователями , стабилизаторами).

Преимущества и недостатки в плане особенностей каждой из модификаций ветродвигателей, пожалуй, балансируют на нулевой отметке. Если горизонтально-осевые модификации отличаются высоким значением КПД, то для стабильной работы требуют применения контроллеров направления ветрового потока и устройств защиты от ураганных ветров. Вертикально-осевые модификации имеют малый КПД, но стабильно работают без механизма слежения за направлением ветра. При этом такие ветродвигатели отличаются малым уровнем шумов, исключают эффект «разноса» в условиях сильных ветров, достаточно компактны.

Самодельные ветровые генераторы

Изготовление «ветряка» собственными руками — задача вполне решаемая. Причём конструктивный и рациональный подход к делу поможет свести до минимума неизбежные финансовые траты. В первую очередь стоит набросать проект, провести необходимые расчёты балансировки и мощности. Эти действия будут не просто залогом успешной постройки ветряной электростанции, но также залогом сохранения в целостности всего приобретенного оборудования.

Начать рекомендуется с постройки микро-ветряка, мощностью в несколько десятков ватт. В дальнейшем полученный опыт поможет создать более мощную конструкцию. Создавая домашний ветряной генератор, не стоит делать упор на получение качественного электричества (220 В, 50 Гц), так как этот вариант потребует существенных финансовых вложений. Разумнее ограничиться использованием изначально полученного электричества, которое можно успешно применять без преобразования для иных целей, к примеру, для поддержки систем отопления и горячего водоснабжения, построенных на электронагревателях (ТЭН) — такие приборы не требуют стабильного напряжения и частоты. Это делает возможным создавать простую схему, работающую напрямую от генератора.

Скорее всего, никто не будет утверждать, что отопление и горячее водоснабжение в доме по значимости уступают бытовой технике и осветительным приборам, для питания которых зачастую стремятся устанавливать домашние ветряки. Устройство ВЭУ именно с целью обеспечения дома теплом и горячей водой — это минимальные затраты и простота конструкции.

Обобщенный проект домашней ВЭУ

Конструктивно домашний проект во многом повторяет промышленную установку. Правда, бытовые решения зачастую базируются на вертикально-осевых ветродвигателях и комплектуются низковольтными генераторами постоянного тока. Состав модулей бытовой ВЭУ при условии получения качественного электричества (220 В, 50 Гц):

  • ветродвигатель;
  • устройство ориентации по ветру;
  • мультипликатор;
  • генератор постоянного тока (12 В, 24 В);
  • модуль заряда аккумуляторных батарей;
  • аккумуляторные батареи (литий-ионные, литий-полимерные, свинцово-кислотные);
  • преобразователь постоянного напряжения 12 В (24 В) в переменное напряжение 220 В.

Bетрогенератор PIC 8-6/2.5

Как это работает? Просто. Ветер крутит ветродвигатель. Крутящий момент передается через мультипликатор на вал генератора постоянного тока. Полученная на выходе генератора энергия через зарядный модуль аккумулируется в батареях. От клемм аккумуляторных батарей постоянное напряжение 12 В (24 В, 48 В) подается на преобразователь, где трансформируется в напряжение, пригодное для питания бытовых электрических сетей.

О генераторах для домашних «ветряков»

Большинство бытовых конструкций ветровых установок , как правило, конструируются с применением малооборотных электродвигателей постоянного тока. Это самый простой вариант генератора, не требующий модернизации. Оптимально — электродвигатели с постоянными магнитами, рассчитанные на питающее напряжение порядка 60-100 вольт. Имеется практика применения автомобильных генераторов, но для такого случая требуется внедрение мультипликатора, так как автогенераторы выдают нужное напряжение только на высоких (1800-2500) оборотах. Один из возможных вариантов — реконструкция асинхронного двигателя переменного тока, но также достаточно сложный, требующий точных расчётов, выполнения токарных работ, установки неодимовых магнитов в области ротора. Есть вариант для трехфазного асинхронного двигателя с подключением конденсаторов одинаковой емкости между фазами. Наконец, существует возможность изготовления генератора с нуля собственными руками. Инструкций на этот счёт имеется масса.

Вертикально-осевой самодельный «ветряк»

Достаточно эффективный и главное недорогой ветрогенератор можно соорудить на основе ротора Савониуса. Здесь в качестве примера рассматривается микро-энергетическая установка, мощность которой не превышает 20 Вт. Однако этого устройства вполне достаточно, например, для обеспечения электрической энергией некоторых бытовых приборов, работающих от напряжения 12 вольт.

  1. Лист алюминиевый толщиной 1,5-2 мм.
  2. Труба пластиковая: диаметр 125 мм, длина 3000 мм.
  3. Труба алюминиевая: диаметр 32 мм, длина 500 мм.
  4. Двигатель постоянного тока (потенциальный генератор), 30-60В, 360-450 об/мин, к примеру, электродвигатель модели PIK8-6/2.5.
  5. Контроллер напряжения.
  6. Аккумулятор.

Изготовление ротора Савониуса

Из алюминиевого листа вырезаются три «блина» диаметром 285 мм. По центру каждого просверливаются отверстия под алюминиевую трубу 32 мм. Получается что-то подобное компакт-дискам. От пластиковой трубы отрезаются два куска длиной по 150 мм и разрезаются пополам вдоль. Результат — четыре полукруглых лопасти 125х150 мм. Все три алюминиевых «компакт-диска» надеваются на трубу 32 мм и закрепляются на расстоянии 320, 170, 20 мм от верхней точки строго горизонтально, образуя два яруса. Между дисками вставляются лопасти, по две штуки на ярус и закрепляются строго одна против другой, образуя синусоиду. При этом лопасти верхнего яруса смещаются относительно лопастей нижнего яруса на угол 90 градусов. В итоге получается четырехлопастной ротор Савониуса. Для крепежа элементов можно использовать заклепки, саморезы, уголки или применить другие способы.

Соединение с двигателем и установка на мачту

Вал двигателей постоянного тока с указанными выше параметрами обычно имеет диаметр не более 10-12 мм. Для того чтобы соединить вал двигателя с трубой ветродвигателя, в нижнюю часть трубы запрессовывается латунная втулка, имеющая требуемый внутренний диаметр. Сквозь стенку трубы и втулки просверливается отверстие, нарезается резьба для вкручивания стопорного винта. Далее труба ветродвигателя надевается на вал генератора, после чего соединение жестко фиксируется стопорным винтом.

Оставшаяся часть пластиковой трубы (2800 мм) — это мачта ветроустановки. Генератор в сборе с колесом Савониуса монтируются наверху мачты — просто вставляется внутрь трубы до упора. В качестве упора используется металлическая дисковая крышка, закрепленная на переднем торце мотора, имеющая диаметр несколько больший диаметра мачты. На периферии крышки просверливаются отверстия для крепления растяжек. Так как диаметр корпуса электродвигателя меньше внутреннего диаметра трубы, для выравнивания генератора по центру применяются прокладки либо упоры. Кабель от генератора пропускается внутри трубы и выводится через окно в нижней части. Необходимо учесть при монтаже исполнение защиты генератора от воздействия влаги, используя для этого герметизирующие прокладки. Опять же с целью защиты от осадков, выше соединения трубы ветродвигателя с валом генератора можно установить зонт-колпак.

Установка всей конструкции выполняется на открытой хорошо обдуваемой площадке. Под мачту выкапывается яма глубиной 0,5 метра, нижняя часть трубы опускается в яму, конструкция выравнивается растяжками, после чего яма заливается бетоном.

Контроллер напряжения (простое зарядное устройство)

Изготовленный ветряной генератор, как правило, не способен выдавать напряжение 12 вольт по причине низкой частоты вращения. Максимальная частота вращения ветродвигателя при скорости ветра 6-8 м/сек. достигает значения 200-250 об/мин. На выходе удается получить напряжение порядка 5-7 вольт. Для заряда аккумулятора требуется напряжение 13,5-15 вольт. Выход из положения — применение простого импульсного преобразователя напряжения, собранного, допустим, на основе регулятора напряжения LM2577ADJ. Подавая на вход преобразователя 5 вольт постоянного тока, на выходе получают 12-15 вольт, что вполне достаточно для заряда автомобильного аккумулятора.

Готовый преобразователь напряжения на LM2577

Данный микро-ветрогенератор, безусловно, можно совершенствовать. Увеличить мощность турбины, изменить материал и высоту мачты, добавить преобразователь постоянного напряжения в переменное сетевое напряжение и т. д.

Горизонтально-осевая ветреная электроустановка

  1. Пластиковая труба диаметром 150 мм, алюминиевый лист толщиной 1,5-2,5 мм, деревянный брусок 80х40 длиной 1 м, сантехнические: фланец — 3, уголок — 2, тройник — 1.
  2. Электродвигатель постоянного тока (генератор) 30-60 В, 300-470 об/мин.
  3. Колесо-шкив для двигателя диаметром 130-150 мм (алюминий, латунь, текстолит и т. п.). диаметром 25 мм и 32 мм и длиной соответственно 35 мм и 3000 мм.
  4. Зарядный модуль для аккумуляторов.
  5. Аккумуляторы.
  6. Преобразователь напряжения 12 В — 120 В (220 В).

Изготовление горизонтально-осевого «ветряка»

Пластиковая труба необходима для изготовления лопастей ветродвигателя. Отрезок такой трубы, длиной 600 мм, разрезается вдоль на четыре одинаковых сегмента. Для ветряка требуются три лопасти, которые изготавливаются из полученных сегментов путем среза части материала по диагонали на всю длину, но не точно с угла на угол, а от нижнего угла к верхнему углу, с небольшим отступом от последнего. Обработка нижней части сегментов сводится к формированию крепёжного лепестка на каждом из трёх сегментов. Для этого по одному краю вырезается квадрат размером примерно 50х50 мм, а оставшаяся часть служит крепежным лепестком.

Лопасти ветродвигателя закрепляются на колесе-шкиве с помощью болтовых соединений. Шкив насаживается непосредственно на вал электродвигателя постоянного тока — генератора. В качестве шасси ветродвигателя используется простой деревянный брусок сечением 80х40 мм и длиной 1 м. Генератор устанавливается на одном конце деревянного бруска. На другом конце бруска монтируется «хвост», изготовленный из листа алюминия. В нижней части бруска, крепится металлическая труба 25 мм, предназначенная исполнять роль вала поворотного механизма. В качестве мачты используется трехметровая металлическая труба 32 мм. Верхняя часть мачты является втулкой поворотного механизма, куда вставляется труба ветродвигателя. Опора мачты изготавливается из листа толстой фанеры. На этой опоре, в виде диска диаметром 600 мм, собирается конструкция из сантехнических деталей, благодаря которой, мачту можно легко поднимать или опускать, либо монтировать — демонтировать. Для крепления мачты применяются растяжки.

Вся электроника ветряной установки монтируется отдельным модулем, интерфейс которого предусматривает подключение аккумуляторов и потребительской нагрузки. В состав модуля входит контроллер заряда батарей и преобразователь напряжения. Подобные устройства можно собирать самостоятельно при наличии соответствующего опыта, либо приобретать на рынке. В продаже имеется множество разных решений, позволяющих получить нужные выходные значения напряжений и токов.

Комбинированные ВЭУ

Комбинированные ВЭУ — серьезный вариант домашнего энергетического модуля. Собственно, комбинация предполагает объединение в единой системе ветряного генератора, солнечной батареи, дизельной или бензиновой электростанции . Комбинировать можно всячески, исходя из возможностей и потребностей. Естественно, когда имеет место вариант — три в одном, это наиболее эффективное и надежное решение.

Также под комбинацией ВЭУ предполагается создание ветроэнергетических установок, имеющих в своём составе сразу две разные модификации. Например, когда в одной связке работают ротор Савониуса и традиционная трехлопастная машина. Первая турбина работает при малых скоростях ветрового потока, а вторая только при номинальных. Тем самым сохраняется эффективность установки, исключаются неоправданные энергетические потери, а в случае с асинхронными генераторами компенсируются реактивные токи.

Комбинированные системы — это варианты технически сложные и затратные для домашней практики.

Расчёт мощности ветряной домашней электростанции

Для расчёта мощности ветряного генератора горизонтально-осевого исполнения можно пользоваться стандартной формулой:

  • N = p · S · V3 / 2
  • N — мощность установки, Вт
  • p — плотность воздуха (1,2 кг/м 3)
  • S — продуваемая площадь, м 2
  • V — скорость потока ветра, м/сек

Например, мощность установки, обладающей максимальным размахом лопастей 1 метр, при скорости ветра 7 м/сек., составит:

  • N = 1,2 · 1 · 343 / 2 = 205,8 Вт

Приближенный расчёт мощности ВЭУ, созданной на основе ротора Савониуса можно посчитать, используя формулу:

  • N = p · R · H · V3
  • N — мощность установки, Вт
  • R — радиус рабочего колеса, м
  • V — скорость ветра, м/сек

К примеру, для упомянутой в тексте конструкции ветроэнергетической установки с ротором Савониуса, значение мощности при скорости ветра 7 м/сек. будет составлять:

Источник http://sam-stroitel.com/sdelal-vetrogenerator-svoimi-rukami-21-foto.html

Источник http://zetsila.ru/%D0%B2%D0%B5%D1%82%D1%80%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B8/

Источник http://tileinfo.ru/kak-ustroen-vetryak-kak-sdelat-vetryanuyu-elektrostanciyu-svoimi-rukami-chto-nuzhno/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: