Ветрогенератор своими руками чертежи изготовление. Сделаем ветряной генератор своими руками

Содержание

Ветрогенератор своими руками чертежи изготовление. Сделаем ветряной генератор своими руками

Пошаговое руководство (максимально детально процесс изложен в видеоматериале), рассказывающее о том, как легко и дешево сделать ветряк, было создано изобретателем Дениэлом Коннеллом (Daniel Connell). С инструкцией в оригинале можно ознакомиться на сайте

Вертикально-осевая ветровая турбина использует энергию ветра для производства электроэнергии за счет генераторов, а также может приводить в действие воздушные и водяные насосы для охлаждения, ирригации и прочего.

Конструкция турбины Lentz2 (названа по имени автора — Ed Lenz) является на 35-40% более эффективной и может быть построена из подручных средств, дешевых материалов и даже металлолома. Вариант с шестью лопастями два человека смогут собрать примерно за четыре часа без особых усилий, потратив всего 15-30 долларов.

Ветрогенератор с тремя лопастями успешно выдержал испытание при устойчивой скорости ветра до 80 км/ч, а шесть лопастей отлично справляются с ветром до 105 км/ч. Конечно, оба варианта способны на большее, но установить на сколько конкретно пока не удалось. На сегодняшний день дольше всего работает турбина, установленная ещё в начале 2014 года, выдерживая штормы, при этом видимых следов износа пока не наблюдается.

Для этой конкретной конструкции кривые мощности ещё не рассчитаны полностью, но, согласно уже имеющимся данным, шесть лопастей диаметром в 0.93 метра и высотой в 1.1 метра в паре с высокоэффективным генератором переменного тока должны производить не менее 135 Вт электроэнергии при скорости ветра в 30 км/ч или 1.05 кВт при 60 км/ч.

Инструменты

Для того, чтобы собрать ветровую турбину собственноручно понадобятся следующие инструменты:

  • Электрическая дрель;
  • Металлические сверла (диаметром 4/6/10 мм);
  • Канцелярский нож или нож Stanley, ножницы по металлу (первый лучше для резки бумаги, последний для алюминиевых листов, поэтому лучше будет иметь оба);
  • Алюминиевый уголок (20х20 мм, около метра в длину, ± 30 см);
  • Рулетка;
  • Ручной заклепочник;
  • Маркер;
  • Скотч;
  • 4 прищепки;
  • Компьютер и принтер (подойдет недорогой черно-белый);
  • Гайковёрт с насадкой 7 мм (необязательно).

Помимо инструментов, естественно, понадобятся и следующие материалы:

  • 11 алюминиевых пластин для офсетной печати;
  • 150 заклёпок (4 мм в диаметре, 6-8 мм в длину);
  • 18 болтов M4 (10-12 мм в длину) и столько же гаек;
  • 24 маленьких шайбы 4 мм (около 10 мм внешнего диаметра);
  • 27 больших шайб 4 мм (около 20 мм внешнего диаметра);
  • 27-дюймовое велосипедное колесо*;
  • 12 велосипедных спиц (любой длины);
  • 2 стальных полосы (примерно 20х3х3 см);
  • Ось заднего колеса велосипеда с тремя гайками (подходящая под колесо);
  • 3 болта M6 с гайками (длинной 60 мм);

*Так как велосипедные колёса имеют сложную классификацию размеров, вам пододет то, диаметр внешнего обода которого составляет 63-64 см. Конечно, можно использовать и 26-дюймовое колесо, но оно не так идеально. Оно должно иметь нормальную толстую ось (около 9 мм), выступающую минимум на 4 см, 36 спиц и плавно крутиться. Если вы собираетесь работать с низким числом оборотов (например, для откачки воды, а не производства электричества), то может понадобится заднее колесо с шестернями, но подробнее об этом позже. Не лишним будет смазать подшипники.

Материалы, перечисленные в этом примере, рассчитаны на сборку турбины с тремя лопастями. Если захотите собрать вариант на шесть лопастей – удвойте всё, кроме велосипедного колеса.

Файлы шаблонов

Руководство

Пошаговая инструкция по сборке ветрогенератора с вертикальной осью:

Загрузите и распечатайте два файла шаблонов по ссылкам, приведённым выше. Убедитесь, что они распечатаны в 100% размере (200 dpi). При печати измерьте расстояние между размерными стрелками, оно должно составлять 10 см на обеих страницах. Если есть погрешность в пару мм, то это не страшно.

Скрепите страницы вместе таким образом, чтобы 10-сантиметровые стрелки прилегали друг к другу как можно ближе. Лучше всего делать это напротив источника света, чтобы вы видели оба листа насквозь. При помощи канцелярского ножа и алюминиевого уголка, выступающего в роли линейки, вырежьте шаблон по наружным границам. При вырезании убедитесь, что ваша вторая рука не стоит на пути ножа, дабы не порезаться. В этом плане уголок отлично защищает руку.

Возьмите алюминиевую пластину и отмерьте прямоугольник 42х48 см. Проведите линию по средине, чтобы у вас получилось два прямоугольника 42х24 см. Прорежьте внешние линии ножом Stanley, не пытаясь прорезать металл полностью, достаточно будет просто прочертить линии, которые затем позволят отделить детали. Для лучшего эффекта можно будет пройтись один раз легко, а второй раз немного сильнее, с нажимом. При этом не нужно прорезать линию, проведённую посредине, на отметке в 24 см.

Согните пластину по линии надреза и разогните обратно. Проделайте это пару раз, и она расколется. Сделайте то же самое с другой стороны и удалите внешний металл. Отложите его на потом.

Прикрепите шаблон к металлическому прямоугольнику (далее «основание»), чтобы длинный край бумаги находился на средней линии, а правые края поравнялись с другими гранями. Не беспокойтесь, если другие края не ложатся идеально.

С помощью ножа и уголка прорежьте кривую линию шаблона, включая треугольники на каждом конце. Не обязательно, чтобы основание было безупречным, но постарайтесь сделать всё максимально точно, чтобы использовать его в качестве шаблона для остальных. Прорежьте, отогните и удалите два треугольника металла, оставшихся вне шаблона.

Отметьте центры отверстий на бумажном шаблоне маркером так, чтобы они были видны с другой стороны, и переверните бумагу так, чтобы печатная сторона была опущена на вторую половину основания, оставляя её длинный край на средней линии. Закрепите скотчем, чтобы она не сдвигалась.

Вогните внутрь изогнутую часть основания и удалите два маленьких треугольника. Будьте осторожны, не сгибайте металл слишком сильно, так как вы можете ослабить его в не прорезанной части.

Теперь у вас есть первое основание. Повторите шаги со второго по третий, чтобы их у вас стало шесть. Также, вместо бумаги для вырезания остальных оснований вы можете использовать первое. На трех из них центральная линия будет нарисована спереди, а на остальных трёх сзади.

Возьмите все шесть заготовок и соедините их вместе, выровняв максимально точно. Если вдруг у вас не оказалось прищепок используйте скотч для того, чтобы их соединить. Просверлите каждое из 16 отверстий сквозь все шесть заготовок 4-миллиметровым сверлом. Сначала просверлите центральное отверстие, так как оно единственное, которое должно быть точным. Можно просунуть болт в первое отверстие, чтобы основания не смещались при сверлении остальных. Если отверстия на вашем шаблоне немного отличаются, от тех что на видео, то это потому, что шаблон мог быть обновлён.

Уберите шаблон и разъедините их. Положите основание так, чтобы средняя линия слегка выступала за край стола, поместите на неё уголок и согните до 90 градусов. Повторите этот этап со всеми шестью основаниями, три из которых согните блестящей стороной вверх, а три – вниз. Отложите их в сторону.

Возьмите другую алюминиевую пластину и выровняйте любые возможные изгибы. Отмерьте 67 см от длинного края и отрежьте остальное. Проведите линию на расстоянии 2 см от одного из краев, переверните пластину и проведите еще одну линию на таком же расстоянии от противоположного края. Повторите действие с еще двумя пластинами и соедините все три вместе таким образом, чтобы каждая проведённая линия ровнялась с краем следующей пластины.

По краю прорежьте линии на расстоянии 4, 6, 8, 10, 18, 26 и 34 см, а после через каждые 2 см до 64 см. Имейте в виду, что левая сторона имеет надрез на расстоянии 4 см от края, а правая — 3 см. Переверните пластины, убедившись, что они аккуратно выровнены и проделайте то же самое. Убедитесь, что надрезы совпадают с обеих сторон.

Разместите пластины на столе одна над другой и выровняйте их по краям. Со стороны отметки в 4 см проведите вертикальную линию на расстоянии 19 см от края и ещё одну на 33 см. На каждой из этих линий сделайте отметки на расстоянии 3 и 20 см с обоих концов. Просверлите все три пластины 4-миллиметровыми свёрлами во всех восьми метках. Если вы делаете турбину с шестью лопастями, а не тремя, то можете легко просверлить все шесть пластин одновременно. После разъедините их.

Поместите пластину так, чтобы правый край с прорезью на расстоянии 3 см нависал над столом. Разместите уголок на второй отметке от этого края и загните его, придав треугольную форму, как показано на видео. Сделайте то же самое с левым краем.

Предварительно согните пластину, чтобы можно было легче разместить основания. Но не сгибайте её слишком сильно, чтобы она не сложилась пополам.

Переверните пластину вертикально и сверху вставьте основание (необрезанная половина с отверстиями должна указывать вверх). Лучший способ сделать это – сначала поместить треугольники по краям в соответствующие отверстия на нём, надавить на внутреннюю часть, а затем протолкнуть остальную часть пластины через разрез.

Далее разогните прорезанные расстояния краёв, чтобы первые три на каждом из треугольников были наружу, а остальные чередовались. Вероятно, вам нужно будет прорезать несколько из них или использовать плоскогубцы, если они окажутся менее податливыми. Если вы вдруг согнули вкладку в неправильную сторону, лучше оставьте как есть, так как выгибая ее назад вы можете ослабить металл. Убедитесь, что три длинные вкладки также загнуты поочерёдно.

Поднимите основание, чтобы оно выровнялось с загнутыми частями. Поместите две велосипедные спицы в его складку и загните вторую половину. Если вы придавите края металла вокруг спиц плоскогубцами, это предохранит их от выпадения. Переверните конструкцию и поместите другое основание таким же образом.

Отрежьте два внешних угла основания. Отмерьте меньший треугольник и отрежьте вместе со второй половиной, а у большего сделайте запас в 2 см при помощи алюминиевого уголка и также отрежьте. Повторите для второго основания.

Возьмите один из остатков пластины после вырезания основания и отрежьте от него полосу шириной 7 см, а затем отрежьте 4 см от её длины. Придайте ей треугольную форму, как показано в видео. С каждого края 3-сантиметровой лицевой стороны проведите линии, примерно по центру, длиной в несколько сантиметров.

Поместите треугольную стойку внутри флюгера так, чтобы сторона с помеченными линиями соответствовала ряду просверленных отверстий ближе к заднему краю. Посмотрите на линию через верхнее отверстие, чтобы проверить правильность расположения.

Просверлите стойку через отверстие во флюгере и скрепите с помощью заклепки. Повторите то же для нижнего отверстия, а затем для двух посередине.

Возьмите новую пластину, разгладив любые возможные неровности и разрежьте её пополам, чтобы у вас было две части шириной 33,5 см. Отрежьте 4 см от одного из коротких краев обеих частей. Проделайте это снова, чтобы у вас было четыре листа длиной 33,5 см (вам понадобятся только три из них). Выровняйте и соедините их вместе.

От одного из длинных краев нарисуйте три вертикальные линии на расстоянии 1, 9 и 19 см. Далее сделайте на каждой линии отметки, на расстоянии 1 и 20 см по обе стороны от короткого края. Просверлите 12 отверстий 4-миллиметровым сверлом.

Сделайте отметку на расстоянии 5 см от противоположного длинного края и придайте ему треугольную форму, как показано на видео.

Поместите получившийся лист внутрь лопасти так, чтобы ее ровный край совпадал с задней кромкой лопасти. Это нормально иметь небольшой промежуток, если она не идеально подходит.

Просверлите отверстия, расположенные ближе к краю, насквозь и скрепите лист вместе задней частью флюгера заклёпками.

Поднимите лопасть вертикально. Надавите треугольный край вставленного внутрь листа таким образом, чтобы он прилегал к задней части флюгера и был немного натянут над треугольной стойкой под ним.

Просверлите отверстия, к которым прилегает треугольный край листа, насквозь и закрепите его заклёпками.

Просверлите одно из центральных отверстий листа, убедившись, что сверло направленно прямо, и закрепите лист при помощи заклепки и шайбы так, чтобы шайба была на внутренней стороне лопасти. Этот будет намного проще с чьей-то помощью. Старайтесь держать шайбу ровно. Повторите для остальных трех отверстий.

Просверлите и закрепите тем же образом оставшийся ряд отверстий. При этом лист должен плотно облегать треугольную стойку. Вы наверняка заметите, что лопасть теперь стала намного прочнее и жестче.

Согните 2-сантиметровое перекрытие на обеих основаниях на 90 градусов.

Просверлите все отверстия на основании флюгера, вместе с теми, которые будут прикреплены к велосипедному колесу. Если вы делаете версию с тремя лопастями, то оно станет нижним. Если же вы делаете версию на шесть лопастей, то три из них будут прикрепляться к колесу нижней частью, а три остальные — верхней. В остальном лопасти идентичны.

Скрепите каждое отверстие заклёпками, кроме отмеченных, так как они будут прикреплены болтами к ободу колеса.

На некоторых отверстиях очень легко просто вытолкнуть внутренний слой металла как сверлом, так и клепальником, поэтому убедитесь, что все они правильно закреплены. Если это не так, вам может понадобиться высверлить и заменить заклепку.

Просверлите отверстия на противоположной стороне лопасти и скрепите все, кроме центрального.

Возьмите велосипедное колесо. Просверлите три отверстия диаметром 4 мм, равномерно распределенные вокруг обода. Ваше колесо должно иметь 36 спиц, поэтому делайте отверстия через каждые 12 спиц. Они также должны быть достаточно близко к краю обода.

Просуньте болт M4 через одно из получившихся отверстий и поставьте сверху лопасть, продев болт через крайнее из трёх отверстий в её основании. Поместите большую шайбу и закрутите гайку. Удостоверьтесь, что болт находится перед велосипедной спицей, которую вы положили в складку основания, а шайба над ней. Это важно для того, чтобы болт и вся лопасть не сорвались с колеса. Не затягивайте гайку до конца.

Выровняйте лопасть так, чтобы другие два отверстия располагались вблизи края обода колеса и сделайте через них отметки при помощи маркера. Отодвиньте лопасть, чтобы вы могли просверлить две метки.

Верните лопасть на место и зафиксируйте ещё двумя болтами, большими шайбами и гайками. Полностью затяните все три. Именно в этом моменте вам сможет пригодиться 7-миллиметровая насадка и гайковёрт, так как затягивание их вручную – более трудоёмкий процесс. Вам также лучше использовать болты с шестигранной головкой, поскольку они, должны упираться в обод колеса и не проворачиваться, когда вы их затягиваете. Если они всё же крутятся, просто ухватитесь за головку болта плоскогубцами или гаечным ключом на 7 мм. Попытка закрутить их отвёрткой, если вы вдруг используете болты крестообразным шлицом, в лучшем случае – это кошмар, а если вы делаете турбину с шестью лопастями, то это просто-напросто будет невозможно.

Повторите все предыдущие действия дважды, начиная с шага 8, чтобы собрать еще две лопасти из оставшихся форм и пластин и прикрепить их к колесу.

Возьмите еще один остаток пластины и отрежьте полосу шириной 9,5 см и длиной 67 см. Нарисуйте линии на расстоянии 3.5 см от левого длинного края и на расстоянии 1 см от правого. На этом расстоянии в 1 см согните полосу до 45 градусов. Затем переверните и задайте ей треугольную форму, как показано на видео.

Просверлите отверстия диаметром 4 мм на расстоянии 1 см от каждого конца получившейся стойки и посередине, всего их должно получится три, на плоской области в 1 см. Среднее отверстие скрепите заклёпкой. Повторите дважды, чтобы у вас получилось три стойки.

Проденьте болт M4 с большой шайбой снизу через центральное отверстие в верхней части одной из лопастей и через крайние отверстия в двух стойках. Добавьте ещё одну большую шайбу и закрутите гайку. Повторите то же самое с двумя другими лопастями и последней стойкой. Шайбы затягивайте не до конца.

Верхняя часть лопастей должна быть вровень с их основаниями. Для этого поместите турбину на землю, чтобы вы могли смотреть на нее сверху, и проверьте (при надобности подровняйте) каждую из лопастей.

После того, как выровняете положение лопасти, просверлите отверстие через одну из распорок (насквозь вместе с верхней частью лопасти) на расстоянии 1-2 см от края. Проденьте большой болт, большую шайбу и затяните гайкой. Повторно проверьте выравнивание, просверлите другую стойку и проделайте то же самое. Затяните все три гайки. Повторите это для двух других лопастей.

При желании вы можете добавить дополнительные три лопасти к нижней части колеса. Это даст вам в два раза больше энергии, а также сделает турбину более стабильной, перемещая точку опоры в середину, а не вниз.

Чтобы сделать скобу для крепления вашей турбины, возьмите две стальных полосы на 18 и 20 см в длину, 3 см в ширину, толщиной около 3 мм. Эти цифры не являются жизненно важными, если они примерно совпадают, а металл достаточно прочен.

Отметьте расстояние в 3 см с одного конца каждой полосы, и согните их под прямым углом при помощи верстачных тисков. Убедитесь, что углы близки к 90 градусам, или турбина не будет стоять прямо.

Вложите две части так, чтобы 18-сантиметровая находилась внутри большей. Просверлите отверстие диаметром 10 мм (которое должно соответствовать диаметру оси велосипедного колеса для вашей турбины) через загнутые стороны полос. Удостоверьтесь, что они не скользят во время сверления.

Возьмите запасную велосипедную ось, не ту, что на вашем колесе, и намотайте гайку. Вставьте её в 20-сантиметровую стальную полосу, добавьте и затяните еще одну гайку, добавьте меньшую полосу, а затем еще одну гайку.

Просверлите 6-миллиметровое отверстие в зазоре между двумя частями, как показано на видео, а затем еще одно, примерно через 1 см, и третье рядом с противоположным концом. Скрутите гайки, и снимите крепления.

Просуньте болт M6 через верхнее отверстие большей стальной полосы и наденьте её на ось в нижней части колеса (если гайка, которую вы используете, не слишком широкая, то, возможно, понадобится обработать головку болта, чтобы он поместился между двумя частями крепления), затем затягивайте гайку, после продеваете 18-сантиметровый кусок, последнюю гайку и затягиваете её максимально плотно, и, наконец, продеваете два болта через оставшиеся отверстия.

Поздравляем, вы сделали ветряк своими руками!

Конфигурации

Возможные конфигурации ветровой турбины:

Ниже представлены некоторые потенциальные конфигурации вашего ветрогенератора, которые предполагают прикрепление различных дополнительных деталей, чтобы они могли выполнять полезную работу. Конечно же, какое-то одно решение не сможет подойти для всех ситуаций сразу, поскольку это будет зависеть в значительной степени от того, как вы планируете использовать ветровую турбину, поэтому возможные варианты предоставлены по большей части для ознакомления. Большинство сборок довольно просты и уже делались раньше.

Вариант A: Генератор постоянного тока.

Эта ветровая установка может быть подключена и использована для подачи питания различному оборудованию, вроде механического насоса для воды, но вы, вероятно, будете использовать её для выработки электроэнергии с целью питания бытовых устройств или зарядки батарей.

Одним из самых простых решений для этого является использование двигателя постоянного тока на постоянных магнитах, который в режиме реверса будет работать генератором и преобразовывывать механическую энергию в электрическую. Какой тип двигателя вы будете использовать в конечном итоге, зависит от вашего бюджета, силы ветров и потребностей в электричестве. Однако способы подключения их к турбине практически одинаковые. Хорошими вариантами для увеличения выходной мощности могут стать двигатели от автомобильных стеклоочистителей, электроскутоеров, или беговых дорожек. Они могут быть как куплены в интернете, так и найдены в старых или выброшенных устройствах.

Процесс прикрепления двигателя к конструкции ветряка в основном заключается только в том, чтобы снять с него всё лишнее, присоединить шкив к валу, пропустив зубчатый ремень вокруг обода колеса (со слоем нейлоновой обвязки, прикреплённой чтобы защитить ремень и обеспечить надежное зацепление) и закрепив двигатель на раме, как показано на видео, при помощи длинных болтов, чтобы вы могли легко отрегулировать натяжение ремня.

Вариант B: Высотный столб

Есть много различных способов установки ветряного генератора, включая крышу вашего дома, лодку, фургон или радиомачту, но самый распространённый вариант, особенно если вы проживаете в сельской местности, — это металлический столб с направляющими тросами.

В значительной степени это вопрос о присоединении различных компонентов, как показано на видео, для более безопасного и надёжного размещения турбины. Вам возможно понадобится выкопать ямы, от полуметра до метра глубиной, для размещения там деревянных якорей, или же прикрепить тросы к любым другим прочно зафиксированным предметам, находящимся поблизости.

Внизу столба при этой конфигурации имеется горизонтальный рычаг и соединение, позволяющее опускать конструкцию на землю для диагностики или во время шторма. Для этого необходимо лишь снять D-образную скобу в местах крепления тросов и с его помощью, осторожно опустить установку на землю. Поднять её снова можно повторив весь процесс наоборот. После этого желательно убедиться, что всё надёжно закреплено, а столб находится в вертикальном положении.

Для того, чтобы сделать процесс более безопасным, можно использовать четыре троса вместо трёх.

Вариант C: Велосипедная цепь и генератор(ы) постоянного тока

Зубчатый ремень и шкив, в случае с первым вариантом работают достаточно хорошо, но не везде они могут выступать в качестве легкодоступных материалов. Более простой и потенциально более эффективной альтернативой этого способа является использование велосипедной цепи, длиной около 2.1-2.2 метра (для этого вам понадобится объединить две цепи вместе), и один или три двигателя постоянного тока. Два из них будут способствовать натяжению цепи, в то время, когда вы будете соединять три двигателя вместе при помощи хомутов, оставляя между ними небольшие промежутки, чтобы они не соприкасались. Для этого можно проложить между ними что-нибудь эластичное, вроде толстой резины. Если вы используете только один генератор, то конфигурация практически такая же, за исключением небольших металлических трубок с велосипедными шестернями, вращающимися на болте или другой оси, для того же натяжения.

Если вы используете три двигателя, то для большей эффективности, особенно при слабом ветре, они могут быть соединены последовательно. Дополнительным преимуществом этой конфигурации является прочное сцепление с основанием турбины, делая ее более устойчивой и надёжной при сильных ветрах.

Вариант D: Мотор-колесо электровелосипеда.

Идеальное решение для получения электроэнергии из самодельной турбины — использовать мотор-колесо электрического велосипеда. Если вам удастся его найти. Конструкция использует колесо в любом случае, и почти каждый аспект входной и выходной мощности, оборотов в минуту и прочего, отличного подходит для мотор-колеса мощностью 300 Вт. Все, что нужно сделать, это построить на нем турбину и подключить провода к электрической системе. Правда в некоторых странах, к сожалению, подобное решение может стать сложным и дорогостоящим.

Вариант E: Самодельный генератор переменного тока.

Этот вариант сможет предоставить вам наибольший контроль над производительностью домашнего ветряка с точки зрения напряжения, оборотов и общей мощности на сегодняшний день. Однако он и один из самых трудоёмких, требующих широких познаний. По сути, это всего лишь круг магнитов, проходящих через круг катушек из медной проволоки, но их точная конфигурация зависит от множества факторов. И всё же эту проблему решали уже тысячу раз и на этот счёт есть куча полезной информации в интернете.

Вариант F: «Хардкор».

Стандартная сборка турбины с шестью лопастями выдерживала ветра со скоростью до 105 км/ч и несколько довольно серьезных штормов, но, если вы хотите добавить конструкции ещё больше надёжности, то этот вариант предоставит такую возможность. В целом, он заключается в наличие дополнительных распорок и точек опоры с другой стороны оси колеса и двух дополнительных треугольников из алюминия на верхней и нижней стойках, чтобы предотвратить возможность отклонения лопастей слишком далеко от вертикали и, следовательно, их срыва с колеса. Другое отличие состоит в том, что лучше закрепить распорки внутри, а не снаружи, чтобы они находились на центральной линии турбины и аккуратно располагались в вырезанных кругах двух треугольников.

Вариант G: Daisy-chain (вертикальный столб для нескольких ветряных турбин).

Около половины общей стоимости стандартной установки турбины приходится на сам столб и его модификации. Но нет никаких причин, по которым вы можете иметь только одну турбину на нём. Те, что располагаются ниже будут получать меньше ветра и, таким образом, производить меньше энергии, чем верхние, но эта затея всё равно весьма стоящая. Так как одни турбины могут отвечать за производство электрической энергии, а другие, например, за перекачку воды.

Такой самодельный ветряк едва ли обеспечит электричеством весь дом, но нескольких установок будет вполне достаточно, чтобы снабжать энергией дачный домик, уличное освещение, поливальные установки и т.п. По словам разработчиков, вдвоем такую штуку можно изготовить за четыре часа не самого напряженного труда, потратив при этом всего пятнадцать-тридцать долларов.

О том, мы рассказывали в одном из прошлых материалов. Сегодня вашему вниманию будут представлены модели ВЭУ, построенные пользователями нашего портала. Также мы поделимся полезными советами, которые помогут собрать установку и не допустить при этом ошибок. Строительство ветрогенератора своими руками – задача сложная. Безошибочно справиться с ее решением может далеко не каждый (даже опытный) практик. Впрочем, любая вовремя обнаруженная ошибка может быть исправлена. На то мастеру – голова и руки.

В статье рассмотрены вопросы:

  • Из каких материалов и по каким чертежам можно изготовить лопасти ветрогенератора.
  • Порядок сборки аксиального генератора.
  • Стоит ли переделывать автомобильный генератор под ВЭУ и как это правильно сделать.
  • Как защитить ветрогенератор от бури.
  • На какой высоте устанавливать ветрогенератор.

Изготовление лопастей

Если у вас еще нет опыта в самостоятельном изготовлении винтов для домашней ВЭУ, рекомендуем не искать сложных решений, а воспользоваться простым методом, доказавшим свою эффективность на практике. Заключается он в изготовлении лопастей из обыкновенной канализационной ПВХ трубы. Этот метод прост, доступен и дешев.

Михаил26 Пользователь FORUMHOUSE

Теперь о лопастях: сделал из 160-й рыжей канализационной трубы со вспененным внутренним слоем. Делал по расчету, представленному на фото.

«Рыжая» труба упомянута пользователем не случайно. Именно этот материал лучше держит форму, устойчив к температурным перепадам и дольше служит (в сравнении с серыми трубами ПВХ).

Чаще всего в домашней ветроэнергетике используются трубы диаметром от 160 до 200 мм. С них и следует начинать свои эксперименты.

Форма и конфигурация лопастей – это параметры, которые зависят от диаметра трубы, из которой они изготовлены, от диаметра ветроколеса, от быстроходности рабочего винта и других расчетных характеристик. Чтобы не забивать себе голову аэродинамическими расчетами, вы можете воспользоваться , которую выложил в нашего портала ее автор. Она позволит определить геометрию лопастей, подставляя в расчетную таблицу свои собственные значения (диаметр трубы, быстроходность винта и т. д.).

Вам будет интересно  Небольшие ветрогенераторы для дома

Приноровился пилить электролобзиком. Получается реально быстро и качественно. Примечание: обязательно ставьте большой свободный ход пилки на лобзик, чтобы пилку не закусывало и не ломало.

Конструкция аксиального генератора

Делая выбор между трехфазным или однофазным генератором, лучше остановить свой выбор на первом варианте. Трехфазный источник тока менее подвержен вибрациям, возникающим из-за неравномерности нагрузки, и позволяет получать постоянную мощность при одинаковых оборотах ротора.

BOB691774 Пользователь FORUMHOUSE

Однофазные генераторы мотать не стоит: испытано и давно проверено на практике. Только на трех фазах можно получить достойные генераторы.

Расчетные параметры генератора, о которых мы рассказывали в нашем предыдущем материале, определяются текущими потребностями в электроэнергии. И чтобы на практике они соответствовали объему вырабатываемой мощности, конструкция аксиального генератора должна отвечать определенным требованиям:

  1. Толщина всех дисков (ротора и статора) должна равняться толщине магнитов.
  2. Оптимальное соотношение катушек и магнитов – 3:4 (на каждые 3 катушки – 4 магнита). На 9 катушек – 12 магнитов (по 6 на каждый диск ротора), на 12 катушек – 16 магнитов и так далее.
  3. Оптимальное расстояние между двумя соседними магнитами, расположенными на одном диске, равно ширине этих магнитов.

Увеличение расстояния между двумя соседними магнитами приведет к неравномерной выработке электроэнергии. Уменьшить это расстояние можно, но лучше, все же, соблюдать оптимальные параметры.

Aleksei2011 Пользователь FORUMHOUSE

Ошибочно делать расстояние между магнитами равным половине ширины магнита. Один человек оказался прав, когда говорил, что расстояние должно быть не меньше ширины магнита.

Если не вникать в скучную теорию, то схема перекрытия катушек аксиального генератора постоянными магнитами на практике должна выглядеть следующим образом.

В каждый момент времени одинаковые полюса магнитов аналогичным образом перекрывают обмотки катушек отдельно взятой фазы.

Вот так в реале: всё совпадает с рисунком почти на 100%, только катушки совсем немного отличаются по форме.

Последовательность сборки аксиального генератора рассмотрим на примере устройства, собранного пользователем Aleksei2011 .

На этот раз я делаю дисковый аксиальный генератор. Диаметр дисков – 220 мм, магниты – 50*30*10 мм. Всего – 16 магнитов (по 8 штук на дисках). Катушки мотал проводом Ø1.06 мм по 75 витков. Катушек – 12 штук.

Изготовление статора

Как видно на фото, катушки имеют форму, похожую на вытянутую каплю воды. Это делается для того, чтобы направление движения магнитов было перпендикулярным длинным боковым участкам катушки (именно здесь индуцируется максимальная ЭДС).

Если используются круглые магниты, внутренний диаметр катушки должен примерно соответствовать диаметру магнита. Если же используются квадратные магниты, конфигурация витков катушки должна быть построена таким образом, чтобы магниты перекрывали прямые отрезки витков. Установка более длинных магнитов особого смысла не имеет, ведь максимальные значения ЭДС возникают лишь на тех участках проводника, которые расположены перпендикулярно направлению движения магнитного поля.

Изготовление статора начинается с намотки катушек. Катушки проще всего мотать по заранее заготовленному шаблону. Шаблоны бывают самыми разными: от небольших ручных приспособлений до миниатюрных самодельных станков.

Катушки каждой отдельно взятой фазы соединяются между собой последовательно: конец первой катушки соединяется с началом четвертой, конец четвертой – с началом седьмой и т. д.

Напомним, что при соединении фаз по схеме «звезда» концы обмоток (фаз) устройства соединяются в один общий узел, который будет являться нейтралью генератора. При этом три свободных провода (начало каждой фазы) подключаются к трехфазному диодному мосту.

Когда все катушки будут собраны в единую схему, можно готовить форму под заливку статора. После этого погружаем в форму всю электрическую часть и заливаем эпоксидной смолой.

Изготовление ротора для аксиальника

Чаще всего самодельные аксиальные генераторы делают на основе автомобильной ступицы и совместимых с ней тормозных дисков (можно использовать самодельные металлические диски, как это сделал Aleksei2011 ). Схема будет следующей.

В этом случае диаметр статора больше, чем диаметр ротора. Это позволяет прикрепить статор к раме ветрогенератора с помощью металлических шпилек.

Шпильки для крепления статора М6 стоят (в количестве 3-х штук). Это исключительно для теста генератора. Впоследствии их будет 6 штук (М8). Я думаю, что для генератора такой мощности этого будет вполне достаточно.

В некоторых случаях диск статора крепится к неподвижной оси генератора. Подобный подход позволяет сделать конструкцию генератора менее габаритной, но принципы работы устройства от этого не меняются.

Противоположные магниты должны быть направлены друг к другу разноименными полюсами: если на первом диске магнит обращен к статору генератора своим южным полюсом «S», то противоположный ему магнит, расположенный на втором диске, должен быть обращен к статору полюсом «N». При этом магниты, расположенные рядом на одном диске, также должны быть сориентированы разнонаправлено.

Сила магнитного поля, которое создают неодимовые магниты, довольно велика. Поэтому регулировать расстояние между дисками статора и ротором генератора следует, используя шпилечно-резьбовое соединение.

Это вариант конструкции, в которой диаметр ротора больше диаметра статора. Статор в этом случае крепится к неподвижной оси устройства.

Также для регулировки расстояния между дисками можно использовать распорные втулки (или шайбы), которые устанавливаются на неподвижную ось генератора.

Расстояние между магнитами и статором должно быть минимальным (1…2 мм). Клеить магниты на диски генератора можно обыкновенным суперклеем. Правильнее всего осуществлять наклейку магнитов, используя заранее заготовленный шаблон (например, из фанеры).

Вот, что показали предварительные испытания генератора, выполненные пользователем Aleksei2011 с помощью шуруповерта: при 310 об/м с устройства было снято 42 вольта (соединение – звездой). С одной фазы получается 22 вольта. Расчетное сопротивление одной фазы – 0.95 Ом. После подключения АКБ шуруповёрт смог раскрутить генератор до 170 об/м, ток зарядки при этом составил 3.1А.

После длительных экспериментов, которые были связаны с модернизацией рабочего винта и другими менее масштабными усовершенствованиями, генератор продемонстрировал свои максимальные характеристики.

Наконец, к нам пришёл ветер, и я зафиксировал максимальную мощность ветряка: ветер усилился, а порывы временами достигали 12 – 14м/с. Максимальная зафиксированная мощность – 476 Ватт. При ветре 10м/с ветряк выдаёт примерно 300 Ватт.

Ветроэнергетическая установка из автомобильного генератора

Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:

  1. Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
  2. Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.

Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.

Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться , которые успели достичь в этой сфере определенных успехов.

Защита кабеля от перекручивания

Как известно, ветер не имеет постоянного направления. И если ваш ветрогенератор будет вращаться вокруг своей оси подобно флюгеру, то без дополнительных мер защиты кабель, идущий от ветрогенератора к другим элементам системы, быстро перекрутится и в течение нескольких дней придет в негодность. Предлагаем вашему вниманию несколько способов защиты от подобных неприятностей.

Способ первый: разъемное соединение

Наиболее простой, но совершенно непрактичный способ защиты заключается в установке разъемного кабельного соединения. Разъем позволяет распутать скрутившийся кабель вручную, отключив ветрогенератор от системы.

w00w00 Пользователь FORUMHOUSE

Я знаю, что некоторые внизу ставят что-то типа штепселя с розеткой. Закрутило кабель – отключил от розетки. Затем – раскрутил и воткнул вилку обратно. И мачту опускать не надо, и токосъёмники не нужны. Я это на форуме по самодельным ветрякам прочитал. Судя по словам автора, все работает и не перекручивает кабель слишком уж часто.

Способ второй: использование жесткого кабеля

Некоторые пользователи советуют подключать к генератору толстые, упругие и жесткие кабели (например, сварочные). Метод, на первый взгляд, ненадежный, но имеет право на жизнь.

user343 Пользователь FORUMHOUSE

Нашел на одном сайте: наш способ защиты заключается в использовании сварочного кабеля с жестким резиновым покрытием. Проблема скрученных проводов в конструкции малых ветровых турбин сильно переоценена, а сварочный кабель #4. #6 имеет особые качества: жесткая резина не дает кабелю скручиваться и препятствует повороту ветряка в одном и том же направлении.

Способ третий: установка токосъемных колец

На наш взгляд, полностью защитить кабель от перекручивания поможет только установка специальных токосъемных колец. Именно такой способ защиты реализовал в конструкции своего ветрогенератора пользователь Михаил 26.

Защита ветрогенератора от бури

Речь идет о защите устройства от ураганов и сильных порывов ветра. На практике она реализуется двумя способами:

  1. Ограничением оборотов ветроколеса с помощью электромагнитного тормоза.
  2. Уводом плоскости вращения винта от прямого воздействия ветрового потока.

Первый способ основан на к ветрогенератору. О нем мы уже рассказывали в одной из предыдущих статей.

Второй способ предполагает установку складывающегося хвоста, позволяющего при номинальной силе ветра направлять винт навстречу ветровому потоку, а во время бури, наоборот – уводить винт из-под ветра.

Защита складыванием хвоста происходит по следующей схеме.

  1. В безветренную погоду хвост расположен немного под наклоном (вниз и в сторону).
  2. При номинальной скорости ветра хвост выпрямляется, а винт становится параллельно воздушному потоку.
  3. Когда скорость ветра превышает номинальные значения (например, 10 м/с), давление ветра на винт становится больше, чем сила, создаваемая весом хвоста. В этот момент хвост начинает складываться, а винт уходит из-под ветра.
  4. Когда скорость ветра достигает критических значений, плоскость вращения винта становится перпендикулярно потоку ветра.

Когда ветер ослабевает, хвост под собственной тяжестью возвращается в исходное положение и поворачивает винт навстречу ветру. Для того чтобы хвост смог вернуться в исходное положение без дополнительных пружин, используется поворотный механизм с наклонным шкворнем (шарниром), который устанавливается на оси поворота хвоста.

Оптимальная площадь хвостового оперения составляет 15%. 20% от площади ветроколеса.

Вашему вниманию представлен наиболее распространенный вариант механической защиты ветрогенератора. В том или ином виде он успешно используется на практике пользователями нашего портала.

WatchCat Пользователь FORUMHOUSE

При шторме тормозить винт надо его уводом из-под ветра. У меня, к примеру, при слишком сильном ветре ветряк опрокидывается винтом вверх. Не самый лучший вариант, ведь возврат в рабочее положение сопровождается заметным ударом. Но за десять лет ветряк не сломался.

Несколько слов о правильной установке ветрогенератора

Выбирая место и высоту мачты, которые бы оптимально подошли для установки ветрогенератора, следует ориентироваться на самые разные факторы: рекомендуемая высота, наличие препятствий вблизи ВЭУ, а также собственные наблюдения и замеры.

Для того чтобы рассчитать оптимальную высоту мачты для домашней ВЭУ, необходимо к высоте ближайшего препятствия (дерева, здания и т. д.), которое находится в радиусе 100 метров от мачты ветряка, прибавить еще 10 метров. Таким образом вы получите высоту нижней точки ветроколеса.

Leo2 Пользователь FORUMHOUSE

В США, например, минимально рекомендованная высота мачты для ВЭУ мощностью несколько кВт – 15 м, но чем выше, тем лучше. Нижняя часть ветроколеса должна быть, как минимум, на 10 м выше ближайшего самого высокого препятствия. Конечно, предварительно необходимо обследовать местность и выбрать оптимальную высоту мачты. На глаз это может сделать только очень опытный специалист. Во всех других случаях нужно проводить тщательные замеры в течение года (как минимум).

В процессе установки самодельных ветрогенераторов теория очень часто расходится с практикой, поэтому, в среднем, самодельные мачты имеют высоту от 6 до 12 метров. Основное преимущество самодельных вышек (мачт) заключается в том, что если какие-либо параметры не будут соответствовать вашим потребностям, конструкцию, габариты и высоту установки в любой момент можно изменить.

Перед осуществлением сварочных работ, связанных с ремонтом или модернизацией конструкции, генератор необходимо отключить и снять с мачты. В противном случае под действием сварочных токов постоянные магниты могут выйти из строя (размагнититься).

Богатый опыт пользователей FORUMHOUSE, собран в одном из разделов нашего строительного портала. Если вы всерьез интересуетесь альтернативной энергетикой, рекомендуем прочитать статью, посвященную (батарей). Наверняка, вас заинтересует и небольшое видео об особенностях правильного построения мощной и функциональной системы электроснабжения загородного дома , которая по классической схеме подключается к стандартной трансформаторной подстанции.

Зачастую у владельцев частных домов возникает идея о реализации системы резервного электропитания . Наиболее простой и доступный способ — это, естественно, или генератор, однако многие люди обращают свой взгляд на более сложные способы преобразования так называемой даровой энергии ( излучения, энергии текущей воды или ветра) в .

Каждый из этих способов имеет свои достоинства и недостатки. Если с использованием течения воды (мини-ГЭС) все понятно — это доступно только в непосредственной близости от достаточно быстротекущей реки, то солнечный свет или ветер можно использовать практически везде. Оба этих метода будут иметь и общий минус — если водяная турбина может работать круглосуточно, то солнечная батарея или ветрогенератор эффективны только некоторое время, что делает необходимым включение аккумуляторов в структуру домашней электросети.

Поскольку условия в России (малая длительность светового дня большую часть года, частые осадки) делают применение солнечных батарей неэффективным при их современных стоимости и КПД, наиболее выгодным становится конструирование ветрового генератора . Рассмотрим его принцип действия и возможные варианты конструкции.

Так как ни одно самодельное устройство не похоже на другое, эта статья — не пошаговая инструкция , а описание базовых основ конструирования ветрогенератора.

Общий принцип работы

Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:

  • Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
  • Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального : если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.

Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра. Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером.

Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.

На видео рассказывается про ветрогенератор, изготовленный своими руками

Расчет лопастного ветрогенератора

Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.

Энергия ветра может быть определена по формуле
P=0.6*S*V ³, где S — это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V — расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% — для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
R=√(P/(0.483*V³
))

Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра — в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.

Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.

Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Подробнее о других видах альтернативных источников энергии можно прочитать в данной статье:

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм 2 и 4 мм 2 ;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Большинство владельцев частных домов не признают использование геотермального отопления, однако подобная система имеет перспективы. Подробнее о преимуществах и недостатках данного комплекса можно прочитать в следующем материале:

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм 2 , длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм 2 . Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм 2 .

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.

Ветряк #2 — аксиальная конструкция на магнитах

Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа.

Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах

Что необходимо подготовить?

За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

Распределение и закрепление магнитов

Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске.

Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться.

Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол

Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем.

Трехфазные и однофазные генераторы

Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает.

В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух

В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации.

Процесс наматывания катушек

Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой.

Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки.

Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики

Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки.

Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах.

Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его.

Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать

Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек.

В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой.

Вам будет интересно  Переделка автомобильного генератора ветряка

Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер.

Заключительный этап — мачта и винт

Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

Ветрогенератор для дома — это альтернативное устройство для выработки электроэнергии. Такое оборудование будет незаменимым, если вы находитесь не очень близко к центральной линии.

Преимущества и недостатки аппаратуры

Ветрогенератор для дома — это востребованный агрегат. Однако он обладает своими плюсами и минусами. Среди преимуществ можно выделить такие:

За выработанную энергию вам не нужно ничего платить;

Вы не пострадаете в случае отключения основного источника питания;

Ветряки могут снабжать энергией те дома, которые находятся далеко от централизованных линий;

Существует возможность использования генератора для отопления помещений (совместно с другими источниками, например солнечными батареями);

Устройство не выделяет никаких вредных веществ, а также у вас не остается никаких отходов, то есть вы не загрязняете окружающую среду.

Следует отметить, что ветрогенератор для дома обладает и определенными недостатками:

Первоначальная покупка и установка достаточно дорого обходятся;

Такое устройство может работать только тогда, когда дует ветер, поэтому вы не сможете постоянно пользоваться такой энергией;

Аппарат издает достаточно сильный шум.

Разновидности оборудования

Ветрогенератор для дома может быть с вертикальной или горизонтальной осью. Второй тип является более распространенным. Прежде всего, они были придуманы намного раньше вертикально-осевых устройств. Но они имеют свой недостаток: для работы такого агрегата необходимо определенное направление и сила ветра.

Первый тип устройств имеет свои преимущества. Кроме того, он становится более популярным, чем горизонтально-осевые генераторы. Дело в том, что он постоянно расширяет диапазон мощностей. А еще вертикальные аппараты не зависят от направления ветра.

Конструкция и принцип действия изделия

Ветрогенераторы для дома своими руками сделать не трудно. Однако сначала следует разобраться в конструкции аппарата. Итак, представленное устройство состоит всего из нескольких частей: ротор, лопасти, мачта, а также «хвост», благодаря которому аппарат поворачивается по направлению ветра. Кроме того, в общую систему могут включаться дополнительные аккумуляторы.

Кроме основных компонентов, в собственной конструкции вы можете использовать разнообразные датчики, анемометры, регуляторы вращения лопастей. Если ветряк изготовлен на производстве, то его могут оснастить поглотителем шума, системой ориентации по ветру.

Что касается принципа действия представленного оборудования, то он очень простой. Во время дуновения ветра лопасти ветряка начинают вращаться. Вследствие этого включается генератор, который и продуцирует электрический ток. Так как он является постоянным, то необходимо применять инвертор. Благодаря ему на выходе вы получите переменный ток.

Для корректной работы представленного аппарата необходимо использовать различные измерительные приборы, которые помогут выявить какие-либо неточности в деятельности ветряка и вовремя устранить их.

Как правильно выбрать производственную модель?

Выбрать ветрогенератор для частного дома достаточно просто. Нужно только руководствоваться определенными параметрами. Итак, во время покупки обратите внимание на такие факторы:

1. Направление ветра. Если у вас в районе довольно спокойная и тихая погода, или же потоки воздуха все время перемещаются в разные стороны, то, возможно, такой аппарат вам просто не подойдет. Хотя в этом случае вы можете применить вертикальные ветрогенераторы для дома.

2. Мощность. Здесь тоже все зависит от того, в какой области вы будете использовать представленное устройство. Если на местности, где вы собираетесь его устанавливать, не очень благоприятные условия для его работы, то не стоит покупать слишком мощную, а значит, и дорогую модель. Все ваши затраты просто не окупятся. Например, вы можете купить в таком случае небольшой аппарат с вертикальными лопастями.

3. Изготовитель. Здесь необходимо ориентироваться на известных производителей с хорошей репутацией и положительными отзывами.

Какие инструменты и материалы необходимы для изготовления?

Итак, для работы вам понадобятся такие предметы:

Кусачки и отвертки;

Хомуты, шайбы, болты, а также проволока из нержавеющего металла;

Рабочий автомобильный, а также нерабочий кислотный аккумулятор мощностью в 12 В;

Старое ведро или кастрюля из нержавеющего материала, при надобности можно применить пластик;

Провода, сечение которых составляет 2,5 и 4;

Реле зарядки аккумулятора, а также автомобильное реле контроля лампы заряда;

Выключатель-кнопка на 12 В;

Наружная коммуникационная коробка больших размеров.

Технология изготовления

В качестве основного источника тепла ветрогенератор подойдет только в том случае, если на территории, где он находится, есть постоянный ветер достаточной силы. Кроме того, в зимний период ротор может замерзать, поэтому лопасти вертеться не будут. В этом случае может произойти поломка оборудования. Поэтому постарайтесь защитить агрегат от попадания влаги и намерзания льда.

Ветровые электростанции для дома своими руками чертежи. Ветрогенератор своими руками: подробная инструкция

Ветровые электростанции для дома своими руками чертежи. Ветрогенератор своими руками: подробная инструкция

Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Подробнее о других видах альтернативных источников энергии можно прочитать в данной статье:

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм 2 и 4 мм 2 ;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Большинство владельцев частных домов не признают использование геотермального отопления, однако подобная система имеет перспективы. Подробнее о преимуществах и недостатках данного комплекса можно прочитать в следующем материале:

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм 2 , длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм 2 . Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм 2 .

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.

Ветряк #2 — аксиальная конструкция на магнитах

Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа.

Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах

Что необходимо подготовить?

За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

Распределение и закрепление магнитов

Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске.

Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться.

Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол

Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем.

Трехфазные и однофазные генераторы

Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает.

В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух

В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации.

Процесс наматывания катушек

Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой.

Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки.

Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики

Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки.

Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах.

Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его.

Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать

Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек.

В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой.

Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер.

Заключительный этап — мачта и винт

Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

Самостоятельная сборка ветрогенератора в первую очередь предполагает создание самого генератора. И, как оказывается, это можно сделать легко из подручных средств.

Варианты изготовления

За длительное время существования альтернативной энергетики были созданы электрогенераторы самых разных конструкций. Их можно сделать своими руками. Большинство людей думает, что это трудно, так как требуется определенный объем знаний, различные дорогостоящие материалы и т.д. При этом генераторы будут очень низкой производительности по причине большого количества просчетов. Именно эти мысли заставляют желающих отказаться от идеи сделать ветряк своими руками. Но все утверждения являются абсолютно неправильными, и сейчас мы это покажем.

Умельцы чаще всего создают электрогенераторы для ветряка двумя методами:

  1. Из ступицы;
  2. Переделывают готовый двигатель под генератор.

Рассмотрим эти варианты более подробно.

Изготовление из ступицы

Самым разрекламированным среди всех вариантов является обычный самодельный дисковый генератор для ветряка, который создается с использованием неодимовых магнитов. Главными его преимуществами являются: простота сборки, не требует особых знаний, возможность не придерживаться точных параметров. Даже если будут допущены ошибки — это не страшно, так как в любом случае ветряком вырабатывается электричество и его можно довести до ума с приходом практики.

Итак, для начала нам нужно подготовить основные элементы для сборки ветрогенератора:

  • ступица;
  • тормозные диски;
  • неодимовые магниты 30х10 мм;
  • медная лакированная проволока диаметром 1,35 мм;
  • клей;
  • фанера;
  • стеклоткань;
  • эпоксидная или полиэфирная смола.

Самодельные дисковые генераторы делаются на основе ступицы и двух тормозных дисков от ВАЗ 2108. Можно с уверенностью говорить, что практически у любого хозяина найдутся в гараже эти части автомобиля.

На тормозных дисках мы расположим неомагниты. Их нужно брать в количестве, делимом на 4. Рекомендуемо применять 12+12 или 16+16 единиц. Это самые приемлемые варианты по эффективности и затратам. Располагать их нужно с чередованием полюсов. Статор нашего самодельного электрогенератора для ветряка также делается с использованием фанеры, которая выпилена по форме. Далее, на него устанавливаются намотанные катушки, и все заливается эпоксидной или полиэфирной смолой. Из стеклоткани рекомендуется вырезать два круга такого же размера, как и статор. Они будут закрывать верхнюю и нижнюю стороны для большей жесткости конструкции.

Неомагниты можно применять любой формы. Старайтесь заполнять полностью все колесо с минимальными зазорами между элементами. Катушки требуется наматывать так, чтобы общее количество витков было в пределах 1000-1200. Это даст возможность генератору выдавать при 200 об/мин 30 В и 6 А. Также будет значительно лучше делать их овальными, а не круглыми. Ветровой электрогенератор станет более мощным благодаря такому решению.

=»Неомагниты для ветрогенератора» width=»640″ height=»480″ size-full wp-image-697″ />
Что касается статора нашего будущего генератора для ветряка, то его толщина обязательно должна быть меньше, чем размер магнитов, например, если магниты имеют толщину 10 мм, то статор лучше всего выполнить 8 мм (по 1 мм зазора оставить). Размеры дисков же должны быть больше толщины магнитов. Все дело в том, что через железо все магниты подпитывают друг друга и чтобы вся сила уходила именно в полезную работу требуется выполнять это условие. Если учитывать это, делая электрогенератор своими руками, то можно немного повысить его эффективность.

Подключение катушек

Собранный своими руками генератор для ветряка может быть как однофазным, так и трехфазным. Большинство начинающих выбирают первый вариант, так как он немного проще и легче. Но у однофазного подключения есть недостатки в виде повышенной вибрации под нагрузкой (гайки могут раскручиваться) и своеобразный гул. Если данные показатели не имеют значения, то катушки требуется соединять следующим образом: конец первой нужно спаять с концом второй, вторую катушку с третьей и т.д. Если что-то перепутать — схема работать не будет. Хотя здесь сложно что-то сделать не так.


Трехфазная схема хоть и требует большей внимательности, но при этом установка под нагрузкой не гудит и практически не вибрирует, а разведенные фазы под 120 градусов повышают мощность в определенных режимах работы. Трехфазное подключение катушек своими руками заключается в соединении их через 3 единицы. Например, при использовании 12 катушек распаиваются для первой фазы 1, 4, 7 и 10. Для второй — 2, 5, 8 и 11. Для третьей — 3, 6, 9 и 12. Все шесть получившихся концов можно смело выводить наружу из статора. Соединять фазы можно звездой (для получения большего напряжения) или треугольником (для получения большей силы тока).

Элементы основы можно заказать у токаря. Это будет более верным решением, так как автомобильная ступица и тормозные диски довольно массивные. Также можно сделать небольшую хитрость в виде увеличения диаметра всего колеса, ведь чем он больше, тем выше радиальная скорость ветрогенератора.

Дисковые генераторы имеют простую конструкцию, высокую эффективность и у них отсутствует эффект залипания. Дополнительно, ветровые установки, созданные на их основе, довольно легкие. Но по причине отсутствия сердечников, магнитов требуется использовать в два раза больше. Рассмотренный вариант является самым простым для создания ветряка своими руками.

Изготовление из асинхронного двигателя

Генератор для ветряка также можно сделать благодаря переделке асинхронного двигателя. Для этого требуется или переточить ротор на размер неомагнитов, или сделать его своими руками. Переточка родного ротора предполагает еще и использование стальной гильзы, которая бы замыкала магнитное поле. По этой причине нужно учитывать и ее толщину. Можно использовать как круглые, так и квадратные магниты. Последний вариант более эффективный по причине возможности установить их с большей плотностью.

Вследствие неизбежного залипания ротора, клеить неомагниты нужно с небольшим скосом. Смещение требуется делать по принципу зуб + паз. Делая генератор своими руками нужно также перематывать катушки. Причиной тому является использование обмотки из тонкого провода, который не рассчитан на большие напряжения и ампераж. Если используются низкооборотные двигатели, то перематывать их под генератор не требуется, так как у них уже используется хороший, толстый провод.

Перематывать двигатели под генераторы своими руками несложно, но рекомендуется доверить данную работу электрикам. Это позволит избежать ошибок и при этом ветряки из асинхронников получаются значительно эффективнее.


Решение оборудовать ветровые установки мультипликатором позволяет не перематывать двигатель. Также можно поставить небольшой электромагнит для самовозбуждения. Его запитка производится за счет самого вращения ветряка, а чтобы он не потреблял электричество с аккумулятора устанавливается в цепь мощный диод.

В конце хотелось бы сказать, что сделать самодельный генератор для своего ветряка довольно просто. И для этого не требуется особых знаний. Нужно запастись терпением и готовностью проводить опыты. Но при этом следует помнить о технике безопасности, так как электрогенераторы могут вырабатывать большие токи.

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

При этом, почему-то игнорируется факт, что в других местах той же Европы, подобных ветроэлектростанций практически нет. С чего бы это?
Вот именно об этом, когда, где и как ветряки использовать выгодно, а когда нет, и пойдет речь в статье.

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

И дабы вы не тратили понапрасну свои деньги, расскажем с выкладкой всех цифр, почему это именно так.

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Если в вашем районе ветер 7м/с, то генератор будет работать максимум на 50% от своего номинала. А если всего 2м/с, то и вовсе на 5%.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Так, при увеличении давления ветра в два раза, генерируемая мощность возрастает в восемь раз!

Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:

  • и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Вам будет интересно  Ветряной генератор своими руками: видео и фото. Ветряной генератор своими руками

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Аккумуляторные батареи для ветряков

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Где лучше установить

Еще о чем стоит серьезно задуматься — это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

Цена за 1квт мощности

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Срок окупаемости и расчет экономии

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Для вашей индивидуальной ветровой установки этот срок – НИКОГДА.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Но если вспомнить начальные траты в 200тыс., то вернете вы их через тридцать два года!

И все это без учета эксплуатационных затрат. А если прикинуть, что средний срок службы хорошего ветряка – около 20лет, то получается, что он окончательно и безвозвратно поломается еще до того, как выйдет на окупаемость.

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Когда стоит покупать ветряк

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Какие ветряки выбирать

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

Из-за высокой стоимости альтернативных конструкций для получения энергии с помощью ветра, многие считают, что выгоднее изготовить ветрогенератор своими руками. В этом есть резон, но нужно понимать, что дело это непростое, требующее время и специальных знаний.

Иметь такую конструкцию мечтают дачники, домики которого удалены от цивилизации. Да и городской житель стал внимательнее присматриваться к ветрогенераторам, поглядывая на приходящие ежемесячно счета на использованную электроэнергию.

Растущие тарифы приводят к мысли, что ветрогенератор генератор своими руками не помешали бы и горожанам.

Нужны ли разрешительные документы?

Воплотить мечту в реальность сложно, но возможно. Для дачи будет достаточно маломощной установки, например, 1-киловатной. В России подобные конструкции приравниваются к бытовой технике.

Чтобы их установить не нужно оформлять сертификаты и бегать за разрешениями. Главное – определиться, действительно ли ставить подобный источник энергии целесообразно.

Для местности, где планируется установить ветряк, потребуется знать потенциал ветра. Поможет это сделать Интернет: потребуется найти «Карту ветров» и использовать разработанную формулу.

Налогообложение

На расходуемую для личных нужд энергию, налогообложения не предусмотрено никакого, поэтому ветряки малой мощности устанавливать можно смело и получать бесплатную энергию с их помощью.

Об индивидуальном энергоснабжении нет нормативных актов, способных препятствовать установке и использованию ветрогенераторов своими руками, как и купленных в торговой сети.

Тоже касается недовольства соседей: установка ветрогенераторов своими руками, нужная для решения личных потребностей, не должна вызывать неудовольствия. Последние вправе выдвинуть претензии, если ветряки будут им причинять реальные неудобства. Ведь права конкретного человека заканчиваются, когда другому они причиняют дискомфорт.

Высота мачты

Учитывая сказанное, собираясь монтировать ветрогенератор своими руками, особое внимание нужно уделить выбору высоты мачты. Помимо этого, требуется учитывать существующие ограничения, касающиеся частных построек, и местонахождения вашего участка. Например, если поблизости существуют тоннели, построены мосты, находятся аэропорты, не допускается возведение зданий, высотой больше отметки в 15 м.

Шумность

Во время работы шумит редуктор и вращающиеся лопасти. Рекомендуется шум измерить соответствующими приборами и полученные показатели документально зафиксировать. Принятые нормативами значения не должны превышаться. Тогда и споров с соседями не возникнет.

Помехи

В идеальном варианте защита от возможных телепомех должна быть у ветряков предусмотрена.

Экологическая служба

Она вправе установщику запретить проводить монтаж в единственном случае, когда это препятствует миграции птиц. А это маловероятно.

Своими руками собирая ветрогенератор, перечисленные моменты необходимо учесть.

Если ветряк покупается, эти моменты отображаются в паспорте, изучить который нужно сразу, чтобы себя обезопасить от неожиданностей.

Целесообразность

Насколько целесообразна установка ветряка определяет во многом сила и стабильность ветра в данном районе.

Условия

Для монтажа ветрогенератора для дома своими руками необходима обширная площадка. Он должен располагаться от соседей на определенном расстоянии.

Ветрогенератором называется конструкция, способная преобразовывать энергию кинетическую воздушных масс в механическую.

Благодаря ей ротор приводится в движение, благодаря чему, человек получает нужное ему для функционирования приборов электричество.

Конструкция

Составляют ветровую систему:

  • лопасти;
  • турбинный ротор;
  • генератор;
  • инвертор, преобразующий ток. Последний заряжает аккумулятор;
  • батарея, питающая конструкцию.

Суть функционирования

Она для подобных конструкций отличается простотой. Вращающийся ротор позволяет получить трехфазный ток. Он, после прохождения контроллера, подзаряжает аккумулятор. Далее, благодаря инвертору, он преобразуется до «состояния», пригодное для использования бытовыми приборами – холодильниками, телевизорами, микроволновыми печами, стиральными машинами и бойлерами, пр.

Показанная схема дает представление о том, какие трансформации претерпевает электроэнергия, которую производит ветрогенератор.

Некоторая часть ее аккумулируется, остальную потребляют приборы.

Лопасти подвергаются во время вращения сразу трем воздействиям:

  • подъемной силе;
  • импульсной;
  • тормозящей.

Последние две стараются преодолеть силу торможения, заставляют вращаться маховик, благодаря чему, ротором создается в неподвижной части генератора магнитное поле, принуждающее по проводам течь ток.

Выбор мотора

Тем, кто решил сделать ветрогенератор своими руками, рекомендуется использовать мотор от бытовых устройств и автомобилей, понимая, что эффективность возрастает прямо пропорционально вольтам, приходящимся на 1 виток.

Разновидности

Ветряки классифицируются по нескольким параметрам:

  • числу лопастей. Модели бывают одно-, двух-, трех – пяти – и многолопастными. Помните, что количество лопастей обратно пропорционально скорости, т.е. чем больше первых, тем при меньшей скорости воздуха начинается вращение. Многолопастные используются часто там, где преимущество отдается вращению перед получением энергии – например, при подъеме воды из скважин;
  • материалу, из которого делают лопасти. Помимо твердых, как стало известно, подходят даже плотные ткани, стоимость которых невысокая. Их делят на жесткие и парусные, которые по цене ниже, чем первые, изготовленные из металла или стеклопластика, но менее прочные. Поэтому ремонтировать такие лопасти придется часто;

  • расположению оси относительно земли. По этому признаку ветряки бывают горизонтальными (имеющие более высокую мощность, надежность) и вертикальные. Эти ветрогенераторами своими руками намного чувствительнее к ветряным порывам;
  • шагу винта, который бывает фиксированным (более распространены) и изменяемым. У последнего увеличена скорость вращения, но установка очень сложна для исполнения и массивна.

Ветряк своими руками сделать получится практически бесплатным, если найдутся ненужные детали, без дела валяющиеся где-то в гараже: мотор старого авто, обрезанные канализационные трубы и др.

Ветряк роторный

Простейший ветрогенератор своими руками этого вида имеет вертикальную ось вращения, обеспечит легко частный дом энергией на 100%. Его смастерить сложно, но возможно. При этом, это проще даже, чем кажется. Лопасти, к примеру, несложно сделать из металлической бочки. Их вырезают ножницами для резки металла.

Для сборки ветрогенератора своими руками, мощность которого, предположим. должна составлять 1,5 кВт, под руками должны быть перечисленные ниже элементы:

  • автогенератор 12В;
  • 12 — вольтовая батарея (лучше кислотная либо гелиевая);
  • «кнопка» (полугерметичный выключатель так же12 V);
  • преобразователь 700-ваттный;
  • достаточной вместимости емкость из алюминия или нержавеющей стали – бак, выварка и пр.
  • реле (подойдет автомобильное);
  • вольтметр;
  • метизы (болты, гайки и пр.);
  • провод 4 мм в сечении и 2,5 мм;
  • пара хомутов для закрепления на мачте генератора.

Инструменты

Для изготовления своими руками ветряка необходимы:

  • болгарка;
  • кусачки;
  • строительный карандаш для нанесения разметки либо маркер;
  • ножницы для металла;
  • сверла с дрелью;
  • рулетка;
  • отвертки;
  • ключи гаечные.

С чего начать?

Ветряк своими руками, как говорилось, начинают изготавливать с поиска большой емкости. Она составит основу.

На нее наносят разметку, пользуясь маркером, т.е. делят на равные 4 части. Далее будет объясняться, как делать разрезы болгаркой. При их выполнении металл до конца разрезать нельзя.

Нельзя болгаркой пользоваться для работы с окрашенной жестью, а также оцинкованной сталью, которые сильно нагреваются. Их режут ножницами для металла, помня, что вырезаются лопасти не до конца.

Параллельно с изготовлением лопастей, переделывают у генератора шкив. В нем и днище исходной кастрюли необходимо просверлить отверстия, в которые вставляться будут болты.

Делают это максимально аккуратно, чтобы соблюсти симметрию. Это нужно, чтобы в ходе работы не возникал дисбаланс.

Далее, каждую лопасть отгибаем поочередно. Но делаем это с учетом направления, в котором вращаться станет генератор. Чаще она совпадает с движения стрелки часов. Угол, изгиба, определяет скорость и площадь воздействия воздушного потока.

Ведро с готовым пропеллером прикрепляют на шкив, а на мачту, применив хомуты, устанавливают генератор. В последнюю очередь соединяют провода, создавая цепь.

Для присоединения аккумулятора выбирают провод диаметром 4 мм². Достаточно будет 1 метра. Такой же потребуется, чтобы подключить инвертор.

Меньшего сечения – 2,5 мм хватит для подсоединения нагрузки. Если делали все последовательно и точно, ветряк своими руками работать будет хорошо, а проблем возникнуть не должно.

Если батарею, к примеру, использовали 75 амперную, а преобразователь 1000-ватный, ветряка своими руками хватит, чтобы работали одновременно сигнализация охранная, камеры видеонаблюдения и освещение улицы.

Плюсы и минусы

Достоинства:

  • экономичность модели;
  • ремонтопригодность. При выходе из строя элемента, он просто заменяется новым;
  • отсутствие требований к условиям эксплуатации;
  • надежность;
  • бесшумность.
  • не высокая производительность;
  • зависимость сильная от ветра (пропеллер может просто слететь).

Неодимовые магниты для ветряков

В России о них узнали не слишком давно, поэтому ветряки с их использованием также делают недавно. Ажиотажный продукт рынок постепенно насытил, поэтому теперь эти магниты доступны народным умельцам.

Изготовление ветряка

Эта конструкция сложнее, чем ранее описанная. Ось вращения у нее горизонтальная.

До того, как приступать к сборке ветряка своими руками, желательно приобрести ступицу (сгодится от автомобиля) и тормозные диски.

Ступица выступит базой. Поскольку она уже использовалась, стоит ее смазать, предварительно разобрав и обратив на подшипники особое внимание. Ни наслоений, ни ржавчины остаться на них не должно. Генератор обязательно красят. Забывать об этом нельзя.

Как закрепятся магниты?

Они требуют грамотного распределения и надежного крепления. Их часто приклеивают к роторным дискам. Для работы необходимо двадцать магнитов 25х8 мм.

Важно: Можно это количество изменять, помня основное, что совпадает число магнитов с полюсами в однофазном генераторе и соответствует 2/3 или 4/3 — в трехфазном.

Полюса должны чередоваться. Для удобства изготавливают шаблон или наносят на диск разметку секторов. Лучше, как показала практика, использовать их круглой формы, чем прямоугольной, поскольку в последних поле магнитное имеется на всей длине, а у первых лишь в центре.

Определяем полюса

Чтобы не перепутать полюса их следует точно определить. Магниты для этого подносят друг к другу. В случае их притягивания, ставят «+», отталкивания – «-».

Размещают их, так, чтобы полюса чередовались.

Клей должен быть качественным для надежности конструкции. Неплохо магниты держатся на эпоксидной смоле, покрывающей полностью диск. Ее разводят по инструкции.

Она не должна стекать с диска. Чтобы предотвратить стекание смолы, по периметру делают временные бортики из пластилина или скотчем обматывают диск.

Сравнение однофазных устройств и трехфазных

Предпочтение стоит отдать трехфазному статору, поскольку он меньше вибрирует, чем однофазный. Вызваны вибрации разницей в токовой амплитуде, причиной которой является непостоянная отдача.

Тесты показали, что она больше на 50% у трехфазной модели. Другим важным преимуществом 3-фазной является высокий акустический комфорт во время функционирования под нагрузкой. Другими словами, он не гудит. К тому же, отсутствие вибрации положительно сказывается на сроке службы.

Наматываем катушку

Выбрав не очень скоростной вариант, зарядка 12V батареи начинается при 100-150 об/м. Число витков для этого должно соответствовать 1000-1200. Поделив витки на все катушки, получим их число для одной.

Мощность ветряку добавит число полюсов. При этом вырастет частота токовых колебаний.

Если используется для витков провод большого сечения, уменьшается сопротивление и возрастает сила тока.

Облегчить процесс ручной намотки можно, если пользоваться специальным станком.

На характеристики ветрогенераторов, собранных своими руками, влияет толщина магнитов, имеющихся на диске и количество их.

Катушки, как правило, делаются круглой формы, но, слегка вытянув их, удастся выпрямить витки. Готовыми, катушки должны быть равными или чуть превышать по размерам магниты. С магнитами соотноситься должна и толщина статора.

Если последний больше из-за большего количества витков, пространство между дисками увеличивается, а поток магнитный уменьшается.

Но большее сопротивление катушек приведет к уменьшению тока. Для формы статора подойдет фанера. Чтобы увеличить прочность изделия поверх катушек (на дно формы) кладут стеклоткань. Перед нанесением смолы эпоксидной, форму обрабатывают вазелином или воском, или используют скотч.

Закреплены катушки между собой жестко. Наружу выводятся 6 концов фаз, для соединения которых пользуются схемами «звезда» или «треугольник».

Генератор тестируют, крутя его рукой. Для напряжения в 40V, сила тока достигает 10 А.

Сборка

Длину мачты выбирают от 6 до 12 метров, основание бетонируют. Сам ветрогенератор, собранный своими руками, крепят вверху. Чтобы обеспечить возможность добраться к нему, если потребуется ремонт, необходимо предусмотреть устройство, которое даст возможность поднять или опустить трубу.

Обеспечит это ручная лебедка. Из трубы ПВХ, диаметр которой 160 мм, реально изготовить винт длиной 2 метра, имеющего 6 лопастей.

Форму подбирают опытным путем. Но, такой винт-пропеллер необходимо защищать от сильного ветра, для чего и служит складывающийся хвост.

Рассмотренные модели эффективны каждая по-своему. А полученная информация свидетельствует, что ветряк изготовить своими руками вполне возможно.

Видео: Вертикальный ветрогенератор 4kw

» Ветрогенератор простой домашний своими руками

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической .

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.

Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Ветрогенератор в домашнем конструкторском наборе

  • винт на три лопасти,
  • флюгерную систему,
  • мачту металлическую,
  • контроллер заряда АКБ.

Желательно, но не обязательно, соблюсти последовательность производства всех оставшихся частей ветряного генератора. Последовательность – это порядок, который необходим в любом деле для достижения результативности. Очевидно: существенную помощь в строительстве энергетической машины оказывают готовые наборы:

Изготовление лопастей пропеллера

Достаточно лёгким и простым видится изготовление лопастей винта генератора из пластиковой трубы диаметром 150-200 мм.

Для описываемой конструкции домашнего ветрогенератора были сделаны (вырезаны) три лопасти. Материал: 152-миллиметровая сантехническая труба. Длина каждой лопасти – 610 мм.

Лопасти для пропеллера домашнего ветрогенератора. Элементы пропеллера изготовлены из обычной сантехнической трубы, что широко используется в хозяйстве ЖКХ

Сантехническая труба изначально отрезается по размеру длины с небольшим запасом на обработку. Затем отрезанный кусок рассекается по осевой линии на четыре одинаковых части.

Каждая часть вырезается по несложному шаблону рабочей пропеллерной лопасти. Все кромки резов необходимо тщательно зачистить – отполировать для лучшей аэродинамики.

Элементы пропеллера ветрогенератора – пластиковые лопасти, закрепляются на шкиве, собранном из двух отдельных дисков. Шкив насаживается на вал мотора и притягивается винтом.

Та часть ступицы, на которой крепятся лопасти, имеет диаметр 127 мм. Другая часть – шестерня, в диаметре имеет размер 85 мм. Обе детали ступицы не изготавливались специально.

Закреплённые на ступице лопасти винта домашнего ветряка. Собранный из подручных деталей и готовый к установке на домашний ветрогенератор простейший винт

Металлический диск и шестерню удалось найти в старом техническом хламе. Но диск был без отверстия под вал, а шестерня имела малый диаметр. Объединением этих деталей в единое целое удалось решить проблему соотношения массы и диаметра.

После закрепления лопастей, осталось лишь закрыть торец ступицы пластиковым обтекателем (опять же для аэродинамики).

Флюгерная основа ветрогенератора

Обычный деревянный брусок (желательно из твёрдых пород) длиной 600 мм подойдёт для флюгерной основы. На одном конце бруска хомутами закрепляется электродвигатель, на другом монтируется «хвост».

Флюгерная часть установки, куда поставлены двигатель и хвост ветряка. Мотор дополнительно закрепляется хомутами, хвост накладными брусочками

Хвостовая часть сделана из листового алюминия – это вырезанный прямоугольный кусок, который попросту устанавливается между наставными брусочками и скрепляется винтами.

Для улучшения свойств долговечности, деревянный брусок рекомендуется дополнительно обработать пропиткой и покрыть сверху лаком.

На нижней плоскости бруска, на расстоянии 190 мм от заднего торца бруса, через опорный фланец закрепляется трубчатый отвод под соединение с мачтой.

Флюгерная система домашнего ветряка (нижняя её часть), изготовленная из простых доступных деталей. Такие детали найдутся у каждого владельца домашнего хозяйства

Недалеко от точки закрепления фланца, на стенке трубы высверливается отверстие d=10-12 мм под вывод кабеля сквозь трубу от ветрогенератора к накопителю энергии.

Основание и шарнирная мачта

Тогда как уже готова флюгерная часть домашнего ветрогенератора, наступает очередь производства опорной мачты. Домашнюю установку вполне достаточно поднять на высоту 5-7 метров. Металлическая труба d=50 мм (внешний d=57 мм) в самый раз подходит под мачту этого проекта ветрогенератора для дома.

Опорная тарелка под нижнюю часть мачты домашнего ветряка сделана из толстой листовой фанеры (20 мм). Диаметр блина 650 мм. По краям фанерного блина, равномерно по кругу и с отступом 25-30 мм просверлены 4 отверстия d=12 мм.

Нижняя и верхняя части, которые встанут между мачтой. Слева опорная площадка с установленным на поверхности шарнирным механизмом подъёма/спуска ветрогенератора

Эти отверстия предназначены под временное (или постоянное) штыревое крепление на грунт. Для прочности установки фанеру снизу можно усилить стальным листом.

На поверхности опорной тарелки прикреплена конструкция, собранная из металлических сантехнических фланцев, патрубков, уголков и муфты-тройника.

Между уголками и муфтой-тройником резьбовое сочленение выполнено не до конца. Это сделано специально, чтобы получить эффект шарнира. Таким образом, подъём или спуск ветрогенератора можно осуществлять без труда в любой момент.

Подставка под мачту ветряка оснащается четырьмя отверстиями для дополнительного крепления штырями на грунт. Так, примерно, выглядит состояние опорного элемента, когда мачта установлена и поднята

Муфта-тройник центральным отводом соединена с куском трубы, в нижней части которой установлен ограничитель для трубы мачты. Мачтовая труба надевается на трубчатый кусок меньшего диаметра до упора в ограничитель.

Примерно так же соединяется верхняя часть мачты и флюгерная система ветряка. Но там, в качестве ограничителя, внутри мачтовой трубы установлены подшипники.

Крепление мачты растяжками выполняется стандартно с применением обычных хомутов, которые несложно сделать своими руками из листового металла

Так что, для сборки всей мачтовой системы и потребуется, без каких-либо креплений, всего лишь соединить нижнюю и верхнюю части с мачтовой трубой. Затем, благодаря шарнирному устройству поднять ветрогенераторную установку и зафиксировать мачту растяжками.

Удобство шарнирной системы очевидно. К примеру, на случай непогоды ветрогенератор можно быстро «уложить» на землю, сохранив от разрушения и так же быстро установить в рабочее положение.

Домашний ветрогенератор и схема контроллера

Контроль напряжений и токов, снимаемых с генератора домашней ветряной энергетической установки и подаваемых на аккумуляторные батареи, необходим обязательно. Иначе АКБ быстро выйдет из строя.

Причина очевидна: нестабильность зарядного цикла и нарушения параметров зарядки. Или же следует применять, к примеру, которым не страшны хаотичные циклы, завышенные напряжения и токи.

Функции контроля достигаются сборкой и включением в конструкцию домашнего ветрогенератора простой электронной схемы. Домашние ветряные установки обычно комплектуются относительно простыми схемами.

Принципиальная схема контроллера заряда АКБ ветроэнергетической установки, сборка которой описывается в этой публикации. Минимум электронных компонентов и высокая надёжность

Главное назначение схем – управление реле, переключающего выходы ветрогенератора на аккумуляторную батарею или на балластную нагрузку. Переключение выполняется в зависимости от текущего уровня напряжения на клеммах АКБ.

Традиционная для домашних ветряков схема контроллера применялась и в этом случае. Электронная плата содержит небольшое число электронных компонентов. Схему достаточно просто спаять своими руками в домашних условиях.

Принцип построения обеспечивает зарядку аккумуляторов до момента, пока не будет достигнут граничный предел напряжения на клеммах. Затем реле переключает линию на установленный балласт. Реле нужно брать с контактной группой под высокие токи, не менее 40-60А.

Настройка схемы предполагает регулировку триммеров под установку соответствующих напряжений контрольных точек «А» и «В». Оптимальные значения напряжений в этих точках равны: для «А» — 7,25 вольт; для «В» — 5,9 вольт.

Если схема настроена под такие параметры, аккумуляторная батарея будет отключаться при достижении на клеммах напряжения 14,5 В и вновь подключаться к линии ветрогенератора при напряжении на клеммах 11,8 В.

Структурная электрическая схема домашнего ветряка: А1…А3 — аккумуляторная батарея; В1 — вентилятор; Ф1 — сглаживающий фильтр; Л1…Л3 — лампы накаливания (балласт); Д1…Д3 — мощные диоды

Схемой ветрогенератора предусмотрено управление вентилятором «3» (может использоваться для вентиляции газов АКБ) и альтернативной нагрузкой «4» через силовые транзисторы серии IRF.

Состояние выходов отмечают светодиоды красного и зелёного свечения. Предусмотрена установка ручного управления состоянием контроллера через кнопки «1» и «2».

Особенности подключения системы

Завершая публикацию, следует отметить одну важную особенность. (при условии уже работающей турбины) необходимо проводить следующей последовательностью:

  1. Подключить контакты «АКБ» на клеммы аккумулятора.
  2. Подключить контакты ветрогенератора на клеммы реле.

Если такую последовательность не соблюдать, существует высокий риск вывода контроллера из строя.

Источник http://mdco.ru/dymoudalenie/vetrogenerator-svoimi-rukami-chertezhi-izgotovlenie-sdelaem-vetryanoi.html

Источник http://assz.ru/vetrovye-elektrostancii-dlya-doma-svoimi-rukami-chertezhi-vetrogenerator/

Источник