Как правильно сделать контур заземления; советы электрика

Содержание

Как правильно сделать контур заземления – советы электрика

Как правильно сделать контур заземления: таблицы, формулы

Основным элементом обеспечения безопасности электроустановок является защитное заземление. Сопутствующие системы: автоматические защитные выключатели, предохранители, молниезащита — не могут функционировать при его отсутствии, и становятся бесполезными.

Что такое заземление

Это комплекс, состоящий из металлических конструкций и проводников, который обеспечивает электрический контакт корпуса электроустановки с физической землей, то есть с грунтом. Система начинается с заземлителя: металлического электрода, заземленного в грунт. Эти элементы не могут быть одиночными, для надежности они объединяются в заземляющий контур.

Как это работает

Внешний контур заземления (который находится непосредственно в грунте), соединяется с помощью надежного проводника с внутренним контуром в помещении, или с щитком заземления.

Далее, с помощью внутренней сети защитных проводников, производится подключение к корпусам электроустановок, и контактам заземления на коммутационных устройствах (распределительные щитки, коробки, розетки и прочее).

Устройства, генерирующие электроэнергию, также имеют систему заземления, с которой соединяется нулевая шина.

При возникновении аварийной ситуации (фаза соединилась с корпусом электроустановки), возникает электрическая цепь между фазным проводником и нулевой шиной по линии заземления.

Сила тока в аварийной цепи спонтанно возрастает, срабатывает устройство защитного отключения (автоматический выключатель) или перегорает предохранительная вставка.

Результат работы исправной системы:

  • не происходит возгорание силового кабеля (опасность пожара);
  • предотвращается возможность поражения электротоком при касании аварийного корпуса электроустановки.

Сопротивление тела человека в десятки раз выше, чем сопротивление заземления. Поэтому сила тока (при наличии фазы на корпусе электроустановки) не достигнет опасной для жизни величины.

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

  • Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

  • Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:
  • ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.

Технология проведения работ

Выбираем место размещения заземлителей. Разумеется, недалеко от дома (объекта), чтобы не пришлось прокладывать длинный проводник, который придется механически защищать.

Желательно, чтобы вся площадь контура находилась на территории, которую вы контролируете (являетесь собственником). Чтобы в один прекрасный момент, ваша защитная «земля» не была выкопана пьяным экскаваторщиком.

Так что забивать штыри за забором не будем.

Подойдет огород (за исключением картофельной грядки), палисадник, клумба возле дома. Возделываемые участки предпочтительнее, они регулярно поливаются. А дополнительная влага в земле пойдет на пользу заземлению.

Если ваш грунт обладает низким удельным сопротивлением — можно установить заземление на площадке, которая затем будет покрыта асфальтом или плиткой. Под искусственным покрытием земля не пересушивается.

Да и риск повредить контур заземления минимален.

В зависимости от формы площадки, выбираем порядок расположения электродов: в линию, или треугольником.

Если выбран треугольник — размечаем площадку соответствующей формы со сторонами 2.5–3 метра. Копаем траншею в форме равностороннего треугольника на глубину 70–100 см, шириной 50–70 см.

Мы знаем, что все заземлители соединяются между собой. Проводник должен быть углублен на расстояние не менее 50 см, с учетом минимального уровня грунта (например, вскопка грядки).

Если сверху будет уложено покрытие — его толщина в расчет не берется. Только чистый грунт.

Можно выбрать весь грунт, не только по периметру траншеи. Получится треугольная яма глубиной 0.7–1.0 м. Готовый контур можно будет засыпать грунтом с низким удельным сопротивлением. Например, золой или пеплом. Соли проникнут в землю, и будут способствовать снижению общего сопротивления растекания тока.

После чего, по углам ямы (траншеи) начинаем забивать электроды.

Параметры заземлителей (рассматриваем вертикальное расположение)

  • Сталь без гальванического покрытия:

Круг — диаметр 16 мм.

Труба — диаметр 32 мм.

Прямоугольник или уголок — площадь поперечного сечения 100 мм².

Круг — диаметр 12 мм.

Труба — диаметр 25 мм.

Прямоугольник или уголок — площадь поперечного сечения 75 мм².

Круг — диаметр 12 мм.

Труба — диаметр 20 мм.

Прямоугольник или уголок — площадь поперечного сечения 50 мм².

Грунт должен плотно облегать металлическую поверхность заземлителя. Красить электроды запрещено!

А как быть, если по расчетам длина каждого из трех электродов превышает 1.5–2 метра? Есть небольшие секреты.

  1. Электроды забивают не кувалдой, а вибратором, отбойным молотком с насадкой, или перфоратором. Кувалда подойдет для высоты чуть более 1 метра. Это вариант для идеального грунта с наименьшим сопротивлением.
  2. Совершенно не обязательно устанавливать трехметровую стремянку. Длинные электроды соединяются между собой по мере погружения в грунт. Если вы купили фабричный комплект — заземлители составные, можно набрать из сегментов любую длину.
  3. Для кустарного изготовления также есть способ забить в землю 4 метровый уголок. Нарезаем электрод на куски по 1.5 метра. Забиваем первый сегмент. Привариваем к нему следующий — забиваем далее. И так до расчетной глубины.
  4. Если забить стержни на расчетную глубину не получается в принципе — опять же берем количеством. Линейный перерасчет (типа: вместо трех по 4 метра, забиваем шесть по 2 метра длиной) не работает. Количество заземлителей определяется только последующим замером сопротивления растекания тока.

Соединяем электроды проводником. Если арматура стальная — лучше всего подойдет сварка. Медные стержни соединяются болтовой стяжкой, проводник должен иметь сечение не менее 30% от сечения электродов.

После сборки контура, проводим замеры сопротивления растекания тока. Требования к контуру заземления для индивидуального жилья — 10 Ом.

Измерение лучше доверить сертифицированным специалистам, у которых имеется соответствующее оборудование. Тем более, что при получении ТУ от энергетиков, вам все равно придется представить систему заземления для измерений.

Если сопротивление выше нормы — добавляем электроды и привариваем их к контуру. Пока не получим норму.

Контур заземления внутри объекта

Как правило, это стальная шина, проложенная открытым способом по внутренней поверхности стен, вблизи пола.

В индивидуальных жилых домах монтаж внутреннего контура заземления не проводится. По причине невысокого класса опасности помещения, и небольшого количества электроустановок. Вместо внутреннего контура устанавливается заземляющий щиток, или главная заземляющая шина (ГХШ).

Щиток соединяется либо с внутренним контуром (как на иллюстрации), либо с помощью проводника с внешним контуром заземления. Непосредственно от щитка выполняется разводка проводников защитного заземления по электроустановкам. Часто вместо щитка заземления, может применяться контактная колодка «PE», непосредственно во входном щите квартиры.

Мы подробно рассмотрели, что такое контур заземления, для чего он нужен, и каким он должен быть согласно ПУЭ. Самостоятельная установка не снижает ответственности: от выполнения требований безопасности зависит ваша жизнь, и жизнь домочадцев.

Видео по теме

Как сделать контур заземления?

Всем известно, что заземление служит для защиты человека от поражения электрическим током, а также это устройство отлично защищает от возникновения пожаров, которые могут возникать в результате замыканий фазных проводников на землю, в жилых и различных других помещениях.

Если брать квартиру, то с устройством заземления в ней все понятно, оно смонтировано при строительстве многоэтажного дома согласно его проекту.

А когда взять частные дома, которые находятся в сельской местности, то здесь проблема устройства заземления ложится на плечи его владельца, с которой ему можно легко справится.

Как замерить сопротивление контура заземления

Если контур заземления уже смонтирован, то перед его использованием, необходимо произвести его испытание сопротивления по отношению к земле, которое не должно превышать допустимых стандартных значений.

И чтобы получить правильные числа, которые являются результатом испытаний контура заземления, необходимо использовать специальный для таких испытаний прибор М416.

Перед тем, как выполнить измерения заземлителей нужно запомнить следующие соотношения, что сопротивление заземляющего контура должно равняться:

  • 2Ом для однофазной сети напряжением 380В;
  • 4Ом для однофазной сети напряжением 220В;
  • 8Ом для однофазной сети напряжением 127В;
  • 2Ом для трех фазной сети напряжением 660В;
  • 4Ом для трехфазной сети напряжением 380В;
  • 8Ом для трехфазной сети напряжением 220В.

Схема подключения прибора для измерения заземляющего контура показана на рисунке.

Как сделать контур заземления 380в

Перед тем как приступить к монтажу контура заземления необходимо правильно подобрать материал для этой цели, а также вооружится некоторыми знаниями, которые помогут правильно выполнить такую работу.

И первым шагом устройства заземляющего контура – это правильный его расчет, который можно произвести с помощью следующей формулы: R=R1/Ku*N, где R1 – это сопротивление одного электрода, Кu – коэффициент использования, характеризующий нагрузку электрической сети, N – количество заземлителей.

Второй шаг заключается в подборе материала, из которого будет смонтирован заземляющий контур, при учете следующих к нему требований:

  • если в качестве электрода берется водопроводная металлическая труба, то вне зависимости от ее диаметра, толщина стенки должна быть не менее 3,5мм;
  • если в качестве электрода берется уголок, то вне зависимости от его размеров, толщина должна быть не менее 4мм;
  • если в качестве электрода берется арматура, то ее диаметр должен быть не менее 16мм;
  • полоса, которая будет связывать заземляющие электроды, должна быть размером не менее 25*4мм.

Третий шаг это монтаж элементов заземляющего контура, который выполняется по периметру выбранной фигуры. Чаще всего заземляющий контур монтируют в виде треугольника.

Для этого делают треугольную разметку, в которой длинна одной стороны этой фигуры, должна быть равна длине одного электрода, а именно 2м. Потом в траншее глубиной 0,5 м, которая выкопана по периметру этого треугольника, в углы забивают три электрода, и связывают их металлической полосой при помощи сварки.

Четвертый шаг заключается в том, что при помощи той же металлической полосы производят ввод заземляющего устройства в дом, которое должно подключаться к главному распределительному щитку.

Как проверить контур заземления мультиметром

Часто так бывает, что когда необходимо произвести замеры параметров заземляющего устройства возникают трудности из-за отсутствия специального прибора, о котором было рассказано выше в этой статье.

И какой же выход в такой ситуации? Все очень просто. Существует метод проведения замеров заземляющего устройства с помощью мульти метра.

Для этого, нужно найти какой ни будь заведомо заземленный предмет в доме, например ванну в ванной комнате, к которому необходимо подключить один из измерительных щупов мульти метра.

На следующем этапе надо переключатель этого прибора поставить в положение измерения сопротивления, а вторым измерительным щупом коснуться заземляющего контакта розетки, к которому должен быть подключен заземляющий проводник.

Результатом такого измерения должно быть значение, которое не превышает 4Ом.

Как сделать контур заземления

Давно прошло то время, когда наличие защитного заземления было прерогативой исключительно промышленных предприятий. С ростом количества бытовой техники в нашем жилище, защитное заземление стало непременным атрибутом любого частного дома. И это неудивительно. Любое нарушение в изоляции электроприборов способно привести к весьма серьезным последствиям для обитателей дома.

Лучший способ обезопасить себя – оборудовать заземление. Нет необходимости привлекать к устройству контура заземления дома профессионалов. С этой задачей вполне справится любой желающий. Главное – терпение и внимательность во время работы.

Предназначение и устройство контура заземления

Защитное заземление представляет собой соединение между токоведущими частями электроустановок и землей, выполненное преднамеренно.

При нормальной работе электроприборов их корпус не находится под напряжением. Работать с такими приборами безопасно. К сожалению, чем больше приборов, тем выше вероятность выхода какого-либо из них из строя. Малейшее повреждение изоляционного слоя – и корпус прибора окажется под напряжением. Прикасаться к подобному прибору смертельно опасно.

Именно такие ситуации и предотвращает защитное заземление. Всем известно, что электрический ток течет в сторону с наименьшим сопротивлением. Наличие контура заземления в частном доме с низким значением сопротивления – залог того, что ток направится в землю.

Самый распространенный вариант контура заземления представляет собой электроды, заглубленные в грунт. Они соединены между собой в виде замкнутого контура определенной формы. Нередко используется треугольная форма контура.

Возможно выполнение контура заземления вдоль периметра здания. Среди основных критериев выбора формы контура выделяют удобство его монтажа и размеры территории, используемой для его устройства.

Контур заземления присоединяют к электрощиту при помощи специального кабеля заземления.

Оптимальным расстоянием между домом и контуром заземления считается 5 м. При этом расстояние ближе 1 м и дальше 10 м считается недопустимым.

Электроды заглубляются в почву на 1,5 – 3 м. Выбор глубины для каждого отдельного случая зависит от структуры грунта и его влажности. Чем больше насыщен грунт водой, тем меньше заглубляют электроды.

Материалы, необходимые для монтажа контура заземления

Как правило контур заземления делают из подручных материалов. Заземляющим электродом способен послужить любой стержень, выполненный из черного металла. Выбор весьма широк.

Главный критерий – удобство при забивании в грунт. В основном используются стальные уголки. Возможно использование арматуры гладкой структуры, труб, двутавра.

Единственное требование – сечение металла от 1,5 см2.

Для определения количества необходимых электродов, расчеты применяются крайне редко. В основном используют опытный путь. Самое распространенное количество электродов – три. Таким образом, получается контур заземления треугольной формы.

Вершинами треугольника служат электроды. Расстояние между соседними электродами менее 1,2 м недопустимо. Его рассчитывают исходя из сопротивления грунта. Соединение электродов между собой осуществляется с помощью полос металла.

Подобная полоса служит и для соединения контура с распределительным.

Перед монтажем контура заземления обязательно проконсультируйтесь с квалифицированным электриком, проживающем в этом же районе. Подобный специалист из опыта знает как сделать контур заземления, идеально подходящий для данного района:

  • каково должно быть расстояние от здания до контура;
  • каково должно быть расстояние между соседними электродами;
  • количество необходимых электродов;
  • глубина, на которую следует забить электроды;
  • глубина, на которой следует расположить контур.

Неоспоримым преимуществом самодельной системы заземления является ее низкая цена.

Необязательно делать контур заземления только из подручных материалов. В продаже появились специальные готовые системы заземления.

Комплект модульных систем заземления состоит из следующего:

  • стержни, изготовленные из высококачественной стали и покрытые медью. Длина стержней составляет около 1,5 м, диаметр – 0,14 м. Каждый стержень снабжен нарезкой омедненной резьбы;
  • латунные муфты для соединения элементов контура заземления;
  • наконечники. Способствуют облегчению забивания стержня в грунт. Крепятся к стержню при помощи резьбы. Существуют наконечники нескольких видов. Предназначены для различных типов грунта;
  • зажимы для присоединения горизонтальных элементов к вертикальным;
  • антикоррозийная паста для обработки всех элементов системы заземления.

Преимущества модульных систем заземления:

  1. Стержни, изготовленные из нержавеющей стали и покрытые медью, менее подвержены коррозии.
  2. Нет необходимости в сварочных работах.
  3. Нет необходимости в специальном оборудовании при монтаже.
  4. Экономия площади. Для оборудования всей системы достаточно 1 м2.
  5. Долговечность.

Расчет заземления

Какой бы вариант системы заземления ни был выбран, обязательным этапом является предварительные расчеты параметров заземления. Обычно заземление выполняют опытным путем. Этот способ поможет избежать множества сложных расчетов.

Алгоритм монтажа контура заземления в данном случае следующий:

  • Строим на расстоянии 5 м от дома контур заземления треугольной формы. Длину электродов берем 3 м, расстояние между ними 2 м. Используем стержни из металла.
  • Соединяем электроды между собой.
  • Производим замер сопротивления контура заземления. Для измерения сопротивления используем специальный прибор – омметр. Максимально допустимое сопротивление контура заземления составляет 10 Ом. Оптимальное значение — 4 Ом. Сравниваем полученный результат с оптимальным значением.
  • При несоответствии полученного значения сопротивления оптимальному, добавляем в контур еще один электрод.
  • Соединяем все электроды в новый контур.
  • Вновь измеряем сопротивление контура.
  • Повторяем указанные выше процедуры до тех пор, пока не добьемся значения сопротивления контура 4 Ом.

Существует возможность определить количество необходимых электродов и длину горизонтального заземлителя при помощи расчетов:

  • При наличии на участке однородного грунта, определяем сопротивление одного электрода, используя формулу 1:

Для определения значения удельного сопротивления грунта используйте таблицу 1.

При наличии на участке неоднородного грунта определим сопротивление одного электрода по формуле 2:

При этом значения сезонного климатического коэффициента приведены в таблице 2:

По формуле 3 определим необходимое количество электродов без учета сопротивления горизонтального заземлителя:

Для определения нормируемого сопротивления заземления воспользуемся таблицей 3:

Определим сопротивление горизонтального заземлителя по формуле 4:

При этом для определения длины заземлителя используем формулу 5:

Рассчитаем сопротивление электродов с учетом сопротивления горизонтального заземлителя по формуле 6:

Определим окончательное количество электродов, необходимых для устройства контура заземления:

Для определения коэффициента спроса вертикальных заземлителей воспользуемся таблицей 4:

Окончательное значение количества электродов, полученное в результате приведенных выше расчетов, округляем до большего целого. Каким методом воспользоваться – опытным либо расчетным – личное дело каждого. Выбирайте любой, исходя из собственных предпочтений.

Как сделать контур заземления своими руками

После проведения всех предварительных расчетов и подготовки необходимых материалов приступаем непосредственно к монтажу контура заземления.

Рассмотрим основные этапы монтажа треугольного контура заземления, схема которого представлена на рисунке.

  • На расстоянии порядка 5 м от дома в удобном месте выройте траншею в виде равностороннего треугольника. Глубина траншеи около 1 м, ширина – 0,5 м. Длина стороны треугольника должна соответствовать выполненным ранее расчетам. От любого угла к распределительному щитку дома прокопайте траншею.
  • Вбейте в каждую из вершин треугольника электроды. Концы электродов предварительно заострите при помощи болгарки.
  • При очень твердом грунте предварительно пробурите скважины под электроды. Вставив в скважину электрод, засыпьте ее смесью грунта и соли.
  • Не погружайте электрод в грунт полностью, оставьте верхушку над землей.
  • Соедините между собой электроды стальной полосой, шириной не менее 40 и толщиной не менее 5 мм. Для крепления электродов и полосы используйте сварку.
  • Соедините один из электродов с распределительным щитком, проложив в ранее подготовленной траншее идентичную стальную полосу.
  • Соедините полосу и распределительный щиток при помощи 10 мм болта. Обязательно приварите болт к щитку.
  • Следующим этапом является измерение контура заземления. Для измерения воспользуйтесь омметром.
  • Если результат измерений соответствует оптимальному значению сопротивления – контур заземления смонтирован правильно. Можно приступать к закапыванию траншей.
  • Если же при измерении контура заземления выяснится, что сопротивление превышает нормативное значение – добавьте еще один электрод.
  • Для закапывания траншеи используйте исключительно однородный грунт. Наличие примесей щебня и строительного мусора недопустимо.
  • Контур заземления готов.

Как правильно сделать контур заземления

ВАЖНО! Для того, что бы сохранить статью в закладки, нажмите: CTRL + D

Заземление в частном доме

Для того чтобы создать все условия электробезопасности в частном доме необходимо при монтаже новой электропроводки или реконструкции старой в общий план работ включить такие работы как монтаж заземления. Монтаж заземления в частном доме не составляет особых трудностей по сравнению с монтажом заземления в многоэтажных домах.

Контур заземления в частном доме состоит из вбитых в почву вертикальных заземлителей, которые соединяются между собой горизонтальными заземлителями и заземляющего проводника который соединяет контур заземления с электрощитом.

В качестве вертикальных заземлителей обычно используют стальной уголок размерами 50×50х5 мм. Для горизонтальных заземлителей подойдет полосовая сталь 40×4 мм. Материалом для заземляющего проводника служит круглая сталь сечением 8-10 мм2. Более точные размеры и материал для заземлителей и заземляющих проводников можно найти в ПУЭ-7, раздел 1.7.

Запрещено в качестве заземлителей и заземляющих проводников использовать арматуру. Объясняется это тем что наружный слой арматуры каленый, из за этого распределение тока по сечению нарушается, а также по другому проходят процессы окисления (быстрее ржавеет).

Конструктивно контур заземления делают в виде равностороннего треугольника. Для этого, во дворе дома делаем разметку в виде равностороннего треугольника. Рекомендуется прокладывать контур заземления на расстоянии не более 1 м от фундамента дома.

После разметки, выкапываем траншею по периметру размеченного нами треугольника глубиной приметно 0.8-1 м. и шириной достаточной для удобного обваривания, примерно 0.5-0.7 м. В этой траншее будет прокладываться горизонтальные заземлители.

Теперь по вершинам треугольника будут вбиваться вертикальные заземлители на глубину 2-3 м. Забивать в землю уголки длиной 2-3 м можно обычной кувалдой, это абсолютно не трудно. Для облегчения этой работы уголок на конце заостряют, чтобы он лучше входил в землю.

Также можно выкопать или пробурить небольшие колодцы по вершинам треугольника глубиной до 1.5 м, это даст возможность забить уголок в меньший слой земли.

После того как подготовительные работы выполнены, выбрано место, произведена разметка и выкопаны траншеи необходимых размеров, приступаем к непосредственному монтажу контура заземления. В траншее по вершинам треугольника забиваем уголки в землю, при этом забиваем их не полностью, а так чтобы край уголка длиной 20-25 см торчал в траншее.

Когда все вертикальные заземлители будут вбиты в землю, их необходимо соединить между собой горизонтальными заземлителями, создав таким образом замкнутый контур.

Делается это с помощью обычной сварки, привариваем к торчащим уголкам стальную полосу. Причем соединять уголок и полосу необходимо именно сваркой, ни в коем случае не применять болтовые соединения, так как со временем эти места окисляются что приводит к потере контакта и неэффективности функционирования заземляющего контура в процессе эксплуатации.

После того как контур заземления собран, необходимо соединить этот контур с электрощитом. Для этого также пользуясь сваркой, привариваем заземляющий проводник, стальную проволоку сечением 8-10 мм, к контуру заземления и прокладываем ее в траншее к электрощиту. На конце подведенной к электрощиту проволоки привариваем болтом М6 или М8 для крепления провода заземления.

Если нет стальной проволоки можно в качестве заземляющего проводника использовать такую же стальную полосу, как и для горизонтального заземлителя.

Полоса с точки зрения эффективности подойдет лучше, чем проволока, так как площадь прикосновения ее с землей будет больше, однако стальную полосу сложнее прокладывать в местах перегиба траншеи, потому что согнуть ее труднее чем стальную проволоку.

После проведения сварочных работ места сварки необходимо обработать от коррозии антикоррозийными составами. После таких несложных манипуляций заземление в частном доме прослужит Вам не один десяток лет.

Некоторые новички-электрики думают, что для того чтобы заземления служило как можно дольше, его необходимо защитить от коррозии путем преднамеренного окрашивания. Этого нельзя делать категорически!

Монтаж такого контура заземления делать абсолютно бессмысленно. Металл должен иметь хорошую связь с землей, а краска препятствует этому, создавая большое сопротивления.

На этом этапе монтаж контура заземления для дома закончен. Убедившись в том что места соединения сваркой надежно обварены, можно засыпать землей выкопанные траншеи. Такая специфика монтажа заземляющего контура также применяется при монтаже молниезащиты.

Подключение в электрощите при наличии контура заземления в частном доме

Как правило, электропитание в частных домах осуществляется воздушными линиями с системой заземления TN-C. В такой системе нейтраль источника питания заземлена, а к дому подходят фазный провод L и совмещенный нулевой защитный и рабочий провод PEN.

После того как в доме произведен монтаж собственного контура заземления необходимо произвести его подключение к электроустановкам дома. Сделать это можно двумя способами:

  • — переделать систему TN-C на систему заземления TN-C-S;
  • — произвести подключение дома к контуру заземления по системе ТТ.

Подключение дома к контуру заземления по системе TN-C-S

Как известно в системе заземления TN-C не предусмотрено отдельного защитного проводника, поэтому в доме переделываем систему TN-C на TN-C-S. Осуществляется это разделением в электрощите совмещенного нулевого рабочего и защитного PEN проводника, на два отдельных, рабочий N и защитный PE.

И так, к вашему дому подходят два питающих провода, фазный L и совмещенный PEN. Чтобы получить в доме трехжильную электропроводку с отдельным фазным, нулевым и защитным проводом необходимо в вводном электрощите дома произвести правильное разделение системы TN-C на TN-C-S.

Для этого установите в щите шину которая металлически связана с щитом, это будет шина заземления РЕ к ней будет подключаться PEN проводник со стороны источника питания.

Далее от шины РЕ идет перемычка на шину нулевого рабочего проводника N, шина нулевого рабочего проводника должна быть изолирована от щита. Ну и фазный провод подключаете на отдельную шину, которая тоже изолирована от щита.

После всего этого необходимо соединить электрощит с контуром заземления дома. Это делается с помощью медного многожильного провода, один конец провода соединяете с электрощитом, другой конец крепите к заземляющему проводнику с помощь болта на конце, который для этой цели и был специально приварен.

Подключение дома к контуру заземления по системе TТ

Для такого подключения не нужно проводить ни каких разделений PEN проводника. Фазный провод подключаете к изолированной от щита шине. Совмещенный PEN проводник источника питания подключаете к шине, которая изолирована от щита и в дальнейшем считаете PEN просто нулевым проводом. Затем подключаете корпус щита к контуру заземления дома.

Как видно из схемы, контур заземления дома не имеет ни какой электрической связи с PEN проводником. Подключение заземления таким способом имеет несколько преимуществ по сравнению с подключением по системе TN-C-S.

В случае отгорания PEN проводника со стороны источника питания, все потребители будут подключены к вашему заземлению. А это чревато многими негативными последствиями. А так ваше заземление не будет иметь связи с PEN проводником, это гарантирует нулевой потенциал на корпусе ваших электроприборов.

Часто встречается и такое, когда на нулевом проводнике из за неравномерной нагрузки по фазам (перекос фаз) появляется напряжение, которое может достигать значений от 5 до 40 В. И когда есть связь между нулем сети и защитным проводником, на корпусах вашей техники также может возникать небольшой потенциал.

Конечно, при возникновении такой ситуации должно сработать УЗО, но зачем надеяться на УЗО. Лучше и правильнее будет не испытывать судьбу и не доводить до такой ситуации.

Контур заземления: устройство, расчет и монтаж своими руками

Если вы планируете построить или купить собственный дом, вам необходимо будет позаботиться о безопасности использования электропроводки. Ни для кого не секрет, что в подавляющем большинстве частных домов и квартир, где уже имеется электропроводка, полностью отсутствует заземление, или же оно выполнено с нарушением соответствующих правил безопасности.

В данном уроке мы расскажем умельцам о том, как правильно изготовить контур заземления своими руками и выполнить его внутренний монтаж для соединения с общей системой энергоснабжения жилья. Ниже будет наведена схема наружного и внутреннего контуров заземления, перечислены все необходимые материалы и подробно описан расчет данной системы.

Что собой представляет контур заземления

В целом устройство заземления представляет собой несколько соединенных между собой проводников, которые расположены в горизонтальной плоскости.

Данная конструкция располагается рядом со зданием и выглядит как большая геометрическая фигура, составленная из электродов.

Для чего же предназначен и как правильно провести монтаж контура заземления, а также какие функции он должен выполнять? Давайте перечислим основные задания, для которых изготовляется такое устройство:

  1. Обеспечение безопасности жильцов и защита их от поражения электрическим током.
  2. Защита бытовой техники и бытовых приборов от скачков сетевого напряжения.
  3. Устройство защиты здания или помещения от удара молнией.
  4. Сопротивление растеканию электрической энергии.

Вот для этих четырех основных функций и необходимо провести точный расчет, а также монтаж заземляющего контура. Схема его сборки очень проста и понятна даже школьнику, а основной расчет состоит из определения длины и сечения электродов, которые будут закопаны в грунт. Теперь приступим непосредственно к монтажу данного изделия.

Как собрать внутренний контур заземления своими руками

Для изготовления контура чаще всего используется стальная арматура, уголки и стальные трубы, которые выполняют функцию заземления. Их длина может составлять до 3 метров.

После того, как выполнен необходимый расчет, трубы забивают в грунт, используя для этого кувалду. Иногда сверху контур заливается бетоном, однако делать это не рекомендуется, поскольку со временем может возникнуть необходимость в замене отдельных элементов.

Если устройство залить бетоном, то отремонтировать его будет уже невозможно.

Как указывает схема, концы труб сверху соединяются стальной полосой, толщина которой должна составлять не менее 4 миллиметров.

Сооружая контур заземления, укладывать куски полосы нужно в предварительно выкопанные траншеи, примерно на 0,5 – 1 метр ниже уровня грунта, после чего их нужно соединить с трубами используя сварочный аппарат.

Тут уже точный расчет ни к чему, просто необходимо надежно приварить все стальные элементы.

С целью экономии места возле здания все эти группы можно расположить по периметру вокруг фундамента или же по периметру усадьбы.

Монтаж контура заземления можно без проблем выполнить собственноручно, на это уйдет совсем немного времени.

К готовому контуру, который образует геометрическую фигуру, подключаются все розетки и бытовые приборы, которые расположены внутри здания. Особенно данная схема важна для трехфазной сети с напряжением 380 вольт.

Характеристики контура заземления: что на них влияет

Прежде, чем начать забивать трубы и выкапывать траншеи под контур заземления, необходимо предварительно провести некоторые измерения и сделать расчет характеристик почвы, поскольку от ее сопротивления будет в целом зависеть сопротивление и надежность заземления. Данный показатель взаимосвязан с указанными ниже свойствами и факторами:

  1. Максимальная глубина погружения контура заземления.
  2. Состояние и химические характеристики земельного настила.
  3. Тип грунта (чернозем, глина и пр.) и его влажность.
  4. Материал, из которого изготовлены элементы контура.
  5. Общее число заземляющих групп и количество электродов в каждой из них.

Самым идеальным вариантом для расположения контура заземления считается чернозем, суглинки и глинистый грунт. При этом необходимо помнить, что на поверхности скал и каменных покровов сооружать заземление категорически запрещается, так как камень часто проводит ток, имея достаточно низкое собственное сопротивление.

Расчет контура и его принципиальная схема

Перед тем как сделать контур заземления для частного дома, обязательно нужно ознакомиться с элементарными расчетами и общей схемой конструкции:

  1. Расстояние от того места, где входят в дом электрические кабеля, до устройства АС контура должно составлять не менее 50 метров. Такая дистанция является самым оптимальным вариантом для установки горизонтальных и вертикальных электродов. Также не рекомендуется покрывать поверхность стальных электродов краской или битумными веществами, поскольку это существенно ухудшит электрические характеристики заземления.
  2. Для определения размеров и сечения электродов контура заземления мы предлагаем воспользоваться специальной таблицей, в которой указаны различные значения в зависимости от материала. Таблица значительно упростит расчет.
  3. Вся конструкция контура собирается из стальных уголков и ленты, которые соединяются между собой дуговой электросваркой. Во время приваривания элементов конструкции заземления необходимо проверять прочность их крепления.

Порядок изготовления и установки в грунт замкнутого контура прост и понятен. Сначала необходимо выкопать ров необходимой глубины (обычно 70-80 см).

В том случае, если общая мощность потребления электроэнергии всеми приборами в доме достаточно большая, глубину траншеи лучше увеличить до 1,0-1,2 метра.

Конфигурация рва должна напоминать правильный равносторонний треугольник, стороны которого составляют 1 метр. Перед тем, как начать копать ров, лучше разметить его форму на поверхности грунта.

По углам треугольной траншеи забываются, как уже было описано, трубы или уголок. От глубины их погружения будет зависеть сопротивление контура заземления. Желательно, чтобы длина забитых стальных труб составляла не менее 2 метров.

При высокой жесткости грунта лучше воспользоваться буром, а не кувалдой. К торчащим концам труб крепятся стальные полосы контактно-дуговой сваркой. На этом сооружение заземления можно считать завершенным.

Теперь необходима только проверка контура заземления для определения его сопротивления.

Несколько полезных советов, которые необходимо учесть при монтаже контура заземления своими руками:

  1. Концы труб или уголков, которые будут вбиваться в грунт, желательно заострить при помощи болгарки, что позволит облегчить их погружение в землю.
  2. Верхние концы уголков после забивания должны выступать над поверхностью дна траншеи на 20-30 см. Это необходимо для их более легкого соединения полосой.
  3. Готовый сваренный контур необходимо соединить с шиной заземления внутри дома, используя кабель большого сечения, и надежно зажать клеммы для хорошего контакта.
  4. Чтобы в местах сваривания сталь не подвергалась коррозии, их необходимо тщательно зачистить и покрыть влагозащитным веществом (краской, битумом).

Монтаж заземляющего контура необязательно проводить исключительно своими силами. Наоборот: и расчет, и установку произвести значительно проще, проконсультировавшись с электриками, обслуживающими участок. Таким образом, гораздо проще получить дельные советы по составу грунта и особенностям устройства заземления.

Сооружение внешнего контура не представляет никакой сложности в монтаже, просто требует физических усилий и умения работать со сварочным аппаратом, а также соблюдение техники безопасности при сварочных работах.

А вот необходимые манипуляции с электрощитом далеко не всегда так просты. На этом этапе полезно и выгодно пригласить специалиста, который заодно проверить работу всей системы и составит необходимые документы.

Защитное заземление своими руками: порядок устройства и правила безопасности

Согласно электротехническим нормативам прошедшего века сооружение защитного заземления в частных владениях считалось делом необязательным. Нагрузка была невелика, с задачами отвода электроутечек сносно справлялись стальные трубопроводы. Время идет. Сталь и чугун коммуникаций заменил пластик и композиты.

Загородная собственность наполнилась многочисленной бытовой техникой. Вода и тепло поставляются с помощью мощных насосов, работают нагревательные приборы. Пора защищать себя лично и агрегаты от капризов полезного, но своенравного электротока.

Сделаем заземление своими руками! Работа не сложная, у мастеровитого хозяина проблем с выполнением не возникнет.

Цель заземления заключается в отводе электротока, нашедшего в изоляции лазейку для выхода на поверхность. Поверхностью этой являются металлические корпуса и крепежные детали стиральных машин, компьютеров, СВЧ-печей, электронагревательного оборудования.

Согласно функциональным обязанностям ток проводить они не должны, но свой металлический «бочок» утечкам и току замыкания всегда готовы подставить.

Этот радушный прием нередко ощущают хозяева прохудившейся или излишне нагруженной техники в виде легких ударов, щипков и покалываний.

Пробои на корпус бытовых агрегатов редко вызывают серьезные опасения. Ну, шарахнуло слегка: типа взбодрило. Однако видимое отсутствие серьезных рисков не повод расслабляться.

Вырвавшиеся наружу блуждающие токи способствуют головным болям, дискомфорту и необоснованному ощущению тревоги. Кроме того, незаземленное оборудование шумит, в нем возникают помехи, снижающие скорость и качество получения, обработки и передачи сигнала.

Подобные передряги не выведут технику моментально из строя, но ощутимо помогут сократить ее рабочий ресурс.

Значит, заземляющий контур необходим:

  • для защиты хозяев от электромагнитного излучения, негативного настроения и недомоганий;
  • для устранения помех в электрической сети;
  • для сохранения рабочих характеристик оборудования.

Защитное заземление устранит перечисленные невзгоды посредством предоставления току наиболее привлекательных путей для выхода. По принципу движения электричество очень напоминает воду.

Течет туда, где нет преград, где меньше сопротивление и где ему легче пройти. Т.е.

для того чтобы не пострадали люди и агрегаты, нужно банально проложить электротоку беспрепятственную тропинку «налево», в случае с заземлением по определению в землю.

Сопротивление сооружаемого пути должно быть меньше, чем у человека и подключаемой к защитному заземлению аппаратуры. Вот тогда и потечет большая часть пробившегося электричества по намеченной дорожке с наименьшими барьерами, выйдет за пределы здания и рассеется в грунте. А владельцу и технике достанется лишь нормативный минимум.

Система заземления представляет собой замкнутый или линейный контур, в составе которого:

  • два или более металлических стержня-заземлителя, строго вертикально погруженных в грунт;
  • горизонтальный заземляющий проводник, который объединяет стержни-электроды в общий контур;
  • шина, обеспечивающая вход в дом и подключение заземления к оберегаемым агрегатам.

Систем заземления у автономного строения может быть несколько, но одно из них в обязательном порядке подводится к главной заземляющей шине или к главному элементу электропроводки – к распределительному щитку с формированием металлической связи между щитком и выведенным на него заземляющим проводником.

Выбор геометрической формы для системы заземления

Самая распространенная конфигурация, согласно которой проще всего осуществить устройствозащитного контуразаземления собственными руками – равносторонний треугольник.

Треугольный в плане контур образуют три загнанных кувалдой в землю металлических стержня, расстояние между парой которых должно быть равным. Кроме треугольников системы заземления сооружаются в форме квадратов, прямых или округлых линий либо иных геометрических фигур.

Соблюдение равных расстояний между заземлителями – условие обязательное, четкая геометрия желательна, но не принципиальна.

Нередко автономные строения, наполненные всевозможной техникой, просто окружают заземляющим контуром. Прекрасный, эффективный вариант, если для этого имеются средства и достаточно свободного места на участке.

Точнее, денег особых на самостоятельную организацию заземления не нужно, а вот выбор формы контура чаще всего продиктован запланированной под устройство заземления площадкой.

Однако не стоит забывать, что при параллельном соединении заземлителей в один ряд эффективность системы будет снижена из-за влияния электродов друг на друга. В приоритете замкнутые контуры.

В комплексе защитного заземления три и более заземляющих электрода. Рабочее заземление, создаваемое для оптимизации поставляемого на приборы сигнала, может иметь два заземляющих стержня. Т.к.

грунт – проводник нелинейный, заземлителей должно быть как минимум два. Так нужно, чтобы в пространстве между ними формировалась потенциальная поверхность, способствующая растеканию тока.

Единственного стержня для этого недостаточно.

На рабочий потенциал заземляющей системы влияет расстояние между вертикальными электродами. Чем чаще они установлены, тем действенней заземление. Рекомендуемый минимум расстояния 1,0м, максимум 2,0м. При увеличении максимального предела между металлическими стержнями образуется разрыв потенциальной поверхности, он сведет к нулю все усилия по обустройству.

Между крайней точкой заземления и фундаментом расстояние должно быть более 1,0м. Безупречно система будет работать при удалении от дома на 4-6м. Дальше 10м от строения устраивать заземление бессмысленно.

Подробно об составляющих контура

Выше упоминалось, что заземление состоит из горизонтальных и вертикальных компонентов. По аналогии производят готовые наборы для оперативного устройства контуров заземления. Следуя приложенной инструкции, сооружать заземление из заводских элементов легко и приятно, но дорого.

Вертикальные проводники заземления

В качестве заземляющих вертикальных стержней для самодельного заземления могут использоваться любые длинномерные изделия из черного металлопроката без оцинковки. Данная обработка не нужна для расположенных в земле деталей, она снижает потенциал.

Нежелателен арматурный пруток с ребрами, его сложно забивать в грунт. Подойдет квадрат, полоса, швеллер и его двутавровый собрат.

Металлопрокат со сложным профилем применим, если предполагается перед монтажом системы пробурить скважины для закладки вертикальных электродов.

Распространенными материалами для изготовления вертикальных проводников являются:

  • труба с толщиной стенки не меньше 3,0мм, рекомендованный диаметр 32мм;
  • уголок с равными или разными полками с предпочтительной толщиной 5мм;
  • круг с диаметром от 10мм.

Оптимальная площадь сечения вертикального электрода 1,6 см². Отталкиваясь от этого размера, следует подбирать материал. Длина заземлителя определяется в соответствии с местной геологической ситуацией. Необходимо углубиться как минимум на полметра ниже уровня сезонного промерзания.

Второе условие, влияющее на длину металлических стержней – водонасыщенность вмещающих пород. Проще говоря, чем ниже грунтовые воды, тем длиннее нужны электроды.

Для того чтобы не мучиться с геологическими характеристиками и расчетами, сведения о глубине закладки заземлителей нужно узнать в местном энергоуправлении у дежурных электриков. Ориентировочные данные помогут в любом случае, т.к. у них есть некоторый расчетный запас эффективности.

Среднестатистический стандарт длины заземлителя варьирует от 2х до 3х метров с полуметровыми вариациями. Благоприятной для сооружения заземления средой являются суглинки, торф, насыщенные водой пески, супеси, трещиноватые обводненные глины.

Совершенно самостоятельно устроить заземление в скальных породах нереально, но способы для создания электрозащиты есть. Перед сооружением контура бурятся скважины требующейся глубины.

В них и производится установка стержней, а свободное пространство заполняется песком или супесью, перемешанной с солью или предварительно залитой соляным раствором. Приблизительно полпачки на ведро.

При недостаточной электропроводности грунтов на участке в качестве вертикальных заземлителей лучше использовать трубы. В нижней части их нужно произвольно высверлить несколько технологических отверстий.

Через трубы с отверстиями можно периодически заливать соляной раствор для уменьшения сопротивления. Соль, безусловно, поможет разрушиться электродам от коррозии, зато заземление достаточно долго будет действовать безупречно.

Потом надо будет просто стержни заменить.

Самостоятельные мастера для изготовления электродов чаще всего используют черный стальной металлопрокат. Ведь во главе собственноручных усилий заложена экономия.

Отличный, но недешевый материал для вертикальных электродов – сталь с электрохимическим медным покрытием или медь.

Заложенные в землю элементы заземления нельзя окрашивать, краска ухудшит электрохимический контакт металла с грунтами.

Заземляющая металлосвязь — горизонтальный проводник

Горизонтальный элемент заземления, объединяющий систему и подводящий ее к щитку, чаще всего выполняют из полосы шириной 40 мм, толщина полосы 4 мм. Используют также круглую сталь, реже уголок или рифленую арматуру.

Полоса приваривается к верхнему краю вертикальных заземлителей или крепится болтами. Преимущества у сварки, она надежней. Места сварных и болтовых соединений щедро обрабатываются противокоррозионной битумной мастикой или просто битумом.

Соединять обжимным способом подземные элементы заземления нельзя!

Для сооружения горизонтальной составляющей, расположенной под землей, нежелательно менять материал, чтобы при неизбежном увлажнении не формировалась гальваническая пара с ее традиционными коррозионными последствиями.

К выведенному из земли горизонтальному компоненту заземления можно присоединить алюминиевый, медный или стальной проводник.

Далее проводом для заземления вся система через приваренный болт подключается к шине, а уже от нее подается на каждый из заземляемых приборов по отдельности.

Алгоритм устройства треугольного контура

  • На выбранной для устройства системы заземления площадке размечаем точки закладки вертикальных проводников. Это вершины треугольника со сторонами примерно 1,2-1,4м.
  • Наметили контур будущей траншеи. Она будет треугольной с «отростком» для подведения заземления к точке входа в дом или в наружный щиток. Выбор минимального расстояния от контура до щитка обеспечит экономию материалов. Ширина траншеи произвольная, но учитывающая необходимость проведения в ней сварных работ. Глубина зависит от местных условий. К рекомендованному электриками уровню установки горизонтального проводника нужно прибавить 20 см. Например, если глубина расположения горизонтальной металлосвязи 0,8м, заглубить траншею нужно на 1,0м.
  • Предварительно заостренные стержни забиваем в точки их установки, периодически смачивая водой почву вокруг точки забивки. Вертикальный заземлитель должен погрузиться в землю практически весь за исключением крайних 20 см.
  • Привариваем к торчащим из земли отрезкам электродов горизонтальную связующую планку.
  • От ближайшей к заземляемому строению точки ведем планку по отрезку траншеи, прорытому к силовому шкафу. Ее выводим на стену.
  • В удобной для подключения точке подведенной к шкафу планки привариваем стальной болт резьбой наружу. Т.е. к планке будет привариваться шляпка болта, с которой нужно счистить ржавчину и оцинковку, если имелась. Для подключения заземления к расположенному внутри дома щитку в стене нужно будет выбурить отверстие, через которое будет проводиться заземляющий кабель.
  • К приваренному болту присоединяем заземляющий провод, крепим его гайкой.
  • Затем густо обрабатываем сварные швы подземных соединений битумом, наружные ботовые соединения заливаем автомобильным силиконовым герметиком.
  • Вызываем электрика с омметром и проверяем работу созданной системы заземления. Проверку проводят в сухую погоду, чтобы атмосферная влага не внесла коррективы в показания. По нормативам сопротивление контура не должно превышать 4 Ом. Если прибор подтвердил превышение сопротивления, заземление придется доработать: установить дополнительный вертикальный заземлитель и превратить треугольник в ромб.
  • Если показания прибора удовлетворят требования ПУЭ-7 и подтвердят формирование контура с достаточно низким сопротивлением, зарываем траншею, оборудование подключаем к заземлению не параллельно, а в отдельности каждую техническую единицу.

Все. Процесс сооружения заземления можно считать завершенным.

Домашний мастер, знающий как правильно сделать и грамотно подключить заземление, потратит на работу не более 2х – 3х дней.

Заземление электроустановок: виды, правила и технология

Рассматривая виды заземления, упомянем естественные и искусственные конструкции, а также разновидности систем заземления (TT, IT, TN S, TN C S, TN C). Итак, естественное заземление — это конструкции, находящиеся в земле постоянно, такие как железобетонный фундамент. Сопротивление таких предметов нигде не регламентировано, поэтому как заземление электроустановок подобные естественные конструкции использовать нельзя.

заземление дома

Однако среди видов заземления нас больше интересуют искусственные конструкции. Это когда точку электросети, оборудования или установки специально объединяют с заземляющим устройством. Состоит заземляющее устройство из заземлителя и заземляющего проводника (шина, он же проводник с низким сопротивлением). Простейший заземлитель являет собой стержень из стали или меди, но может быть и более сложным сочетанием деталей различной формы.

Что нужно знать о качественном заземлении? Нужно добиться низкого соотношения сопротивления заземления к сопротивлению растеканию тока. Как это сделать? Для улучшения качества заземления подходит расширение площади заземляющих электродов, снижение удельного электрического сопротивления грунта, увеличение концентрации солей в грунте или его нагрев, а также большее заглубление электродов заземления или увеличение их количества.

Ознакомьтесь с требованиями ПУЭ и другими стандартами, по которым нормируется электросопротивление заземляющего устройства. Сопротивление будет отличаться в зависимости от условий грунта.

Типы систем заземления

Для частного дома и квартиры подходят следующие типы заземления:

У первой и самой распространенной системы TN есть подтипы — S и C S. Вообще, для расшифровки аббревиатур нужно понять несколько моментов.

обозначение типов заземление и схемы

  1. По умолчанию, первая буква t говорит о принципе функционирования питающего источника.
  2. Вторая буква — N, T или I — указывает на принцип заземления и защиту открытых элементов отводов. T прописывают, если контур заземлен, N — если зануление осуществляется подключением к нейтрали, а I — когда электрическое оборудование не имеет электрических контактов, то есть отвод изолирован. На картинке ниже вы увидите обозначение заземления и соответствующую схему.
  3. В нынешних Госстандартах есть понятие нулевого заземляющего проводника. Он актуален для систем с напряжение до 1 кВ. Выделяют землю (PE), нулевой заземляющий проводник (N) и объединение земли с нулем (PEN).

Виды заземления и их назначение

Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.

Типы и подтипы заземления Особенности
TN популярнейший тип заземляющей системы, являющий собой комплекс из штырей, вертикально вбитых в землю до водоносного горизонта на глубину свыше 2,5 м; штыри объединены кабелем (полосой) в общий заземляющий контур для жилого здания; альтернативное название — глухозаземленная нейтраль, т. е. ноль совмещен с землей по всей длине
TN-C дешевый, но устаревший вариант с высоким риском опасности: рабочий нуль N одновременно является защитным проводом PE, поэтому при обрыве N-проводника весь потенциал перейдет на электрическое оборудование, что может привести к возгоранию или поражению током
TN-S в новых строительных проектах принимают эту подсистему, поскольку она наиболее надежная, и в тоже время дорогая (требует дополнительного проводника от подстанции к энергопотребителю); конструктивно в TN-S входят отдельный фазный провод, нейтраль N и защитный проводник PE (последние два проводника — отдельные компоненты, начиная с подстанции с глухозаземленной нейтралью)
TN-C-S это комплекс плюсов описанных выше подсистем; очень просто реализуется при реконструкции старых видов заземления нейтрали; конструктивно состоит из системы TN-C (до главного распределительного щита), а дальше нейтральный провод PEN расходится на N-проводник и защитный PE; и уже дальше организовывается подсистема TN-S; минус — образуется полное напряжение в системе при обрыве PEN-шины, проблема решается установкой защитных реле напряжения
TT электропитание идет по фазным проводам от источников с глухозаземленной нейтралью, заземление обустраивается прямо у потребителя; в обязательном порядке требуется подключение УЗО
IT IT-система не использует глухозаземленную нейтраль, нуль источника подключается через спецустройство с большим внутренним сопротивлением, у потребителя при этом устанавливается дополнительно устройство ноля и защитного заземления (см. главу 1.7 ПУЭ); метод заземления IT создает минимальные помехи

Кратко резюмируем виды заземления и их назначение:

  • IT-система снабжения подходит для специальных лабораторий;
  • TT-система актуальна для подключения временных объектов или мобильных сооружений, к примеру, на стройке;
  • подсистема TN-C-S чаще всего выбирается при реконструкции старых зданий;
  • TN-S — при проектировании новых строительных объектов;
  • TN-C обнаруживается преимущественно в старом жилом фонде и в настоящее время не используется ввиду высоких рисков пожарной опасности и удара электрическим током;
  • TN-система оптимально пригодна для жилых домов (обращайте внимание на современные подсистемы из этой категории).

Не пользуйтесь трубами водопровода, отопления, газа в качестве защитного заземления! Так же как и части оградительных конструкций из металла, они провоцируют при аварийной ситуации появление полного напряжения 220V на своих элементах, что несет угрозу здоровью и жизни человека и животных.

заземление через трубу

Зачем нужно заземление

Заземление в частных домах нужно, чтобы обезопасить жильцов от поражения электричеством. Через розетки заземляют все электроприборы: чайники, электроплиты, стиральные машины.

гл. 1.7 «Заземление и защитные меры электробезопасности» правил устройства электроустановок

Бойлеры также заземляют через розетки, а еще отдельным проводом делают заземление на корпус — на случай, если бак потечет. В большинство бойлеров встроено устройство защитного отключения — УЗО, которое отключит нагреватель при утечке тока. Заземление в этом случае отведет остатки напряжения.

В бане заземление особенно необходимо, так как вода — хороший проводник тока. Иногда при монтаже проводки в бане хозяева применяют не специальный, а обычный электрический кабель, его изоляция плавится от высоких температур. Оголившийся кабель может передать напряжение на разлившуюся воду или, например, через воду на металлическую печь.

Еще кабель могут проложить под фольгированной теплоизоляцией, которая станет проводником для тока. А бывает, в бане делают теплый пол, и из-за неисправности изоляции людей начинает бить током везде, где разлита вода.

Схемы заземления

Системы заземления различаются по типам и способам подключения нулевого проводника.

Нулевые проводники бывают трех типов:

  1. N — функциональный ноль.
  2. PE (Protective earth) — защитный ноль, или заземление.
  3. PEN — совмещение функционального и защитного нулевых проводников.

«Электроустановки зданий»50571.2-94п. 312.2 ГОСТ Р

Если от опоры на улице в дом идут два провода, то один из них — это L, фаза, а второй — PEN, защитный и рабочий ноль. Фазный провод обычно белого цвета, нулевой — синего. В трехфазной сети будет четыре провода: три фазы и PEN-проводник.

Если проводов от опоры к дому три в однофазной или пять в трехфазной сети, то защитных проводников два: N — функциональный, или рабочий, ноль (провод синего цвета) и PE — защитный ноль, провод желто-зеленого цвета.

Система TN-C. Рабочий ноль N и PE-проводник в этой системе совмещены в один провод. Рабочий ноль N подключен к контуру заземления рядом с трансформаторной подстанцией.

При TN-C в банях и влажных помещениях дома электроприборы нужно заземлять отдельно. То есть, например, ставить розетку с заземляющим контактом для стиральной машины и от этой розетки прокладывать отдельный провод на вкопанный в грунт контур заземления.

Схему TN-C считают небезопасной и почти не используют.

Система TN-C-S. На пути от трансформаторной подстанции до ввода в здание нулевой рабочий N и защитный проводник PE совмещены. На вводе в здание PEN разделяется на отдельный нулевой N и защитный проводник PE. В щитке шина заземления и нулевая шина объединяются перемычкой.

Главный недостаток системы в том, что она не защищена от обрыва или отгорания нуля на пути от подстанции к вводу в дом. Это особенно опасно на старых сетях, когда по столбам идет не один СИП-кабель, где все жилы перекручены, а несколько отдельных проводов.

Если, например, дерево упадет на нулевой провод и оборвет его, на заземляющей шине PE в доме появится напряжение. Все заземленные металлические корпуса приборов окажутся под напряжением. Например, корпус бойлера в котельной или металлической печи в бане. То же самое случится, если на улице перехлестнутся нулевой и фазный провода. Ноль на подстанции отгорит, а на контуре заземления появится ток.

Система TN-C-S — основная для любых зданий. Она считается самой надежной.

Старая электрическая сеть: по опорам идет несколько проводов, закрепленных на фарфоровые изоляторы. Упавшее дерево можно оборвать любой провод или несколько.

Современная сеть: между опорами идет один провод. Если на него упадет дерево, оборвет все: и фазу, и ноль. Это безопаснее. Система TN-S. Это модификация системы TN-C-S. В ней рабочий N и защитный PE ноль разделили еще на подстанции. В трехфазной сети на всем участке линии пять проводов, к дому подходит тоже пять: три фазы, ноль и земля.

Система TT. Это, возможно, самая популярная система для заземления частных домов. В дом при трехфазном вводе приходит четыре провода: три фазы и рабочий ноль. В самом доме устраивают независимую от подстанции систему заземления: в грунт забивают штыри, провод от них выводят на шину заземления в щитке. С ней соединяют корпуса приборов. Таким образом, при применении системы ТТ заземление дома и подстанции никак не соединено.

При организации схемы ТТ обязательно используют устройства защитного отключения — УЗО. Ставят вводное УЗО с уставкой — пороговым значением силы тока, при котором УЗО срабатывает, — 100—300 мА. Это так называемое противопожарное УЗО, которое защищает от утечки тока. На линии электроприборов ставят УЗО на 10—30 мА. УЗО обязательно совмещают с автоматическими выключателями, которые защищают линию от короткого замыкания и перегрева.

Устройство контура заземления

При коротком замыкании или утечке тока напряжение уходит с электроприбора в контур заземления. Контур — это, как правило, металлический треугольник, который закапывают в грунт рядом с домом. Контур заземления нужно делать только при системе TT.

Элементы контура заземления

Вот из чего состоит система заземления частного дома:

  1. Вертикальные штыри-заземлители.
  2. Металлические полосы или горизонтальные заземлители, которые соединяют штыри-заземлители.
  3. Заземляющий проводник — линия от контура заземления до электрощитка.

Контур заземления нельзя делать из подручных конструкций, например проходящих в земле металлических водопроводных труб. Это небезопасно, а еще такие трубы быстрее ржавеют и разрушаются.

Заземляющий электрод. В качестве электродов обычно берут металлический прут диаметром не менее 18 мм или металлические уголки 50 × 50 мм. Уголки заостряют на концах, чтобы их удобнее было забивать в грунт. Типовая длина прута или уголков — три метра. Этого достаточно для большинства грунтов.

Наилучшие показатели сопротивления у электродов из меди. Электроды из обычной арматуры, наоборот, неэффективны в контуре заземления. Для обвязки электродов используют стальные полосы.

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал Профиль сечения Диаметр, мм Площадь поперечного сечения, мм Толщина стенки, мм

Черная сталь Круглый для вертикальных заземлителей 16
Круглый для горизонтальных заземлителей 10
Прямоугольный 100 4
Угловой 100 4
Трубный 32 3,5
Оцинкованная сталь Круглый для вертикальных заземлителей 12
Круглый для горизонтальных заземлителей 10
Прямоугольный 75 3
Трубный 25 2
Медь Круглый 12
Прямоугольный 50 2
Трубный 20 2
Канат многопроволочный 1,8 (диаметр каждой проволоки) 35

Защита заземления. Штыри контура заземления должны плотно входить в грунт и соприкасаться с ним на максимальной площади. Поэтому элементы заземления запрещено красить.

Чтобы предотвратить образование ржавчины на стальных полосах, используют антикоррозионные составы. Сварные соединения контура обрабатывают битумной мастикой или смолой.

Виды контуров заземления

Геометрия контура заземления зависит в основном от удобства монтажа. Это может быть треугольник, квадрат, любая другая геометрическая фигура или забитые в линию стержни.

Треугольник. Это самый распространенный вариант контура заземления. В землю забиваются три стержня. В идеале расстояние между ними должно быть не меньше трех метров, но в зависимости от места на участке делают и меньше. Должен получиться равносторонний треугольник.

Линейный контур. Контур заземления в виде линии применяют там, где нет места для треугольника. Линейный контур удобно закопать вдоль забора или стены дома. Количество электродов может быть любым: чем больше, тем лучше показатели сопротивления контура.

Расчет заземления

Чтобы контур заземления правильно работал, перед его монтажом нужно сделать расчет. Неверно рассчитанный контур будет плохо отводить ток или вообще не будет выполнять свою функцию — получится, что все элементы заземления сделаны, но ничего не работает.

Общее сопротивление контура заземления в жилых зданиях не должно превышать 4 Ом. Чем ниже сопротивление, тем меньше напряжение, которое возникнет на корпусе электроприборов при каких-либо проблемах.

Еще нужно учитывать ключевой параметр для находящегося в земле контура заземления — сопротивление растеканию тока. Это то, насколько эффективно контур рассеивает ток в землю. На сопротивление растеканию влияет множество параметров: сопротивление грунта, количество стержней и расстояние между ними, материал стержней и даже время года.

Сопротивление грунта. Чем ниже сопротивление грунта, тем лучше заземлитель будет отводить ток. Например, в торфянике сопротивление минимально: напряжение уйдет в землю, даже если контур не сильно заглублен или не выдержаны рекомендуемые расстояния между электродами.

Гравий или шлак обладают большим сопротивлением: забитый в них контур может вовсе не работать.

Сопротивления грунтов

Тип грунта Примерное сопротивление, Ом·м

ПГС, влажный песок 300—500
Смесь глины и песка 100—150
Чернозем 50—60
Глина 50—60
Садовая земля 30—40
Суглинок с золой и пеплом 30—40
Торф 20—30

Тип грунта Примерное сопротивление, Ом·мПГС, влажный песок300—500Смесь глины и песка100—150Чернозем50—60Глина50—60Садовая земля30—40Суглинок с золой и пеплом30—40Торф20—30

Если грунт «жесткий», применяют ряд мер, чтобы заземлитель работал:

  1. Разбавляют почву. Контур заземления закапывают не тем же грунтом, а смесью золы и пепла. Иногда рекомендуют использовать раствор поваренной соли, но так делать не стоит: соль провоцирует коррозию.
  2. Забивают штыри электродов поглубже, чтобы достичь почвы другого состава. Например, берут 6 электродов по 1,5 метра, которые друг за другом забивают в одну точку. По мере продвижения вглубь их приваривают или соединяют муфтами, если электроды сделаны на заводе.

Размеры и расстояния для заземляющих электродов. Чтобы рассчитать расстояние между стержнями электродов, берут длину стержня и умножают на коэффициент 2,2. Например, при длине стержня в три метра расстояние между ними должно быть: 2,2 × 3 = 6,6 м. На практике такие расстояние не всегда удается выдержать из-за нехватки места на участке. Электроды, забитые на меньшее расстояние, также будут работать. Но ухудшится эффективность контура заземления, уменьшится сопротивление растеканию.

Снизить сопротивление контура можно установкой дополнительных электродов. Однако монтировать их вблизи от существующих бесполезно. Ток будет стекать с двух электродов на один и тот же участок. Поэтому заземлители нужно разносить: например, изменить геометрию контура и сделать вместо треугольника квадрат или линию с пятью электродами.

Системы заземления TN-C-S, TN-C, TN-C, TT, IT

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Система TNS2

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N — рабочий нуль источника питания (нулевой проводник).
  • PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN — проводник, совмещающий в себе рабочий и защитный нули.

Самая безопасная система, это TN-S.

Система TNS3

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

Система TNS4

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Система TNS5

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Система TNS6

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

Система TNS7

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

Система TNS8

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Особенности

При типе заземления системы TN-C-S (рис. 1 и 2) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Открытые проводящие части электроустановки здания имеют электрическое соединение с заземлённой частью источника питания, находящейся под напряжением. Для обеспечения этого соединения в низковольтной распределительной электрической сети обычно применяют PEN-проводники, а в электроустановке здания используют защитные проводники PE. В системе TN-C-S возможно также применение PEN-проводников в головной (по току электроэнергии) части электроустановки здания. При этом в электрических цепях остальной части электроустановки здания используют защитные проводники.

В системе TN-C-S также, как в системе TN-C в распределительной электрической сети применяют PEN-проводники, а в электроустановке здания так же, как в системе TN-S используют защитные проводники.

При типе заземления системы TN-C-S PEN-проводник всегда разделяют на защитный и нейтральный проводники в какой-то точке электроустановки здания. Это разделение может быть произведено на вводе в электроустановку здания – на вводном зажиме или на защитной шине вводно-распределительного устройства (рис. 1). Так следует делать в электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений.

Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен на вводе электроустановки здания

Рис. 1. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен на вводе электроустановки здания (на основе рисунка 2.13 из книги [1] автора Харечко Ю.В.)

PEN-проводник может быть разделён также на вводном зажиме или на защитной шине другого распределительного устройства, которое соединено с ВРУ посредством распределительной электрической цепи, имеющей PEN-проводник в составе своих проводников (рис. 2).

Система TN-C-S трехфазная четырехпроводная pen-проводник разделен для части электроустановки здания

Рис. 2. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен для части электроустановки здания (на основе рисунка 2.14 из книги [1] автора Харечко Ю.В.)

На рисунках 1 и 2 обозначено:

  1. заземляющее устройство источника питания;
  2. заземляющее устройство электроустановки здания;
  3. открытые проводящие части;
  4. защитный контакт штепсельной розетки;
  5. ПС — трансформаторная подстанция;
  6. КЛ — кабельная линия электропередачи;
  7. ВЛ — воздушная линия электропередачи.

В первом случае (см. рисунок 1) во всей электроустановке здания применяются два проводника — защитный и нейтральный. Во втором случае (см. рисунок 2) в головной (по току электроэнергии) части электроустановки здания используют PEN-проводник, а после точки его разделения применяют защитный и нейтральный проводники. Открытые проводящие части электрооборудования класса I присоединяют соответственно к защитным проводникам во всей электроустановке здания (см. рисунок 1) или в головной части электроустановки здания их присоединяют к PEN-проводникам, а в остальной её части — к защитным проводникам (см. рисунок 2).

При типе заземления системы TN-C-S теоретически возможно разделение PEN-проводника на защитный и нейтральный проводники в любой точке распределительной электрической сети. Однако более надёжно производить разделение PEN-проводника в электроустановке здания, например, на вводных зажимах ВРУ (ВУ) или на его защитной шине.

Если трансформаторная подстанция встроена в здание, то электроустановку здания целесообразно выполнить с типом заземления системы TN-S, поскольку система распределения электроэнергии не будет иметь линии электропередачи.

Что такое нейтраль

В электротехнике нейтралью называют контакт, к которому подсоединены обмотки вырабатывающих генераторов или понижающих (повышающих) трансформаторов, используемых для питания сети.

  • Нейтраль обмоток трансформатора соединенную, с заземляющим устройством установки, называется глухозаземленной.
  • Нейтраль не соединенную, с заземлением, называют изолированной.
  • Есть нейтрали соединенные с землёй через сопротивления.

Причины широкого распространения типа заземления системы TN-C-S в электроустановках жилых зданий.

Тип заземления системы TN-C-S получил широкое распространение в электроустановках жилых зданий, что обусловлено рядом причин:

  • Во-первых, для реализации системы TN-C-S возможно использование существующих низковольтных распределительных электрических сетей без проведения их реконструкции.
  • Во-вторых, систему TN-C-S можно рассматривать как логическое развитие системы TN-C. Поэтому электроустановки здания, соответствующие типу заземления системы TN-C-S, можно рассматривать как один из вариантов «модернизации» низковольтных электроустановок, получивших повсеместное распространение на территории нашей страны. Проектировщикам, электромонтажникам и персоналу, обслуживающему электроустановки зданий, сравнительно легко понять логическую трансформацию системы TN-C в систему TN-C-S, а также основные требования, которыми следует руководствоваться при выполнении защитных проводников в электроустановках зданий, имеющих этот тип заземления системы.
  • В-третьих, в электрических цепях электроустановок зданий, соответствующих типу заземления системы TN-C-S, которые защищены устройствами дифференциального тока (УДТ), достаточно легко выявить ошибки, допущенные при соединении защитных и нейтральных проводников электропроводок. УДТ будут без какой-либо причины отключать защищаемые ими электрические цепи, сигнализируя о следующих ошибках, допущенных при выполнении монтажа проводников электропроводок:
  1. присоединении нейтральных проводников к открытым проводящим частям электрооборудования класса I;
  2. присоединении защитных проводников к зажимам электрооборудования, предназначенным для подключения нейтральных проводников;
  3. электрическом соединении между собой защитных проводников и нейтральных проводников.
  • В-четвёртых, при типах заземления системы TN ток замыкания на землю, протекающий в аварийной электрической цепи с фазного проводника на открытую проводящую часть и защитный проводник, может быть равным току однофазного короткого замыкания. Поэтому в составе такой меры защиты от поражения электрическим током, как автоматическое отключение питания, возможно использование устройств защиты от сверхтока — автоматических выключателей и плавких предохранителей. Однако в некоторых случаях нельзя обеспечить нормируемое время отключения с помощью устройств защиты от сверхтока. Тогда автоматическое отключение питания следует производить с помощью УДТ.

При применении типа заземления системы TN-C-S в электроустановках зданий можно обеспечить более высокий уровень электрической безопасности, чем при использовании типа заземления системы TN-C. Больший уровень электробезопасности, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.

При необходимости повысить уровень электробезопасности электроустановку здания следует выполнить с типом заземления системы TN-S. Это потребует строительства новой или реконструкции существующей низковольтной линии электропередачи.

В настоящее время систему TN-C-S повсеместно применяют на территории нашей страны. Для реализации системы TN-C-S используют существующие и новые низковольтные распределительные электрические сети, воздушные и кабельные линии электропередачи которых имеют три фазных проводника и PEN-проводник. На основе этих сетей можно также реализовать системы TN-C и TT.

Как выполнить тип заземления системы TN-C-S?

Для электроустановки индивидуального жилого дома.

Выполнить тип заземления системы TN-C-S для электроустановки индивидуального жилого дома достаточно просто. Разделение PEN-проводника следует произвести на вводных зажимах ВРУ (см. рисунок 1 статьи). Далее во всей электроустановке здания следует применять два проводника: защитный и нейтральный, которые не должны иметь ни преднамеренного, ни случайного электрического соединения между собой за точкой разделения PEN-проводника.

Электроустановку индивидуального жилого дома обычно подключают к низковольтной распределительной электрической сети. PEN-проводник линии электропередачи следует разделять на вводе в электроустановку индивидуального жилого дома (рис. 1). Подробнее о ВРУ см. статью «Как собрать трехфазное ВРУ для частного дома?«.

Для электроустановки вновь сооружаемых многоквартирных жилых зданий.

В электроустановках вновь сооружаемых многоквартирных жилых зданий тип заземления системы TN-C-S может быть реализован только одним способом, предусматривающим разделение PEN-проводника линии электропередачи на вводе в электроустановку здания, а именно на вводных зажимах ВРУ (см. рисунок 3).

Рис. 3. Электроустановка жилого многоквартирного здания, соответствующая типу заземления системы TN-C-S. PEN-проводник разделён в ВРУ (на основе рисунка 2.15 из книги [1] автора Харечко Ю.В.)

Для существующих электроустановок многоквартирных жилых зданий.

В существующих электроустановках многоквартирных жилых зданий тип заземления системы TN-C-S мог быть выполнен иначе. Например, PEN-проводники электрических стояков могли быть разделены на защитные и нейтральные проводники в этажных распределительных щитках (ЭРЩ), которые установлены на этажах жилого здания и подключены к электрическим стоякам (см. рисунок 4).

Рис. 4. Электроустановка жилого многоквартирного здания, соответствующая типу заземления системы TN-C-S. PEN проводник разделен в этажных распределительных щитках (на основе рисунка 2.16 из книги [1] автора Харечко Ю.В.)

На рисунках 3 и 4 обозначено:

  1. заземляющее устройство источника питания;
  2. заземляющее устройство электроустановки здания;
  3. открытая проводящая часть.

Примечание из книги автора Харечко Ю.В. — на рисунках 3 и 4 электроустановки квартир условно представлены в виде однофазных электроприёмников класса I.

В первом варианте электрический стояк (см. рисунок 3), входящий в состав распределительной электрической цепи и предназначенный для передачи электроэнергии от ВРУ до этажных распределительных щитков, должен иметь 5 проводников — 3 фазных проводника, нейтральный проводник и защитный проводник. Во втором варианте (см. рисунок 4) электрический стояк выполнен из 3 фазных проводников и PEN-проводника.

Первый вариант построения электрических цепей защитных проводников в электроустановках жилых зданий, соответствующих типу заземления системы TN-C-S, который предписан требованиями ГОСТ 30331.1-2013, является более предпочтительным с точки зрения обеспечения защиты от поражения электрическим током, чем второй вариант. Первым вариантом реализации типа заземления системы TN-C-S следует руководствоваться при реконструкции существующих электроустановок жилых зданий.

Другие примеры выполнения системы TN-C-S.

Система TN-C-S однофазная двухпроводная с разделением PEL-проводника на вводе электроустановки
Рис. 5. Система TN-C-S однофазная двухпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземлённый линейный проводник LE на вводе электроустановкиСистема TN-C-S однофазная двухпроводная с разделением PEL-проводника
Рис. 6. Система TN-C-S однофазная двухпроводная с разделением PEL-проводникаСистема TN-C-S однофазная двухпроводная, в которой PEN-проводник разделен
Рис. 7. Система TN-C-S однофазная двухпроводная, в которой PEN-проводник разделен на защитный проводник PE и нейтральный проводник N на вводе электроустановкиСистема TN-C-S трехфазная трехпроводная с разделением PEL-проводника на вводе электроустановки
Рис. 8. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземленный линейный проводник LE на вводе электроустановкиСистема TN-C-S трехфазная трехпроводная с разделением PEL-проводника
Рис. 9. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделен на защитный проводник PE и заземленный линейный проводник LE где-то в электроустановке

Зачем нужно разделение PEN проводника

Основной причиной для разделения провода PEN являются требования ПУЭ п.7.1.13, в котором указано, что все электроустановки, кроме низковольтных (12 В, 36 В и т.п.), должны иметь заземление TN-S с отдельными проводами PE и N либо более дешёвого типа TN-C-S с разделением PEN-провода. При несоблюдении этих условий возможно отключение здания от электроснабжения контролирующими организациями.

система заземления tn-c-s согласно пуэ п.7.1.13

tn c s расшифровка

Кроме того, этого требуют здравый смысл и законы электротехники:

  • При использовании системы TN-C корпус электроприбора фактически не заземляется, а зануляется. Поэтому обрыв провода PEN приводит к тому, что на нейтральном контакте розетки, заземляющем выводе и корпусе электрооборудования оказывается напряжение сети 220В.
  • Самое частое место этого обрыва – внутридомовые сети. Обычно они выполняются более тонким проводом, чем кабель, подходящий к зданию.
  • На вводном квартирном щитке устанавливается два предохранителя или автоматический выключатель, разрывающий цепь PEN. Даже если используется спаренный автомат, нельзя исключить возможность “залипания” фазного контакта. Это отключение приводит к эффекту, аналогичному обрыву провода PEN.

Поэтому разделение PEN проводника обеспечивает бОльшую безопасность людей, живущих в доме.

Разделение PEN проводника

Правила, по которым производится разделение, описаны в ПУЭ п.п.1.7 и 7.1:

  • самым удобным местом для разделения является вводной электрощит, до вводного автоматического выключателя, рубильника или общедомового электросчётчика;
  • схема должна быть смонтирована так, чтобы исключить отключение, в том числе аварийное, цепей PEN и PE;
  • автоматические выключатели и рубильники, согласно ПУЭ п.1.7.145, допускается устанавливать только в цепи нейтрали N;
  • проводник PEN подключается к шине РЕ, или главной заземляющей шине ГЗШ, которая должна соединяться с нейтральной планкой;
  • проводники РЕ и N после разделения не соединяются;
  • нельзя использовать общую шину для нейтрали и заземления.

Исходя из этих правил, во вводном щите монтируются две шинки – нейтральная N и заземляющая ГЗШ. Вводной проводник PEN и заземляющий провод внутренней проводки РЕ подключаются к заземляющей шине. К ней же присоединяется контур заземления здания. Эта планка соединяется с нейтральной шиной N перемычкой.

питание дома по системе заземления TN-C-S

как разделить PEN проводник

Важно! Сечение проводника PEN вводного кабеля быть не менее 10мм² при использовании медного провода и 16мм², если кабель алюминиевый.

Достоинства и недостатки

Система заземления TN-C-S имеет преимущество перед другими типами защитных заземлений. Она имеет простую конструкцию, которую легко смонтировать в любом здании. Эта работа имеет намного меньшую стоимость, чем монтаж схемы TN-S. Она обеспечивает достаточно высокую степень защиты от поражения электрическим током, особенно при дополнительном использовании УЗО.

схема подключения заземления TN-C-S

Недостатком этой системы является попадание высокого напряжения на корпус оборудования при повреждении провода PEN на участке между зданием и трансформатором. Для предотвращения таких ситуаций ПУЭ требует устанавливать прокладывать питающие кабеля в лотках, трубах или использовать бронированный кабель. В воздушных линиях электропередач провод PEN периодически заземляется. Расстояние между заземлителями зависит от количества грозовых часов в год.

При соблюдении всех требований система TN-C-S является самой распространённой. Если же какие либо условия выполнить невозможно, то ПУЭ рекомендует использовать заземление типа ТТ.

Об обслуживании электроустановок жилых зданий

Однако в настоящее время система обслуживания электроустановок жилых зданий далека от совершенства. Она не создает непреодолимых препятствий свободному доступу жильцов к электрическим стоякам и ЭРЩ. Это обстоятельство может быть причиной осуществления некоторых негативных воздействий на электроустановку жилого здания, которые снижают уровень защиты от поражения электрическим током и, следовательно, уменьшают преимущества от применения первого варианта по сравнению со вторым вариантом.

При выполнении электромонтажных работ жильцами, которые являются обычными лицами, резко возрастает вероятность ошибочного подключения зажимов какого-либо электрооборудования, предназначенных для подключения нейтральных проводников, к защитному проводнику электрического стояка, а открытых проводящих частей электроприёмников класса I — к его нейтральному проводнику. Подобные ошибки также могут появиться и при замене существующих электропроводок в квартирах и их неправильном подключении к электрическим стоякам, когда защитные проводники электропроводок ошибочно присоединяют к нейтральным проводникам электрических стояков, а нейтральные проводники электропроводок — к их защитных проводникам.

Такие ошибки более вероятны в электроустановках жилых зданий, электрические стояки которых выполнены проводниками, не имеющими цветовой и буквенно-цифровой идентификации, соответствующей требованиям ГОСТ 33542-2015. Вероятность совершения ошибок ещё более увеличивается в тех случаях, когда при подключении к электрическим стоякам какого-либо электрооборудования или электрических цепей используют проводники, не имеющие надлежащей цветовой идентификации.

Существующее положении усугубляет низкая квалификация персонала, эксплуатирующего электроустановки жилых зданий. При проведении ими ремонтных и эксплуатационных работ в электроустановке жилого здания возможно ошибочное подключение защитных зажимов электрооборудования класса I и даже ЭРЩ к нейтральному проводнику электрического стояка, а их нейтральных зажимов — к защитному проводнику электрического стояка. То есть и неконтролируемая работа жильцов, и действия эксплуатационного персонала низкой квалификации могут привести к снижению уровня электрической безопасности.

Материалы для контура заземления

Естественно, материал должен выдерживать механическую нагрузку. Бурить скважины нецелесообразно с материальной точке зрения. Какой тогда способ выбрать? Вбить трубу, уголок, прут или полосу. Но для этого они должны быть достаточно прочными. Но и после этого на элементы действуют силы, возникающие в результате естественной эрозии почвы. Важно, чтобы материал длительное время мог противостоять коррозии. Но главное, его сопротивление должно быть минимальным.

Параметры и материалы штырей

Практически повсеместно используется металлический профиль. Если есть выбор, желательно купить марку повыше, что обеспечит длительный срок службы. Оцинкованная поверхность также приветствуется, но такие затрата нецелесообразны. Заземление в частном доме чаще всего делают из такого металлопрофиля:

  • Прут. Арматура нежелательна. Каление в данной ситуации – плохой фактор, так как приводит к увеличению удельного сопротивления. Рифление также служит причиной нерационального использования поверхности. А вот гладкий стальной прут сечением 15-18 мм подходит идеально.
  • Уголок. Один конец придется обрезать, чтобы он получился острым. Тогда вбить его в грунт будет намного легче. Популярным типоразмером является 50х50 мм при толщине 3-4 мм.
  • Труба. На конце имеет смысл проделать отверстия. Это необходимо для заполнения водой с солевыми включениями, что увеличит эффективность отдачи. Популярный диаметр – 50 мм при толщине стенки – от 4 до 5 мм.

Также можно использоваться профили, сечение которых представляет собой квадрат или прямоугольник. Подойдет тавр и двутавр.

Из чего делать металлосвязь?

Вбитые штыри необходимо соединить проводником. Для этого используют:

  • Медную шину или толстый кабель, площадь сечения которого превышает 10 кв. мм.
  • Полосу из алюминия или провода, у которых данный параметр больше 15 кв.мм.
  • Стальную полосу, когда срез имеет площадь больше 48 кв. мм.

Помимо стоимости, у стали есть еще одно конкурентное преимущество. Если взять профиль с типоразмером (25-30)х5 мм, он отлично справится с задачей. Но при этом всегда можно организовать самое надежное крепление, обеспечивающее беспрепятственную передачу тока в течение длительного периода. Полосу просто приваривают электро или газосваркой.

Правила и требования к контуру заземления

Для того чтобы контур заземления работал эффективно, он должен соответствовать определенным правилам:

  1. Внешний контур должен располагаться на расстоянии не менее 1 м и не более 10 м от дома. Оптимальное расстояние 2-4 м от фундамента.
  2. Заглубление электродов выбирается в пределах 2-3 м. На поверхности оставляется часть штыря длиной 20-25 см для соединения полосой.
  3. От вводного щита до контура прокладывается шина сечением не менее 16 кв. мм.
  4. Увязка электродов между собой обеспечивается только методом сварки. В щите соединение может производиться болтами.
  5. Общее сопротивление системы не должно превышать 4 Ом для 380 В и 8 Ом для 220 В.

Внешний контур заземления располагается в земле, что предполагает повышенные требования к его конструкции. Он должен располагаться ниже уровня промерзания грунта, т.к. вспучивание почвы будет выталкивать электроды. В процессе эксплуатации коррозия не должна разрушать металл и чрезмерно увеличивать его электрическое сопротивление. Прочность стержней должна позволять вбивать их в твердый грунт.

Расчет заземления для частного дома: формулы и примеры

Расчеты заземления для частного дома основываются на формулах расчета сопротивления растеканию тока для электродов. Примеры будут показаны ниже.

Сопротивление грунта

При одиночном стержне применяется формула:

Как правильно сделать контур заземления в частном доме - расчёт схемы и монтаж

где ρ экв — эквивалентное удельное сопротивления однослойного грунта (выбирается по таблице 1 для конкретной почвы);

  • L — длина электрода (м);
  • d — диаметр электрода (м);
  • T — расстояние от середины электрода до поверхности земли (м).

Грунт
ρ экв, Ом·м

Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Размеры и расстояния для заземляющих электродов

Количество электродов в контуре можно рассчитать по формуле, где:

Как правильно сделать контур заземления в частном доме - расчёт схемы и монтаж

Rн — максимально допустимое общее сопротивление контура (для сети 127-220 В – 60 Ом, для 380 В – 15 Ом), Ψ — климатический коэффициент (определяется по таблице 2).

Тип электрода
Климатическая зона

I II III IV
Вертикальный стержень 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Горизонтальная полоса 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5

Размеры электродов выбираются с учетом реальных условий и рекомендаций:

  • труба — минимальная толщина стенок 3 мм, диаметр – по наличию материала;
  • стальной пруток — диаметр не менее 14 мм;
  • уголок — толщина стенки 4 мм, размер – по наличию материала;
  • полоса для увязки электродов — ширина – не менее 10 мм, толщина — более 3 мм.

Глубина заглубления (длина электродов) выбирается из условия – минимум на 15-20 см ниже уровня промерзания. Минимальная длина – 1,5 м. Шаг установки штырей составляет 1-2 длины электрода, а минимальное расстояние составляет 2 м.

Разрабатываем схему

Работы по обустройству заземления частного дома начинаются с разработки схемы заземляющего контура. Наибольшей популярностью пользуется замкнутая система в форме треугольника. Три электрода составляют его вершины, а остальные стержни вкапываются по его сторонам между вершинами. Если площадь возле дома не позволяет соорудить такой контур, то электроды устанавливаются в линию, полукругом или «волной». Следует отметить, что эффективность треугольного расположения значительно выше.

Как сделать монтаж контура заземления самостоятельно?

При устройстве заземления своими руками, монтаже контура, необходимо разработать схему, эскиз, чертеж. Далее выбирают место и размечают участок. Потребуется рулетка достаточной длины. Далее выполняют земляные работы и собирают конструкцию. После этого ее заглубляют, монтируют, а после подключат к щитку. Затем подсоединяют внутренний контур (проводку по дому) и тестируют с помощью специальных электроизмерительных приборов. В дополнительном обслуживании система не нуждается. Она прослужит десятилетиями, если все сделать правильно.

Выбираем место

Щиток лучше поставить в специальном помещении. Обычно это кладовая, котельная или чулан. Важно исключить свободный доступ детям. Отдающий контур размещают на удалении от периметра здания минимум на метр. Максимальное удаление – 10 м. Хорошо, когда это место, где люди не находятся без особой необходимости. В момент, когда устройство гасит утечку тока, лучше, если там никого не будет. Обычно это за домом, на территории огороженных грядок, под декоративными искусственными насаждениями, альпийской горкой и т.д.

Земляные работы

Сначала необходимо разметить участок, если применяется линейная схема заземления. В места, где будут вбиты электроды, ставят колышки. Теперь соедините их прямыми линиями, натяните шнурок, который будет служить ориентиром для рытья траншеи. Ее глубина от 30 до 50 сантиметров. Ширина приблизительно такая же. Грунт вывозить не нужно. Он потребуется на окончательном этапе монтажных работ перед подключением внутреннего контура. Гидроизоляция, отсыпка не потребуется.

Собираем конструкцию

Когда земельные работы завершены, осталось только правильно смонтировать контур. Вытащите колышки и вбейте штыри так, чтобы их торцы выступали на 15-20 см. Металлосвязи обрезают по размерам. Расстояние между штырями имеет смысл заново замерять. Контрольный замер исключит фактор ошибки. Связи приваривают газо или электросваркой. Теперь можно зарыть траншею, но только кроме точки ввода в дом, так как его тоже нужно изготовить, прикрепить, подключить к щитовой.

Ввод в дом

В качестве шины используются материалы, свойства которых описаны ранее. Главное надежно закрепить ее к контуру. Теперь заведите другой конец через стену к щитовой. Заблаговременно проделайте отверстие на манер клеммы, чтобы можно было применить болтовое соединение. Когда эти работы завершены, заройте последний участок траншеи и подсоедините к вводу шину-расщепитель или соответствующую жилу. На данном этапе все зависит от выбранного типа заземляющей системы частного дома.

Проверка и контроль

После подключения заземления к щитку, необходимо убедиться, что все сделано правильно. Контроль заключается в проверке целостности контуров и проводящей способности. Кстати, если желаете, чтобы контур наверняка работал, на предыдущих этапах не спешите закапывать траншею. Если выявится разрыв, придется заново оголять металлоконструкцию и устранять неисправность. Либо проверьте целостность заблаговременно. Но даже после этого, когда вся цепь будет подключена, необходимо перепроверить ее работоспособность.

Берут лампу мощностью 100-150 Вт. Вкручивают в патрон, от которого отходят небольшие провода. Это будет так называемая «контролька». Один провод накидывают на фазу, другой на заземление. Если монтаж выполнен правильно, свет будет ярким. Мерцание, слабое сияние, прерывание или отсутствие тока свидетельствует о неполадке. Если лампочка светит тускло, проверьте надежность соединений, зачистите контакты, затяните болты. Соблюдайте технику безопасности. Не выполняйте ремонтные работы, не отбесточив здание.

Распространённые ошибки при выполнении монтажных работ

Специалисты отмечают, что при самостоятельном монтаже чаще всего допускаются такие ошибки:

  1. Попытка защитить электроды от коррозии путем покраски. Такой способ недопустим, т.к. препятствует перетоку в землю.
  2. Соединение стальной металлосвязи со штырями болтами. Коррозия достаточно быстро нарушает контакт между элементами.
  3. Чрезмерное удаление контура от дома, что значительно увеличивает сопротивление системы.
  4. Применение слишком тонкого профиля для электродов. Через небольшой промежуток времени коррозия вызывает резкое увеличение сопротивление металла.
  5. Контакт медных и алюминиевых проводников. В этом случае ухудшается соединение за счет контактной коррозии.

При обнаружении недостатков в конструкции их следует устранять незамедлительно. Чрезмерное увеличение электрического сопротивления или нарушение целостности цепи нарушает работу заземления. Контур не сможет гарантировать безопасность.

Контур заземления необходим для частного дома. Эта конструкция обеспечит электрическую безопасность жильцов и исключит трагические случайности. Однако следует помнить, что эффективность работы заземления зависит от правильности расчетов, выбора схемы и проведения монтажа. Если есть сомнение в собственных силах, то лучше использовать готовый комплект.

Источник https://orenburgelectro.ru/provodka/kak-pravilno-sdelat-kontur-zazemleniya-sovety-elektrika.html

Источник https://knigaelektrika.ru/elektroprovodka/zazemlenie-i-molniezashhita/zazemlenie-elektroustanovok-vidy-pravila-i-tehnologiya.html

Источник

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: