Заземление. Что это такое и как его сделать.

Содержание

Заземление. Что это такое и как его сделать.

В первой части я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения

Б. Назначение (виды) заземления

Б1. Рабочее (функциональное) заземление

Б2. Защитное заземление

Б2.1. Заземление в составе внешней молниезащиты

Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)

Б2.3. Заземление в составе электросети

В. Качество заземления. Сопротивление заземления.

В1. Факторы, влияющие на качество заземления

В1.1. Площадь контакта заземлителя с грунтом

В1.2. Электрическое сопротивление грунта (удельное)

В2. Существующие нормы сопротивления заземления

В3. Расчёт сопротивления заземления

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).

И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).

Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он является некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).

Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:

Заземляющее устройство

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки. Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

Дополнительная информация доступна на отдельной странице "Заземлитель".

На рисунке он показан толстыми красными линиями:

Заземлитель

Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом. Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Дополнительная информация доступна на отдельной странице "Сопротивление заземления".

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:

Заземляющий электрод

Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

Дополнительная информация доступна на отдельной странице "Контур заземления".

На рисунке объект обозначен серым квадратом в центре, а контур заземления — толстыми красными линиями:

Контур заземления

Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода. Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Дополнительная информация доступна на отдельной странице "Удельное сопротивление грунта".

Б. Назначение (виды) заземления

Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление

Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление

Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний. Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования. Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты

Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” ( wiki ) в конденсаторе и газовый разряд ( wiki ) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).

При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Молниезащита

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Дополнительная информация доступна на отдельной странице "Молниезащита и заземление".

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)

УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).

Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставится УЗИП.

Классический УЗИП представляет собой газовый разрядник ( wiki ), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Заземление УЗИП

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети

Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.
Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

Заземление шкафа

В. Качество заземления. Сопротивление заземления.

Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.

Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

Дополнительная информация доступна на отдельной странице "Сопротивление заземления".

В1. Факторы, влияющие на качество заземления

Сопротивление в основном зависит от двух условий:

  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

Площадь заземления

В1.1. Площадь контакта заземлителя с грунтом.

Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)

Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода. Примером “плохого” для заземления грунта является сухой песок.

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления

Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
    В3. Расчёт сопротивления заземления

    Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

    Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

    Выбор формул расчёта зависит от выбранной конфигурации заземлителя. Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

    Формула расчета заземления

    Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.

    Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

    В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

    Дополнительная информация доступна на отдельной странице "Заземлитель".

    Строительство заземлителей

    При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

    В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

    Подробнее о строительстве — в следующих частях.

    2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж)

    1 часть. Заземление
    (общая информация, термины и определения)

    2 часть. Традиционные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    3 часть. Современные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    В этой части я расскажу о традиционных/ классических способах строительства заземлителей, применяемых примерно с начала двадцатого века.

    Г. Основные способы строительства

    Г1. Несколько коротких электродов (“уголок и кувалда”)

    Г1.1. Особенности решения

    Г1.1.1. Промерзание грунта зимой

    Г1.1.2. Взаимное “экранирование”/ “затенение” электродов

    Г1.2. Расчёт получаемого сопротивления заземления и необходимого количества заземляющих электродов

    Г1.3. Монтаж

    Г1.4. Достоинства и недостатки

    Г1.5. Уменьшение количества электродов

    Г2. Одиночный глубинный электрод (“обсадная труба”)

    Г2.1. Особенность решения

    Г2.2. Расчёт получаемого сопротивления заземления

    Г2.3. Монтаж

    Г2.4. Достоинства и недостатки

    Г. Основные способы строительства

    Напомню, в прошлой части я остановился на общем подходе.

    При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления. В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

    Г1. Несколько коротких электродов (“уголок и кувалда”)

    При таком подходе в качестве заземляющих электродов применяются небольшие (2-3 метра) стальные уголки/ штыри. Для создания заземлителя они соединяются вместе около поверхности грунта стальной полосой путем приваривания её к этим элементам электро или газосваркой.

    Заглубление электродов в грунт производится банальным заколачиванием их кувалдой, которая находится в руках физически сильного и выносливого монтажника. Поэтому такое решение повсеместно применяется под условным названием «уголок и кувалда».

    Большая площадь контакта заземлителя с грунтом (вот о чём я) достигается большим количеством электродов (многоэлектродный заземлитель). Увеличивать глубину электродов (альтернативный путь увеличения площади контакта) очень затруднительно, т.к. с увеличением глубины увеличивается сила трения между монтируемым электродом и грунтом, а вес кувалды и силы монтажника имеют предел.

    При выборе уголков/ штырей и другого подходящего металлопроката необходимо учитывать их коррозионную стойкость и возможность пропускать через себя токи большой величины в течении какого-то времени без расплавления.

    Минимальные разрешенные поперечные размеры (сечения) заземляющих электродов описаны в таблице 1.7.4 ПУЭ, но последние годы чаще применяются поправленные и дополненные величины из таблицы 1 техциркуляра 11 от 2006 года ассоциации «РосЭлектроМонтаж» (источники).

    • для уголка или прямоугольного профиля (полосы) из чёрной стали поперечное сечение должно составлять не менее 150 мм 2 при минимальной толщине стенки 5 мм
    • для круглого стержня из чёрной стали минимальный диаметр должен быть 18 мм
    • для трубного профиля из чёрной стали минимальный диаметр должен быть 32 мм при минимальной толщине стенки не менее 3,5 мм
    Г1.1. Особенности решения

    При увеличении количества электродов необходимо учитывать некоторые особенности.

    Г1.1.1. Промерзание грунта зимой

    Зимой из-за промерзания грунта на глубины, в которых находится половина длины электродов (а это до 2-х метров) сопротивление такого заземлителя увеличивается. Для компенсации этого увеличения (для сохранения удовлетворительного качества заземления) заземлитель выполняется с достаточным “запасом” электродов. Например, для трёхметровых электродов необходимо двухкратное увеличение количества.

    Г1.1.2. Взаимное “экранирование”/ “затенение” электродов

    Кроме того, увеличением количества электродов необходимо компенсировать само увеличение количества электродов 🙂 Этот негативный момент т.н. “экранирования”/ “затенения” возникает при использовании множества заземляющих электродов и не позволяет близкорасположенным электродам полноценно “рассеивать” ток в окружающий грунт. Выражается в виде коэффициента использования проводимости заземлителя.

    Например: десять электродов глубиной по 3 метра, расположенных в линию на расстоянии 3 метра (т.е. на расстояние = своей глубине) друг от друг “работают” на 60% от своей максимальной эффективности. Десять этих же электродов, расположенных на расстоянии 6 метров (т.е. на расстояние = своей двойной глубине) друг от друга “работают” на 75% от своей максимальной эффективности. Стопроцентная эффективность достигается отдалением электродов на расстояния около 30 метров (10 их глубин), что на практике никогда не используется в угоду стремления к адекватной компактности и стоимости монтажа заземляющего устройства.

    Г1.2. Расчёт получаемого сопротивления заземления и необходимого количества заземляющих электродов

    Опишу расчёты на примере десяти наиболее часто используемых для такого способа трёхметровых электродов в виде стального равнополочного уголка с шириной полки 50 мм, монтируемых на расстоянии 3-х метров друг от друга в канаве глубиной 0,5 метров (в п. Г1.3. объяснение “почему так”). Грунт, в котором будут монтироваться эти электроды, будет суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.

    Расчёты не сложны и проводятся в 3 этапа.

    Получаемое сопротивление заземления

    1 этап. Для начала необходимо вычислить сопротивление заземления одного заземляющего электрода. Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

    R1 составит 27,8 Ом
    (при p = 100 Ом*м, L = 3 м, d = 0.05 м (50 мм; для плоских электродов под диаметром понимается их ширина), T = 2 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

    2 этап. Общее сопротивление нескольких электродов в идеальных условиях будет меньше сопротивления заземления одного электрода во столько раз, сколько будет электродов.

    Для десяти электродов общее сопротивление будет меньше в 10 раз и составит 2,78 Ом.

    3 этап. “Компенсации”.
    Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен 2 (откуда это). Коэффициент использования проводимости электродов будет равен 0.6, т.к. расстояние между электродами будет 3 метра (т.е. равное глубине электрода), а их количество — 10 штук (откуда это). Оба коэффициента увеличивают сопротивление заземления.

    Итоговое общее сопротивление заземления вышеприведенных 10-ти электродов будет равно 5,56 Ом летом и 9,27 Ом зимой.

    Необходимое количество заземляющих электродов

    Представим, что наша задача — заземлить телекоммуникационное оборудование и для этого необходимо получить заземление с сопротивлением не более 4 Ом.

    1 этап. Всё повторяется. Вычисляем сопротивление заземления одного/ одиночного заземляющего электрода.

    R1 составит 27,8 Ом.

    2 этап. Количество электродов в идеальных условиях напрямую зависит от необходимого сопротивления заземления с округление в большую сторону (“потолок”).

    Для достижения 4-х Ом количество электродов получится 7 штук (округление 6,95).

    3 этап. “Компенсации”.
    Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен 2. Коэффициент использования проводимости электродов будет зависеть от рассчитываемого количества электродов — заранее его не выбрать. Однако можно прикинуть наихудший вариант и, допустив, что электродов будет больше 20, взять для расчёта величину 0,5. Оба коэффициента увеличивают необходимое количество заземляющих электродов.

    Итоговое необходимое количество вышеприведенных заземляющих электродов будет равно 28 штук (округление 27,8). Совпадение с сопротивлением заземления одного электрода случайно.

    Г1.3. Монтаж

    Монтаж описанного выше многоэлектродного заземлителя выглядит примерно так.

    1. От места ввода заземляющего проводника внутрь здания/ объекта по периметру/ контуру этого здания вдоль его стен на удалении в 1 метр копается канава длиной 84 метра (28 электродов на 3 метра) глубиной 0,5-0,7 метра.
    2. В эту канаву на расстоянии не менее 3-х метров друг от друга кувалдой забиваются предварительно заостренные с нижней стороны (болгаркой) стальные уголки или отрезки арматуры длиной 3 метра в количестве 28 метров.
    3. После забивания всех электродов — в канаву укладывается заземляющий проводник от ввода в здание (где расположен электрощит) до самого дальнего электрода. Обычно при таком способе таким проводником выступает стальная полоса 4*50 мм.
    4. Полоса качественно (!) длинным швом приваривается к электродам.
    5. Место сварки покрывается слоем битума или антикоррозионной краской, т.к. оно имеет склонность к быстрой коррозии в грунте.
    6. Канава засыпается.
    7. Снаружи или внутри здания делается переход со стальной полосы на медный провод, подключаемый к электрощиту. Для малых мощностей обычно делается вот так:

    Углубление на 0,5-0,7 метра (канава) необходимо для механической и погодной изоляции проводника (полосы) и верхушек электродов. Например, чтобы не повредить их во время копки грунта для цветника и чтобы сталь меньше намокала во время дождя (это позволяет уменьшить её коррозию, а значит увеличить срок службы).

    Взаимное расстояние между электродами не менее 3-х метров является некоторый мерой противодействия эффекту “экранирования”/ “затенения” электродов друг от друга.

    Использование сварки для соединения элементов из чёрной стали — настоятельно рекомендовано ПУЭ (п. 1.7.139).

    • стальной уголок шириной 50 мм и толщиной стенки 5 мм = 84 метра
    • или отрезки стальной гладкой арматуры диаметром 18 мм = 84 метра
    • стальная полоса 4*50 мм = около 85 метров
    • битум или антикоррозионная краска
    • лопата
    • кувалда потяжелее (4-5 кг)
    • сварочный аппарат
    • сильный и выносливый монтажник
    • монтажник, обладающий навыками сварщика
    Г1.4. Достоинства и недостатки

    Достоинства:

    • простота
    • дешевизна материалов и монтажа
    • доступность материалов и монтажа
    • высокая стоимость доставки материала на объект (в легковой автомобиль не положить из-за размеров и веса материалов)
    • необходимость применения большого объема грубой силы (копать канаву, махать кувалдой)
    • необходима сварка, а значит, сварочный аппарат и человек с навыками сварщика. Ситуация усугубляется при отсутствии на объекте электричества.
    • большая площадь, занимаемая заземлителем: часто несколько десятков метров около здания (десять 3-метровых электродов должны будут расположены в канаве длиной 27 метров)
    • небольшой срок службы электродов в 5-15 лет (особенно в грунтах с высокими грунтовыми водами). Увеличение поперечных размеров (толщины стали) чревато увеличением сложности монтажа.
    • неудобный монтаж, т.к. при использовании даже 2-метровых электродов в начале забивания необходимо вставать на какую-то скамейку/ лестницу и уже с нее “махать кувалдой”
    • невозможность монтажа в каменистом грунте
    Г1.5. Уменьшение количества электродов

    Иногда совместно с этим решением применяется метод кардинального снижения удельного электрического сопротивления грунта, который позволяет сократить количество заземляющих электродов в 2-3 раза при сохранении получаемого сопротивления заземления. Иными словами — этот метод позволяет существенно снизить сопротивление заземления. Речь идёт о засолении грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl (в среднем — 5 килограмм на метр длины канавы, в которую ведется монтаж). При её растворении в грунте (выщелачивании (wiki)) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.

    При неоспоримом положительном достоинстве такого метода, а также при его простоте и дешевизне — он имеет два огромных недостатка, которые грозят восстановлением заземлителя практически “с нуля”:

    • за счет вымывания соли из грунта (дожди, весеннее таяние снега), концентрация ионов падает до естественного уровня за 1-3 года
    • соль вызывает сильную коррозию стали, разрушая электроды и заземляющий проводник за 2-3 лет
    Г2. Одиночный глубинный электрод (“обсадная труба”)

    Г2.1. Особенность решения

    Г2.2. Расчёт получаемого сопротивления заземления

    Г2.3. Монтаж

    Г2.4. Достоинства и недостатки

    При таком подходе заземлителем является глубокий электрод (чаще всего одиночный) в виде стальной трубы, размещенной в пробуриваемом в грунте отверстии. Бурение и размещение в отверстии трубы выполняется специальной машиной — буровой установкой (обычно на базе грузового автомобиля).

    Большая площадь контакта заземлителя с грунтом (вот о чём я) достигается большой длиной (вернее, глубиной) электрода. Кроме того, за счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет бОльшую эффективность (меньшее сопротивление заземления), чем первый — при одинаковой суммарной длине электродов.

    Г2.1. Особенность решения

    При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).

    Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.

    Но напомню (оригинал): . на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.

    Г2.2. Расчёт получаемого сопротивления заземления

    Опишу расчёты на примере одиночного тридцатиметрового электрода в виде стальной трубы диаметром 100 мм, смонтированной в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.

    Расчёт проводится в 1 этап.

    Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

    R1 составит 3,7 Ом
    (при p = 100 Ом*м, L = 30 м, d = 0.1 м (100 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

    Сравните с результатом в п. Г1.2. Даже при условии однородного грунта одиночный глубинный заземлитель оказывается много эффективнее, чем многоэлектродный, что скажется на огромной разнице в занимаемой этим заземлителем площадки на поверхности.

    Но в этой “эйфории” не стоит забывать про стоимость буровых работ, о чём я упомяну ниже в п. Г2.4. (“Недостатки”).

    Г2.3. Монтаж

    На практике монтаж такого заземлителя в чём-то проще монтажа многоэлектродного заземлителя из первого решения (Г1).

    1. От места ввода заземляющего проводника внутрь здания/ объекта на удалении в 3 метра (для безопасного подъезда установки) в сторону перпендикулярно стены копается канава длиной 3-4 метра глубиной 0,5-0,7 метра.
    2. Буровая установка производит бурение и установку электрода (“обсадная труба”).
    3. В канаву укладывается заземляющий проводник от ввода в здание (где расположен электрощит) до электрода. Обычно при таком способе таким проводником выступает стальная полоса 4*50 мм.
    4. Полоса качественно (!) длинным швом приваривается к электроду-трубе.
    5. Место сварки покрывается слоем битума или антикоррозионной краской, т.к. оно имеет склонность к быстрой коррозии в грунте.
    6. Канава засыпается.
    7. Снаружи или внутри здания делается переход со стальной полосы на медный провод, подключаемый к электрощиту. Например, как описано в п. Г1.3.
    • стальная труба диаметром 100-200 мм с толщиной стенки 3,5-5 мм = 30 метров
    • стальная полоса 4*50 мм = около 5 метров
    • битум или антикоррозионная краска
    • буровая установка
    • лопата
    • сварочный аппарат
    • монтажник, обладающий навыками сварщика
    Г2.4. Достоинства и недостатки

    Достоинства:

    • высокая эффективность
    • компактность, т.к. не нужно “городить” множество электродов
    • сезонная НЕзависимость качества заземления. Зимой из-за промерзания грунта сопротивление такого заземлителя почти не изменяется из-за нахождения в зоне промерзающего грунта не более 5-10% длины электрода.
    • высокая стоимость буровых работ (от 1500-2000 рублей за метр бурения). Приведенный в расчётах (п. Г2.2.) электрод обойдется в 50-60 тысяч рублей.
    • (как и у первого способа) необходима сварка, а значит, сварочный аппарат и человек с навыками сварщика.
    • (как и у первого способа) небольшой срок службы электродов в 5-15 лет (особенно в грунтах с высокими грунтовыми водами). При использовании толстостенной трубы возможно его увеличение до большего срока, однако это вызывает увеличение стоимости этой трубы.

    Современные технологии

    Традиция — это прогресс в минувшем; в будущем прогресс станет традицией (Эдуар Эррио)

    В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.

    Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.

    О них я расскажу в следующей, заключительной, части.

    3 часть. Современные способы строительства заземляющих устройств (описание, расчёт, монтаж)

    1 часть. Заземление
    (общая информация, термины и определения)

    2 часть. Традиционные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    3 часть. Современные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    В этой части я расскажу о современных способах строительства заземлителей, которые обладают достоинствами традиционных способов строительства и лишены их недостатков.

    Д. Основные способы строительства

    Д1. Модульное заземление (для обычных грунтов)

    Д1.1. Особенности решения

    Д1.1.1. Универсальность и простота применения

    Д1.1.2. Долгий срок службы

    Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода

    Д1.1.4. Суперкомпактность

    Д1.1.5. Никакой сварки

    Д1.2. Расчёт получаемого сопротивления заземления

    Д1.3. Монтаж

    Д1.4. Достоинства и недостатки

    Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)

    Д2.1. Особенности решения

    Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах

    Д2.1.2. Компактность

    Д2.1.3. Образование талика

    Д2.1.4. Никакой сварки

    Д2.2. Расчёт получаемого сопротивления заземления

    Д2.3. Монтаж

    Д2.4. Достоинства и недостатки

    Д. Основные способы строительства

    Напомню о достоинствах и недостатках традиционных способов строительства заземлителей, описанных в прошлой части:

    Несколько коротких электродов (п. Г1.4)

    Достоинства:

    • простота
    • дешевизна материалов и монтажа
    • доступность материалов и монтажа
    • высокая стоимость доставки материала на объект
    • необходимость применения большого объема грубой силы
    • необходима сварка
    • большая площадь, занимаемая заземлителем
    • небольшой срок службы электродов в 5-15 лет
    • неудобный монтаж

    Одиночный глубинный электрод (п. Г2.4)

    Достоинства:

    • высокая эффективность
    • компактность
    • сезонная НЕзависимость качества заземления
    • высокая стоимость буровых работ
    • необходима сварка
    • небольшой срок службы электродов в 5-15 лет

    Остановился я на общих словах:

    В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.

    Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый даже там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.

    Д1. Модульное заземление (для обычных грунтов)

    Идеальным сочетанием вышеописанных свойств способов строительства был бы какой-то способ, имеющий такой набор:

    Достоинства:

    • простота
    • дешевизна материалов и монтажа
    • доступность материалов и монтажа
    • высокая эффективность
    • компактность
    • сезонная НЕзависимость качества заземления

    Увы, чудес не бывает! 🙂
    Тем не менее, чего бы нам хотелось:

    • сократить длину (глубину) монтируемых заземляющих электродов для удобства их ручного монтажа (чтобы не забивать эти электроды со стремянки)
    • оставить большую длину (глубину) заземляющих электродов
    • убрать буровую установку
    • убрать кувалду
    • убрать сварку
    • увеличить срок службы электродов без увеличения размеров до. ну пусть будет 100 лет 🙂
    • сохранить адекватную стоимость материалов.

    Немного фантастично, но решение оказалось простым: технология, получившее название “модульное штыревое заземление”, сокращено “модульное заземление”.

    При таком способе строительства заземляющий электрод необходимой длины (глубины) представляет собой сборную конструкцию из нескольких коротких (1,5 метра) стальных штырей-модулей, имеющих небольшие поперечные размеры (диаметр менее 20 мм) с цинковым или медным покрытием, которые соединяются последовательно друг за другом. Для заглубления используется обычный бытовой электрический отбойный молоток с достаточной энергией удара.

    Как и в случае “обсадной трубы” (п. Г2) — большая площадь контакта заземлителя с грунтом достигается большой длиной (глубиной) электрода. За счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет большую эффективность (меньшее сопротивление заземления).

    Соединение штырей между собой может производится несколькими способами:

      «глухое отверстие + шип» (пример). На одной стороне штыря имеется глухое отверстие глубиной 50-70 мм, а на другой стороне — шип длиной 50-70 мм, имеющий диаметр чуть больше паза. При монтаже шип запрессовывается в отверстие.

    Д1.1. Особенности решения. Антикоррозионные свойства.
    Д1.1.1. Универсальность и простота применения

    Это решение можно назвать “конструктором”, т.к. из унифицированных элементов собирается любая необходимая конструкция. Например, глубинный электрод на 30 метров.
    Все детали имеют промышленное производство, что убирает необходимость что-то “допиливать” на объекте. При этом они имеют одинаковое качество и одинаковые свойства, что играет роль при проведении большого объёма монтажных работ на множестве однотипных объектах, а также положительно влияет на предсказуемость результатов.

    Обращение со штырями облегчено, т.к. они имеют длину всего 1,5 метра и вес не более 3-х килограмм. Это позволяет перевозить их в небольшом легковом автомобиле.

    Д1.1.2. Долгий срок службы

    Покрытие стального штыря слоем цинка или меди увеличивает его срок службы до нескольких раз (относительно срока службы штыря таких же размеров без покрытия).

    Способы защиты стали от коррозии у покрытий сильно различаются из-за разного участия этих металлов в электрохимических реакциях, оказывающих наиболее разрушительное влияние на штырь. Из-за разности этих реакций, разности производства, разности стоимости производства — ведутся постоянные споры, какое покрытие всё-таки лучше.

    • отсутствие необходимости механической защиты покрытия при монтаже. Повреждение целостности покрытия не приводит к последствиям, т.к. цинк всё равно защищает железо, находясь рядом.
    • дешевое, налаженное и широко распространенное производство оцинкованных изделий со стандартной для этого материала толщиной покрытия от 5 до 30 мкм (“горячее” и “холодное” цинкование)
    • антикоррозийная защита не только штырей, но и всех металлоконструкций в зоне действия. Однако эти металлоконструкции чаще всего не нуждаются в такой защите.
    • сравнительно небольшое увеличение срока службы штыря из-за малой толщины покрытия — до 15-25 лет.
    • Толстый слой цинкового покрытия имеет высокую стоимость. Кроме того, очень редко встречается производство, имеющее техническую возможность для этого.
    • сокращение срока службы штырей в присутствии большого количества металлоконструкций, расположенных рядом с ними
    • очень большой срок службы омеднённого штыря — до 100 лет (при соблюдении целостности покрытия)
    • необходимость создания покрытия большой толщины (от 200 мкм) для его защиты от глубокого повреждения при монтаже. Такое покрытие дороже более тонкого.
    • дорогостоящее и редкое производство омеднённых изделий с большой толщиной покрытия

    Моё субъективное мнение
    Раз уж добавляем покрытие для защиты от коррозии, то оно должно обеспечивать наиболее долгий срок службы при одинаковой стоимости производства (в сравнении с другими вариантами).
    В этой плоскости я считаю, что лучшим выбором являются омеднённые штыри при условии безоговорочного качества покрытия, выраженного в:
    — толщине не менее 200 мкм
    — высокой адгезии ( wiki ) обеспечивающей сохранение защитного слоя при изгибе штыря (иногда встречается при монтаже)
    Причём омеднённые штыри гораздо выгоднее оцинкованных из-за высоких цен на изготовление последних при стремлении достигнуть сопоставимый срок службы.

    Испытания, проведённые одной из лабораторий экспериментально показали, что срок службы омеднённого штыря с покрытием толщиной 250 мкм в агрессивном грунте (кислом или щелочном) составляет не менее 30 лет, а в обычном суглинке достигнет 100 лет.

    Также известно испытание, проведённое с 1910 по 1955 год Национальным Институтом Стандартов и Технологий США (The National Institute of Standards and Technology (NIST)). Было реализовано обширное исследование подземной коррозии, во время которого 36 500 образцов, представляющих 333 разновидности покрытий из черных и цветных металлов и защитных материалов, подвергались испытанию в 128 местах по всей территории Соединенных Штатов.
    Одним из результатов этого исследования стал факт, что штырь заземления, покрытый 254 мкм меди, сохраняет свои технические характеристики в течение более 40 лет в большинстве типов почвы. А стержневые электроды, покрытые 99,06 мкм цинка, в этих же грунтах могут сохранять свои качества лишь в течение 10-15 лет.

    Underground corrosion (United States. National Bureau of Standards. Circular 579)
    Автор: Melvin Romanoff; Издатель: U.S. Govt. Print. Off., 1957)

    Отдельно хочу отметить использование в качестве материала штырей нержавеющей стали . Этот материал имеет замечательные антикоррозионные свойства в сочетании с отличными механическими характеристиками , облегчающими производство деталей. Его единственный, но перечеркивающий достоинства недостаток — высокая стоимость .

    Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода

    Т.к. данное решение имеет все свойства глубинного заземлителя напомню его особенность (из п. Г2.1).

    При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).

    Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.

    На практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.

    Д1.1.4. Суперкомпактность

    Небольшая длина штырей и использование небольшого по величине электроинструмента позволяет монтировать глубинные заземлители там, где раньше это было в принципе невозможно: на объектах при самой стеснённой внутриквартальной застройке и даже в подвалах зданий. При проведении работ вне здания для заглубления электрода достаточно “пятачка” земли диаметром 20 см.

    Такая компактность особенно актуальна в свете необходимости получения большого количества документов на вскрытие покрытия, проведения работ и последующего облагораживания территории.

    Д1.1.5. Никакой сварки

    Все элементы конструкции надежно сопрягаются без электро или газосварки. Используются либо неразъёмные, либо резьбовые соединения. Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.

    Д1.2. Расчёт получаемого сопротивления заземления

    Расчёт (подробное описание) почти полностью повторяет расчёт одиночного электрода из п. Г2.2. за исключением поперечных размеров — у модульного заземления диаметр электрода не превышает 20 мм.

    На примере тридцатиметрового составного электрода из омеднённых штырей диаметром 14 мм, смонтированного в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.

    Расчёт проводится в 1 этап.

    Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

    R1 составит 4,7 Ом (при p = 100 Ом*м, L = 30 м, d = 0.014 м (14 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

    Этот результат хуже, чем у электрода, имеющего диаметр 100 мм, но замечу — уменьшение диаметра электрода в 7 раз (700%) вызвало увеличение сопротивления заземления всего на 27%.

    Д1.3. Монтаж

    Монтаж модульного заземления очень лёгкий и доступен даже девушке.
    Штыри забиваются в грунт друг за другом отбойным молотком постепенно увеличивая глубину заземляющего электрода. Отбойный молоток размещается над штырём.
    Задачи монтажника: ровно держать молоток над штырём (не “на весу”, т.е. молоток своим весом давит не на руки, а на монтируемый штырь) и наращивать электрод — устанавливать следующий штырь над уже заглубленным.

    Если монтаж выполняется вне здания то, монтаж модульного заземления/ заземлителя производится в канаве небольшой длины и глубиной 0.5 метра в которую также укладывается заземляющий проводник (медный провод или традиционная стальная полоса), идущий до объекта (электрощита).

    Если монтаж выполняется внутри здания (в подвале), то монтаж заземлителя производится на уровне пола. Далее медным проводом полученный заземлитель подключается к щиту.

    И при использовании стальной полосы и при использовании медного провода для их соединения со штырём в основном используется болтовой зажим из латуни или нержавеющей стали.

    Иногда можно встретить способ соединения с помощью экзотермической сварки (смесь горючего материала с медной пылью заливает место контакта проводника и штыря, сваривая их между собой). Но это экзотика.

    Подробнее о монтаже резьбовых штырей можно познакомиться на YouTube ( ссылка ).

    UPD: Отбойный молоток можно взять в аренду на сутки (от 500-700 рублей) или купить почти в любом магазине электроинструмента (от 9-10 т.руб.).

    Создание защитного заземления

    Защитное заземление – устройство, принцип работы, виды, расчет и схемы

    Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

    Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

    Назначение и устройство защитного заземления

    Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

    Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

    Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

    Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

    Монтаж устройства защитного заземления востребован практически повсеместно.

    Заземляющая система: область применения и принцип работы

    При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

    1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
    2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

    Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

    1. Электрической сети напряжением менее 1 кВт:
    • с переменным током трех трехфазных проводников с изоляцией нейтрали;
    • с переменным током двух однофазных проводников, которые изолированы от земли;
    • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
    1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

    Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

    Классификация заземляющих устройств

    В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

    1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
    • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
    • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

    Самыми распространенными конструкциями такого типа заземлителей выступают:

    • металлоконструкции зданий и фундаментов;
    • металлические оболочки проводников;
    • обсадные трубы.

    Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

    1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
    • определенного размера стальные трубы;
    • сталь полосовую толщиной свыше 4 мм;
    • сталь прутковую.

    Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

    Как производится расчет параметров основных заземляющих элементов

    На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

    Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

    Выполняются расчеты на основании таких данных:

    1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
    2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
    3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
    4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
    5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
    6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
    7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
    8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

    Принцип расчета сопротивления заземлителей

    Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

    К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

    • I — показатель расчетного тока заземления;
    • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

    В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

    Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

    Схемы заземления дома

    Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

    Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

    Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

    1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
      • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
      • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).
      • Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

    Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

    В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

    Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит.

    Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа.

    При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

    Защитное заземление – устройство, принцип работы, виды, расчет и схемы

    Защитное заземление, его цели и задачи

    Устройство защитного заземления – способ, электротехнического присоединения защитного проводника с нетоковедущими корпусами электроустановок, подвергаемые действию токов короткого замыкания фазного электротока. Защитный контур, главной задачей которого, является предохранение нанесения электротравм, связанных, с пиковыми значениями тока при коротком замыкании.

    Для понимания сути устройства, следует знать основные теоретические вопросы.

    Основные цели, задачи заземления

    Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

    Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок.

    При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

    Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

    Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением.

    Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

    Обязательно должны заземляться устройство с металлическим корпусом:

    • станки;
    • приборы;
    • корпуса электрощитовых;
    • пульты управления механизмами;
    • металлический корпус кабеля и муфт;
    • металлические трубы для укладки проводов.

    Отличие рабочего заземления от защитного

    Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств.

    Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения.

    Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

    Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

    Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств.

    При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

    Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали.

    Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

    Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

    Требования к защитному заземлению

    Защитное заземление – это наиболее жесткое устройство, чем зануление цепи.

    Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

    Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

    Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи.

    При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

    Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

    Бытовое заземление

    Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм.

    Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование. При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения.

    Наиболее строгие требования предъявляются при обслуживании участков:

    1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
    2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

    Производственное защитное заземление

    Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей.

    Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

    В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

    • приводы электрических машин;
    • корпуса каждой электроустановки, находящейся в помещении;
    • коммуникации металлических труб, металлоконструкции;
    • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
    • электрощитовые, различные корпуса системы электропроводки.

    Детали, не требующие защиты:

    • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
    • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
    • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
    • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

    В заключение необходимо отметить.

    После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

    Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

    Как работает заземление в домашней сети

    Всем известно, что электричество – это неотъемлемый атрибут современного человека.

    Без использования электроэнергии невозможно включить чайник, чтобы попить чая или кофе, разогреть еду в микроволновке или посмотреть телевизор.

    Несмотря на незаменимость электричества, не стоит забывать и о его коварстве. Очень много неприятных случаев бывает при ударе током, бывают даже летальные ситуации.

    Приветствую дорогие друзья и читатели сайта «Электрик в доме». Многие ощущали на себе неприятный удар током, когда случайно касались оголенного провода. Но в быту встречаются ситуации, когда человека может ударить током, даже если он дотрагивается к безобидному с виду бытовому прибору. Почему так происходит?

    Как правило, такое случается, когда повреждается внутренняя изоляция и прибор не имеет заземления. В этом материале постараемся простым языком объяснить читателю, что такое заземление, как работает заземление и для чего оно необходимо.

    От чего защищает заземление?

    Основное предназначение заземления в электрической сети – это защита. Для работы электрических приборов в электропроводке предусмотрено два провода: фазный и нулевой.

    Защита, которую обеспечивает заземление заключается в подключении третьего проводника, соединенного непосредственно с заземлителем который в свою очередь соединен с контуром заземления. Благодаря заземлению можно не беспокоиться о том, что возникшая по вине неисправности бытового прибора аварийная ситуация приведет к удару электрическим током кого либо из окружающих.

    Друзья давайте разберемся, какие аварийные ситуации могут возникнуть и в чем заключается принцип работы защитного заземления?

    Опасность поломки электрического прибора заключается в том, что его корпус может оказаться под напряжением, тем самым сделав его опасным. Такое обстоятельство может возникнуть в том случае, если повреждается внутренняя изоляция. Например, когда провода прибора со временем ссыхаются или плавятся, и соприкасается с металлическим корпусом бытового прибора.

    Визуально заметить такую аварийную поломку невозможно, однако достаточно дотронуться к электроплите или стиральной машинке, удар током пройдет незамедлительно.

    У многих после таких ситуаций возникает вопрос: как работает заземление, и может ли оно эффективно защитить. Сила такого удара может быть разной в зависимости от состояния человека и окружающих условий.

    Что произойдет, если корпус не соединен с заземлением? Сама по себе такая поломка ничего собой не представляет. Стиральная машинка с пробитым корпусом как работала, так и будет работать. Она будет отлично выполнять свои функции, пока вы к ней не дотронетесь.

    Все дело в том, что человек больше чем на 70% состоит из воды и является прекрасным проводником электричества. Когда вы стоите на полу или прикасаетесь к стене, то ваше тело может послужить проводником. При прикосновении к поврежденному корпусу ток начнет протекать через ваше тело в землю.

    Конечно, можно избежать удара током, если одеть резиновые перчатки или обувь, но в доме так никто не ходит. Если у вас в доме нет заземления, и прибор бьется током, следует помнить, что даже невысокое напряжение может привести к плачевным обстоятельствам.

    Величина в 50 мА уже является опасной для человека. Такое маленькое значение тока может привести к фибрилляции сердца и даже к смертельному случаю.

    Для того чтобы не беспокоиться за свою жизнь и здоровье семьи важно, чтобы в доме было подключено заземление.

    В этом случае опасный потенциал, имеющийся на корпусе прибора, будет уходить в землю, защищая вас от удара. В этом заключается принцип работы заземления.

    К тому же дополнительно заземлению рекомендуется устанавливать УЗО, которое отключит поврежденное оборудование при малейших утечках.

    Принцип работы заземления

    После того как приборы будут заземлены пробой внутренней изоляции нам не страшен. Если по каким-то причинам корпус прибора окажется под напряжением, возникнет короткое замыкание между фазой и заземлением. В результате чего сработает автоматический выключатель. Благодаря правильно установленному заземлению и срабатыванию автомата, человека не ударит током.

    Однако здесь есть некоторые нюансы электротехники. Не всегда при пробое напряжения на корпус может выбить автомат и в таких случаях прекрасным помощником станет устройство защитного отключения.

    Также хочется отметить тот факт, что при качественном монтаже заземляющего контура его сопротивление должно составлять 4 Ом, и если по каким-то причинам произойдет задержка в отключении автомата или он вовсе не отключится, потенциал на корпусе поврежденного прибора будет равен потенциалу заземлителя. В этом случае человека при касании током не ударит, так как разность потенциалов отсутствует.

    Как работает заземление электрооборудования

    Что касается жителей частного сектора, то в основном, на этих районах электричество на участки подводится воздушными линиями электропередач. Как правило, это двухпроводные линии, которые состоят из фазного и нулевого провода. В нашей стране линии электропередач оставляют желать лучшего, ведь на одном кабеле, идущем по основной линии, может быть много скруток.

    Порывы ветра, падающие ветки и осадки могут в любой момент оборвать силовой кабель и если у вас в доме не установлена система защиты в виде заземления и устройства УЗО, то пострадать может не только владелец дома, но и вся его техника. Здесь установка заземления особенно актуальный вопрос.

    Сегодня можно самостоятельно создать хорошую защиту для дома и создать заземление собственными руками, обеспечивая сохранность приборов и здоровья домочадцев.

    Правильно изготовленная и установленная система защиты сможет уберечь электроприборы даже в момент обрыва линии идущей к дому. В настоящее время индивидуальная работа заземления дома в совокупности с УЗО считается популярными средствами защиты от удара током в собственном доме.

    Работа заземления в частном секторе

    В данном разделе разберем, как работает заземление на примере частного дома. Схема питания дома, изображенная на рисунке состоит из воздушной линии. Воздушная линия – двухпроводная, наиболее часто встречающаяся в частном секторе.

    Состоит из двух проводов фазного (на рисунке обозначен красным цветом) и нулевого (синего цвета). Нулевой провод является нулевым рабочим и защитным одновременно. То есть совмещенным проводником.

    В электротехнической литературе обозначается как PEN проводник.

    Для того чтобы разделить этот проводник на два независимых рабочий и защитный, во вводном щите дома делается специальное ответвление на заземляющий контур.

    После этого с вводного щита выходит два нулевых проводника которые имеют разное назначение. Один из них рабочий ноль, который служит для работы приборов.

    Другой защитный ноль – заземляющий проводник, должен иметь желто-зеленую маркировку и обозначение PE.

    В «Правилах Устройства Электроустановок» такая система заземления обозначается как TN-C-S. Внутренняя электропроводка дома должна быть трехпроводной, то есть фаза, ноль и заземление.

    Все розетки в доме должны быть соответственно с заземляющим контактом. В этом случае корпус потенциально опасного прибора будет подключен к защитному проводнику через заземляющий контакт розетки.

    В зону риска особенно входит так называемая мокрая техника это водонагреватели, насосы, посудомоечные и стиральные машинки.

    Если в ходе эксплуатации фазный провод в результате пробоя изоляции соприкасается с корпусом прибора (для примера это корпус холодильника), то между фазным проводом (красным) и заземляющим (желто-зеленым) произойдет замыкание, в результате чего отключится силовой автомат.

    Мнимая защита или неправильное заземление

    Бывают ситуации, когда заземление может быть опасным. Это при условии НЕПРАВИЛЬНОГО ПОДКЛЮЧЕНИЯ. Друзья сейчас рассмотрим случай неправильного подключения заземления и сравним его со случаем рассмотренным выше.

    На рисунке изображена схема неправильного заземления. Суть его заключается в подключении заземляющего проводника (провода заземления в электропроводке) к нулевому рабочему. Нулевой провод же заземлен на подстанции, почему же от него не заземлиться? К сожалению, встречаются специалисты в нашей отрасли, которые совершают такие ошибки.

    В чем заключается опасность? В исправном состоянии техника будет работать без нареканий, все электрические приборы будут выполнять свою работу. Друзья давайте теперь рассмотрим другую ситуацию когда нулевой провод на линии был оборван в результате сильного ветра, при этом красный все еще остался целым.

    При замыкании фазного провода на корпус в этом случае короткого замыкания не возникнет, так как заземляющий провод, который одновременно является и нулевым рабочим оборван по пути к дому, разности потенциалов между фазным и заземляющим проводом нет, и короткого замыкания не произойдет. Отсюда не сложно догадаться, что автоматический выключатель не отключится, так как ему просто не на что реагировать (нет тока короткого замыкания).

    Из этого следует, что корпус холодильника, находясь под опасным напряжением, будет ждать свою жертву. Сила удара током в этой ситуации будет напрямую зависеть от того какая соприкосаемость человека с землей. Чем лучше контакт, тем сильнее ударит.

    В некоторых случаях удар током через корпус прибора может быть фатальным, чтобы не случилось неприятностей нужно знать, как работает заземление в доме.

    К примеру, вы прикасаетесь к пробиваемой электрической водогрейке и одновременно беретесь за водопроводную трубу. Также опасно браться за корпус прибора, который находится под напряжением при этом стоять босым на бетонных полах. Такой пол может служить проводником.

    Как работает узо с заземлением

    Чувствительность системы заземления, а соответственно и электробезопасность можно повысить установив в электрощите устройство защитного отключения (УЗО). Данный прибор реагирует на утечку тока и отключается при ее появлении тем самым обестачивая технику с поврежденной изоляцией. УЗО срабатывает даже в тех случаях если происходит малейшая утечка тока.

    В реальности утечка тока может происходить как через заземленный корпус прибора, так и через тело человека (если заземления в доме отсутствует), что менее приятно. На рисунке показана ситуация когда ток проходит через тело человека.

    К примеру, человек касается корпуса неисправного прибора, корпус которого не заземлен. В момент прикосновения через человека начинает протекать ток, и УЗО реагируя на него мгновенно отключится. Продолжительность удара током для человека в этом случае будет равна времени отключения УЗО. Обычно она равняется десятым долям секунды.

    Незначительное и кратковременное воздействие тока в большинстве случаев приносить незначительный вред, человек получает болевые неприятные ощущения и испуг, который проходит уже через несколько минут.

    Казалось бы идеальный вариант защиты, но не все так гладко. Даже такая система защиты имеет свои недостатки:

    • • если прибор не имеет заземления, то, следовательно, УЗО не сможет зафиксировать утечку, а понять поломку можно будет только после пусть небольшого, но удара током;
    • • по сути УЗО – это сложный электронный прибор, который не может сработать моментально, для отключения требуется время, следовательно, защита только с помощью УЗО может оказаться слишком медленной.
    • • за счет высокой стоимости на УЗО домовладельцы, как правило, экономят и покупают устройства низкого качества либо устанавливают одно УЗО на весь дом, а в этом случае сложно гарантировать своевременное срабатывание.

    Не стоит использовать устройства УЗО сомнительного качества и малоизвестных брендов. Ответственность за свою защиту, каждый человек несет самостоятельно, поэтому покупать нужно только оригинальный и сертифицированный товар. В настоящий момент рынок переполнен электрооборудованием различных производителей и нужно ответственно относиться, к такой покупке.

    Друзья мы с вами рассмотрели принцип работы заземления, и что может произойти при неправильном способе заземления. Основное преимущество такой схемы подключения заключается в том, что у нее имеется свой индивидуальный контур заземления и в случае обрыва провода на линии электропередач он не сможет никак повлиять на работоспособность.

    Важно! Не стоит думать, что если у дома есть заземление, то не нужно использовать УЗО. Даже при малейшей утечке прибор может зафиксировать проблему и отключить поврежденный участок сети, обеспечив безопасность и здоровье человека.

    Электричество – это друг и враг человека, поэтому чтобы не произошло чего-то непредвиденного необходимо правильно делать электропроводку, и знать, как работает заземление в доме. Если нет знаний и опыта работы с электричеством, то такую работу лучше доверить профессионалам, которые все сделают, не только быстро, но и качественно с учетом всех норм и требований.

    Защитное заземление — расчет, схема и устройство системы, исключающей угрозу поражения

    Организация надежной системы защитной электробезопасности – одно из основных условий, предотвращающих нанесение вреда пользователям электроустановок. Она обеспечит защиту не только человеку, но и приборам.

    Грамотно рассчитанное и смонтированное защитное заземление предотвратит негативное воздействие обширного спектра непредсказуемо возникающих циркулирующих токов, устранит их замыкание на корпусах.

    В результате будет исключена вероятность травмирующих поражений, а также выход из строя сложных технических устройств.

    Цель защитного заземления заключается в создании электрического соединения с землей нетоковедущих металлических элементов, находящихся под угрозой возникновения напряжения.

    Причиной нежелательного возникновения напряжения могут быть разряды молнии, замыкание на корпус, вынос потенциала, индукция, появляющаяся под влиянием расположенных рядом токоведущих устройств или их частей и ряд иных ситуаций.

    Соединение может производиться с грунтом или его эквивалентом, таким как морская или речная вода, залегающий в карьере каменный уголь, другие природные или искусственно созданные объекты с аналогичными свойствами.

    Действие системы защитного заземления ↑

    Работа системы защитного заземления заключается в снижении параметров напряжений шага и прикосновения, в приведении их к безопасным значениям. В результате грамотного устройства заземляющей системы:

    • уменьшается потенциал заземленного электрического оборудования;
    • выравниваются параметры потенциала основания, на котором стоят пользователи, и потенциала заземленной технической установки.

    Схема защитного заземления:r — сопротивление заземляющих устройств

    u — напряжение прикосновения

    Базирующийся на сокращении значений или на выравнивании потенциалов заземляемой электрической техники принцип действия защитного заземления способствует уменьшению напряжения корпуса относительно используемого для заземления объекта, в качестве которого зачастую используется грунт. Благодаря чему ток, проходящий через тело пользователя, и напряжение прикосновения (шага) достигнет абсолютно безопасных для человека и техники значений.

    [include title=»Реклама в тексте»]

    Функция заземления будет выполняться полноценно, если показатели тока замыкания на землю не станут увеличиваться за счет уменьшения сопротивления заземлителя.

    Данному условию полностью соответствуют сети с изолированной нейтралью – с устройством генератора или трансформатора, не присоединенным к заземляющей системе или соединенным с ней через большое сопротивление различных измеряющих, сигнализирующих, защищающих приборов.

    Как производятся расчеты ↑

    Принципиально расчет защитного заземления состоит в точном определении основных параметров.

    Они требуются для создания схемы, формирующей максимально безопасные напряжения шага и прикосновения, которые появляются в момент замыкания фазы на корпус.

    На основании расчетных значений, входящих в допустимые пределы, вычисляется количество и размеры заземлителей, планируется порядок размещения одиночных элементов.

    Классификация заземляющих устройств ↑

    По происхождению заземлители делятся на две категории, при производстве расчетов необходимо учитывать их специфические различия и особенности:

    • Естественные объекты, представленные сторонними проводящими частями, непосредственно контактирующими с землей. К категории естественных заземлителей также отнесены объекты, электрический контакт которых с землей производится через промежуточную токопроводящую среду.

    В естественный заземлитель грунт устанавливаются (забиваются, опускаются в выбуренные скважины) вертикальные элементы, соединенные между собой горизонтальными

    Кроме грунта и воды к категории естественных заземлителей относят металлические трубы водопроводных и иных коммуникаций, проложенных траншейным способом.

    В качестве заземлителей естественного происхождения не могут быть применены трубопроводы с горючими и взрывоопасными веществами, магистрали, сооруженные с частичным использованием ПВХ труб и деталей.

    Призванное обеспечить безотказный функционал электрооборудования в аварийных и нормальных условиях рабочее и защитное заземление, устраняющее вероятность поражений, в основном устанавливают в землю.

    • Искусственные заземлители, представленные чаще всего вертикальными или горизонтальными электродами.

    Метод расчета параметров ↑

    Для выполнения расчетов требуются следующие данные:

    • характеристики конкретного электрооборудования, такие как тип установки и ее основных устройств, рабочие напряжения, возможные способы для осуществления заземления нейтралей трансформирующих и генерирующих приборов;
    • размеры и конфигурация электродов, дающих возможность учесть предполагаемую глубину их погружения в грунт;
    • сведения об измерениях удельного сопротивления грунтового слоя на территории, обустраиваемой системой заземления, характеристики конкретной климатической зоны (получить их можно в местной метеослужбе);

    Представленная в разрезе схема защитного заземления

    • сведения о наличии пригодных естественных заземлителей, о том, какие объекты могут быть использованы для заземления, потребуются также реальные показатели сопротивления растеканию тока этих объектов, полученные посредством измерения;
    • точные показатели расчетного тока замыкания на землю, вычисленные стандартным способом;
    • расчетные характеристики допустимых нормами и правилами ПЭУ напряжений, период действия заземляющей защиты, что необходимо, если расчеты производились по значениям напряжения прикосновения и по значениям напряжения шага.

    Преимущественно защитное заземление и зануление электроустановок рассчитывают для случаев установки элементов системы заземления в однородном грунте. Однако сейчас разработаны и применяются методы расчетов с расположением заземлителей в неоднородной по составу земле.

    • Расчет заземлителей, располагаемых в однородной среде, требует учета значений сопротивления сезонно промерзающего слоя в периоды промерзания и высыхания земли. Для получения точных значений используются специальные коэффициенты, применяемые в расчетах для систем заземления любой сложности.
    • Расчет заземлителей, устанавливаемых в двух или более слоях грунта, требует учета значений сопротивления всех слоев. Расчет базируется на учете всех потенциалов, наведенных на устанавливаемые электроды, входящие в сложную конструкцию из группы заземлителей.

    Независимый от способа расчетов общий для всех схем параметр – требуемое сопротивление, определяемое в соответствии с нормативными регламентами ПЭУ.

    Для электрооборудования с напряжением до 1 кВ расчет сопротивления заземляющего элемента, входящего в систему защитного заземления с изолированной нейтралью (типа IT), выполняют в соответствии с условием:

    В данном неравенстве переменная Rз является значением сопротивления заземляющего устройства (выражается в Ом), постоянная величина Uпр.доп. – параметром напряжения соприкосновения (50 в), Iз – суммарная величина замыкания на землю, выраженная в А.

    По нормативным требованиям значение Rз варьирует в пределах от 4 Ом до 10 Ом (к значению нижнего предела не предъявляют особых требований, верхний – предельно допустимый параметр) при условии, что мощность питающих сеть и подключенных параллельно трансформаторов и генераторов не выше 100 кВА.

    Для организации защитного заземления установок с более высоким напряжением в расчетах применяют иные величины:

    • 0,5 Ом в электросетях с эффективно заземленной нейтралью со свойственными им большими токами на землю;
    • не выше 10 Ом при 250в напряжения соприкосновения в системах с изолированной нейтралью (условие действительно при малых токах на заземляющий объект для оборудования с напряжением больше 1000 В).

    Рассчитываемое для монтажа системы заземления сопротивление растеканию тока, вычисляемое для заземлителя, в процессе эксплуатации может увеличиться. Значение его необходимо постоянно контролировать.

    Схема и монтаж контура ↑

    В многоквартирных домах для защиты жильцов от поражения устанавливаются автоматические выключатели, производящие зануление (обесточивание) электрической сети в случае пробоя изоляции или замыкания.

    [include title=»Реклама в тексте»]

    В автономном жилье и на дачах из-за отсутствия технической возможности установки отключающей автоматики требуется устройство защитного заземления, что можно осуществить, обратившись к электрикам, или сделать собственными руками.

    Линейная схема расположения заземлителей, заглубленных до скального грунта

    Система заземления без глубинного заземлителя ↑

    Элементы контура, в состав которого не входит глубинный заземлитель, могут устанавливаться в ряд или располагаться в виде какой-либо геометрической фигуры. Форма контура зависит от особенностей участка. Данный способ применим при протяженности линий заземления до 3х метров.

    • Заглубляются вертикальные заземлители. Расстояние между устанавливаемыми вертикально в грунт заземлителями рассчитывают, исходя из длины данных частей заземляющей системы. Это нужно для минимизации экранирования, так как, чем ближе расположены элементы, тем больше экранирующий эффект.
    • Выполняется поэтапный замер реальных значений сопротивления единичных заземлителей. Они должны быть установлены в количестве, обеспечивающем формирование минимального сопротивления.
    • Выполняется соединение единичных заземлителей. Заземлители, имеющие антикоррозионное покрытие соединяются с использованием специальных соединителей. Устройства заземления из черного металла соединяются исключительно с помощью сварки, швы покрываются битумной мастикой.

    Соединение с помощью болтов допустимо только в случае установки элементов с антикоррозионным покрытием;
    Присоединение заземляющего провода к контуру из черного метала выполняется посредством сварки с последующим креплением с помощью болта

    Групповая система с искусственными заземлителями ↑

    Это несложная, доступная для самостоятельного выполнения схема защитного заземления с контуром в форме равнобедренного треугольника. Данную электрозащитную систему располагают в метре от нижней границы цоколя или стены.

    • В соответствии с выбранной конфигурацией выкапывается траншея глубиной 0,8 метров. Длина каждой из сторон треугольника 3 м.
    • В вершинах треугольника желательно выбурить скважины трехметровой глубины. Если решено было забивать вертикальные заземлители кувалдой, достаточно будет скважин по 1,5 м.

    Схема группового контура защитного заземления

    В качестве материала для вертикальных заземлителей подойдет металлическая труба с диаметром 50 мм, стальной пруток 10 мм, уголок со стороной 50 мм. Потребуется три отрезка длиной по три метра. Горизонтальный заземляющий элемент можно сделать из девяти метров стальной полосы толщиной 4мм, шириной 40 мм.

    • Затем смонтированный контур заземления соединяется посредством сварки с проводником. Его делают из круглого прутка или полосовой стали. Он соединяется с естественным заземлителем.

    План расположения элементов треугольного контура защитного заземления

    Смонтированный контур успешно выполнит назначение защитного сопротивления, если будет подключен к проложенному в земле стальному водопроводу, к металлическим обсадным трубам водозаборных скважин, к иным ж/б и металлическим конструкциям. После установки защитного заземления все траншеи и выработки необходимо заполнить однородным грунтом без включений щебня и строительного мусора.

    Просмотр видео-ролика поможет наглядно представить принцип действия и способ устройства простейшего заземления для загородного дома:

    Получив представление о том, что называется защитным заземлением, узнав о способах устройства электрозащитной системы можно без опасений приступать к самостоятельному монтажу. Не нужно забывать об измерении величины сопротивления после установки. Если нет соответствующих приборов и навыков, требуется вызвать электриков.

    Что такое защитное заземление

    Устройства в металлическом корпусе, потребляющие электроэнергию, при повреждении изоляции могут оказаться под напряжением. Это представляет опасность для человеческой жизни. Чтобы предотвратить поражение током, используется защитное заземление, которое снимает потенциал с корпусов приборов.

    Содержание статьи

    • Для чего нужно защитное заземление
    • Как устроено защитное заземление

    Суть защитного заземления состоит в том, чтобы создать соединение металлических элементов оборудования с землей.

    В обычном состоянии приборы не находятся под напряжением, но ситуация меняется, когда на одном из участков цепи происходит повреждение изоляции.

    Наличие преднамеренно созданного защитного контура позволяет предотвратить несчастные случаи.

    Электротехнические стандарты требуют, чтобы защитное заземление выполнялось во всех помещениях, где существует повышенная опасность поражения током, а также на установках наружного типа, где используется напряжение выше определенного уровня. Заземление монтируется таким способом, чтобы оно могло обеспечить соединение с землей всех корпусов оборудования, вторичных обмоток трансформаторов, оболочек кабелей, приводов электрических агрегатов.

    Надежность заземления обеспечивается созданием эффективного электрического соединения с малым сопротивлением. В этом случае в момент прикосновения человека к корпусу прибора ток не будет протекать через тело и не вызовет опасного для жизни поражения. Чтобы ток шел через землю, необходимо иметь постоянно замкнутую цепь, которая и обеспечит создание системы защитного заземления.

    Качественное защитное заземление выполняют двумя способами: с использованием искусственных проводников, проложенных для заземляющей сети, а также с применением естественных элементов, которыми могут стать металлические конструкции, изначально выполняющие иное назначение. С конструктивной точки зрения элементы защитного заземления находятся в земле или выступают из нее.

    В последнем случае детали конструкции должны быть хорошо видимыми, для чего их обычно окрашивают в черный цвет.Система защитного заземления имеет две составные части. Первая из них – это грунт, который оценивается по его удельному сопротивлению. Эта характеристика определяется степенью влажности земли и ее температурой.

    В течение года удельное сопротивление грунта может существенно меняться, влияя на защитную функцию системы заземления.

    Другая часть системы – это заземлители, то есть один или несколько электродов, соединенных между собой. Эти элементы постоянно находятся в грунте, что гарантирует надежный контакт между подлежащими заземлению объектами и землей.

    Группа элементов, включающая в себя несколько металлических заземлителей, образует единую систему, называемую контуром заземления.

    Распечатать

    Что такое защитное заземление

    Для чего нужно заземление

    Под заземлением понимается соединение отдельных составляющих электрических приборов и оборудования с землей. В состав комплекта заземления входят заземлитель и соединенный с ним проводник, который связан с землей.

    Данное устройство позволяет предотвратить травмы от воздействия на человека электрическим током (если оборудование не заземлено, касаясь его, человек, являясь проводником, автоматически пропускает через себя электричество, что и создает поражающий эффект).

    На практике встречается достаточно большое количество случаев, когда использование заземляющих устройств спасало людям жизни.

    Классификация заземления

    Виды устройств отличаются, в зависимости от их предназначения:

    • Промышленное или рабочее. Установленными требованиями эксплуатации электроустановок определено, что все токоведущие части оборудования должны быть заземлены. Это обеспечивает нормальные условия работы и предотвращает различные травмы. Причем безопасность в данном случае не на первом месте. Рабочее заземляющее устройство необходимо для обеспечения функционирования установок в аварийных условиях, когда нарушается изоляция, или обнаружено появление электрического заряда на корпусе станка или другого оборудования. В частности, принято заземлять нейтрали генераторов и трансформаторов;
    • Для безопасности людей. Данный тип устройств служит для предотвращения поражения человека электрическим током. При конструировании электрической цепи и прокладке проводки следует помнить, что человеческое тело является проводником с достаточно большим сопротивлением. Удара током не происходит, если при прикосновении к токопроводящей части оборудования или проводу отсутствует замкнутая электрическая цепь. Если заземления нет, то ток от проводника пройдет сквозь тело и уйдет в землю, что создаст замкнутый контур цепи. В результате такого прохождения тока происходит травмирование человека – в связи с наличием сопротивления, проводник (человек) нагреется до высокой температуры, что может привести к летальному исходу;

    Обратите внимание! В местах с повышенной влажностью делать заземление следует обязательно. Чем более влажная поверхность, тем большее количество тока пройдет через человека при контакте с оголенным проводником, а, значит, опасность травмы выше.

    Типы заземляющих устройств

      Молниеотводы. Чтобы понять, для чего нужно заземление от молний, следует знать, что в месте их удара температура может достигать 30 000 градусов Цельсия, а значит, возникает угроза пожара, а также жизни людей, поэтому очень важно на строениях устанавливать соответствующие устройства.

    Наиболее важной функцией заземления все же является защитная.

    При этом принцип функционирования таких устройств одинаков у всех описанных типов, определенные отличия есть лишь у молниеотводов.

    Защита от молний

    Система защиты от данных природных явлений состоит из трех частей:

    • Приемник для молнии. Его задача принять удар на себя и передать ток дальше по цепи. Внешне данный элемент представляет собой круглый металлический стержень. Его диаметр не превышает 10 мм, а длина редко меньше 250 мм (она рассчитывается, исходя из радиуса необходимой зоны защиты: чем больше площадь строения, тем длиннее должен быть молниеприемник). Как правило, устанавливают данный элемент на крыше, как можно выше, чтобы удар молнии приходился именно в него;
    • Вторым элементом является отвод для тока. Его задачей является передача тока от приемника на заземлитель. Он представляет собой катанку с диаметром в 6 мм. Ее соединяют с молниеприемником с помощью сварки, а затем опускают по стене строения и подсоединяют к заземлителю;

    Важно! Токоотвод должен быть удален от дверей и окон на максимальное расстояние, чтобы избежать попадания заряда внутрь помещения. Также при монтаже категорически запрещается гнуть данный элемент защиты от молнии, чтобы избежать возникновения искрового разряда в месте деформации.

    • Непосредственно сам заземлитель. В частных домах он, как правило, является общим для защиты от молнии и для бытовых электроприборов. На промышленных предприятиях допускается разделение таких контуров. Заземлитель представляет собой устройство, состоящее из трех проводников, которые забивают в грунт и связывают между собой стальным проводом с помощью сварки. Устройство следует располагать не ближе одного метра к стенам и пяти метров до крыльца, а также проходов и частых мест прогулок.

    Использование естественного заземления

    Чтобы обеспечить защиту от травм и нормальное функционирование электроприборов, можно использовать различные металлические элементы, имеющиеся в строениях и конструкциях и находящиеся в контакте с грунтом. Это может быть арматура в фундаменте, коммуникации под землей, различные кабели, проходящие под землей, а также некоторые элементы наземных транспортных путей (рельсы).

    Однако применять их разрешается только в том случае, если они удовлетворяют всем требованиям к заземляющим устройствам, которые установлены различными техническими регламентами и рекомендациями. Основным преимуществом такого способа защиты от электрических травм и обеспечения функционирования оборудования является экономия денежных средств на создание дополнительных конструкций.

    При использовании в качестве заземлителя фундамента следует убедиться в соответствии его следующим критериям:

    • уровень влажности грунта не должен быть ниже 3%;
    • среда в грунте не должна быть агрессивной, способствующей разрушению материала и проявлению коррозии;
    • механическое напряжение в арматуре отсутствует;
    • разрывы в электрической цепи, сформированной из металлических конструкций, отсутствуют (при необходимости отдельные элементы можно соединить с помощью сварки, при этом сечение перемычки должно быть не меньше 100 мм2);
    • фундамент должен быть изготовлен из армированного бетона.

    Устройство естественного заземления

    Искусственное заземление

    В чем разница: зануление и заземление

    Главным элементом такой системы является специально сконструированный и изготовленный контур. Он состоит из помещенных в грунт нескольких металлических проводников.

    Как правило, для этой цели используют стержни, уголки, трубы или другие изделия из металла. Длина их должна быть не меньше 2,5 м. Главным предназначением такой конструкции является рассеивание тока внутри грунта, чтобы избежать поражения человека.

    Материал, из которого изготавливается заземляющий контур, должен соответствовать сопротивлению грунта, в который он устанавливается, а также учитывать характеристики климата (в первую очередь, влажность и уровень осадков).

    Покрывать контур антикоррозийными составами категорически запрещается, поскольку это может ухудшить его проводимость, а, значит, снизит эффективность устройства.

    К заземлителю подсоединяется проводник, который обеспечивает передачу тока от электроустановки до заземляющего контура, создавая замкнутую электрическую цепь и защищая людей от травм. Единственным требованием к проводнику является устойчивость к внешнему воздействию и прочность. Как правило, его изготавливают из стали.

    Проводник соединяется со щитком, который обеспечивает распределение тока по проводке в помещении. Современные стандарты предусматривают прокладку проводки в помещениях, где находятся люди, трехжильными проводами.

    Одна из жил является фазой (по ней подается электричество к электроустановке), вторая – ноль (находится без напряжения и соединяет фазу с заземляющим проводом), а третья – замыкает цепь, направляя ток в землю.

    При подключении прибора в розетку автоматически начинает действовать и заземляющий провод, обеспечивающий защиту.

    Устройство защитного заземления

    Если вдруг из-за износа изоляции ток вместо фазы начинает попадать на корпус прибора, защитный провод уводит его в землю, что исключает возможность травмы.

    В случае возникновения короткого замыкания из-за проблем с изоляцией сработает защитный автомат, который отключит подачу электрического тока.

    В любом случае ток будет проходить через защитный проводник и рассеиваться в грунте.

    Итак, отвечая на вопрос, зачем нужно заземление, следует отметить, что его основной функцией является защита от травм при функционировании электроприборов и оборудования. Достигается это благодаря установке специального контура в земле и прокладке проводки из трехжильных проводов.

    Определение и объяснение для чего же нужно заземление

    Если обычного человека спросить, для чего нужно заземление, то ответ будет примерно таким: «Чтобы током не ударило». Приведённая формулировка правильно характеризирует предназначение данного устройства, но она является неполной.

    Помимо обеспечения защиты человеческого организма от поражения электрическим током, у заземления есть и другие функции, о которых будет рассказано ниже. Для начала нужно понять значение данного термина, расшифровав определение, данное одной из важнейших книг в профессии электрика, которая называется «Правила Устройства Электроустановок», сокращённо ПУЭ:

    />Для простого обывателя данная сухая формулировка мало что значит, поэтому ниже будет поэтапно расписано значение каждого слова.

    Расшифровка терминов

    Многие люди представляют себе заземление в виде металлического штыря, закопанного в земле, с тянущимся от него проводом, идущим к электрощиту.

    На самом деле, металлическая конструкция, закапываемая в грунт, является заземлителем, а совокупность заземлителя и подключенных к нему проводов называется заземляющим устройством (ЗУ).

    на рисунке изображены составные части заземления

    Как видно из определения ПУЭ, заземление – это, прежде всего процесс, выполнение которого должно обеспечивать электротехническую защиту людей и оборудования.

    Говоря о заземляемом оборудовании, как о защите от поражения, подразумевают защитное заземление. Термин «электрическое соединение» означает подключение при помощи проводников.

    Точкой сети может быть место соединения с ЗУ как токонесущего проводника, так и защитного провода, экрана или брони кабеля.

    провод заземления или точка соединения ЗУ к контуру заземления

    Электроустановкой называют совокупность аппаратов, машин, оборудования, конструкций, сооружений, помещений, предназначенных для генерации, трансформации, распределения и передачи электроэнергии, а также для преобразования в другие типы энергии.

    Назначение заземления

    Вышеописанная терминология пока не дает ответ на вопрос, зачем необходимо заземление, но приближает к пониманию сути вещей. Интуитивно понятно, что напряжение на заземлённых точках пребывающего в нормальном состоянии оборудования будет равным нулю.

    Удельные сопротивления некоторых грунтов

    Идеальное заземление должно обладать бесконечно малым сопротивлением ЗУ, чтобы обеспечивать падение напряжения до нуля при бесконечно больших значениях пропускаемых токов.

    Иными словами, идеальное заземление обеспечивает зануление любых возникающих в заземлённой точке потенциалов. На практике сопротивление заземления (очень важная характеристика) – зависит от площади контакта заземлителя, характера окружающих его грунтов, их влажности, солёности, плотности.

    Также немаловажную роль играет поперечное сечение заземляющих проводов, которое согласно ПУЭ не должно быть меньше 6мм². Падение напряжения на заземлённом металлическом корпусе электроприбора при замыкании на него фазного провода будет зависеть от сопротивления заземления и максимально возможного тока в цепи.

    Таким образом, должно быть обеспечено снижение до безопасного для жизни и здоровья уровня разности потенциалов между заземляемым электрооборудованием и землёй.

    Совокупная защита заземляющих устройств и предохранителей

    Естественно, что одно только заземление не может обеспечить безопасную жизнедеятельность человека, даже, если бы оно было идеальным – ведь тогда в электрических цепях электрооборудования, при повреждении изоляции токонесущих проводов произойдёт короткое замыкание, которое неминуемо приведёт к возгоранию, если не принять дополнительные защитные меры в виде применения предохранителей и автоматических выключателей.

    Поэтому, помимо снижения до безопасного значения разности потенциалов, заземление должно обеспечивать ток утечки, достаточный для того, чтобы сработали автоматы защиты и предохранители.

    Поскольку нулевой провод электросети имеет достаточно малое сопротивление, и к тому же его заземляют как на трансформаторной подстанции, так и повторно по пути прохождения, то связка заземление плюс зануление корпусов оборудования даёт лучшие результаты, обеспечивая быстрое срабатывание защиты в случае пробоя изоляции.

    Система заземления tn-c-s

    Если сопротивление заземления достаточно высокое, то защитный автомат может не сработать за короткий период времени. В этом случае необходимо применить устройство защитного отключения, моментально реагирующее на очень малые токи утечки.

    Заземление и зануление в системах энергоснабжения

    Заземлять каждый корпус электроприбора невыгодно, и нет возможности обеспечить надлежащее качество заземлителя в различных условиях.

    Поэтому заземление электрооборудования и бытовой техники осуществляется при помощи линий электропередач, которые имеют, в зависимости от системы, защитный заземляющий провод PE (protect earth – защита землёй). Таких систем электроснабжения, имеющих провод заземления всего три:

    1. устаревшая TN-C, где PE и рабочий ноль N совмещены в одном проводе PEN;
    2. TN-S, где PE и N соединены только в контуре заземления трансформатора и больше нигде не контактируют;
    3. TN-C-S, PE и N совмещены до точки разделения, после которой больше не соединяются.

    TN означает заземлённая нейтраль, S – разделённый, C – совмещённый. В системе TN-C защитные функции, которые должно выполнять заземление осуществляет зануление PEN проводом корпусов электроприборов.

    Данная схема не является безопасной, поэтому была упразднена, а на смену ей пришли системы энергоснабжения TN-S и TN-C-S, обеспечивающие более безопасную электротехническую защиту при помощи дополнительного заземляющего провода PE.

    Обозначение проводников

    Заземление электросетей многоквартирного дома по данным схемам должны выполняться исключительно специалистами.

    Собственноручно заземлённый защитный провод

    Ответом на вопрос, как сделать заземление самостоятельно будет система ТТ, где не надо выполнять работ по разделению PEN, достаточно установить индивидуальное заземляющее устройство и соединить его с шиной PE.

    Поскольку сопротивление кустарного заземлителя будет больше, чем заземление плюс зануление, то обязательным условием является применение УЗО, которое отреагирует на возникший ток утечки и отключит питание.

    На неофициальном уровне можно договориться со службами энергоснабжения о самостоятельном разделении PEN провода на вводном распределительном устройстве частного дома.

    В данном случае осуществляется заземление и зануление главной заземляющей шины, с последующим разделением PEN на рабочий N и защитный PE провод.

    Осуществляя подобный электромонтаж, всегда нужно помнить важное правило – недопустимо использовать в качестве заземляющего устройства трубопроводы коммуникаций, это может быть смертельно опасным как для членов семьи, так и для соседей. Изготовляют заземлитель из металлопроката различной формы профиля, монтаж осуществляют электросваркой.

    Плакат сечение проводников , материал заземления

    Обязательно нужно проконсультироваться со специалистом, и попросить его потом измерить сопротивление получившегося заземлителя, которое не должно превышать 30 Ом.

    Заземлённое неэлектрическое оборудование

    Термин защитное заземление применяется не только по отношению к электрооборудованию. Очень часто заземляют металлические конструкции, которые в принципе не имеют ничего общего с электротехникой, и не соприкасаются с изоляцией кабелей, которая может повредиться.

    Например, стальные поручни эстакад и галерей должны быть заземлены, также как и различные трубопроводы и даже металлическая ванна в санузле. Возникает резонный вопрос, зачем требуется заземление данных конструкций, если их функции далеки от использования электроэнергии?

    Ответ заключён в том, что опасные потенциалы могут возникнуть не только при пробое изоляции. Очень большим электромагнитным воздействием обладает разряд молнии, происходящий на расстоянии сотен метров, при котором на металлических поверхностях индуцируется опасная разница потенциалов.

    Принцип молниезащиты от вторичных проявлений молний (первичный – это прямое попадание) состоит в том, что при помощи системы уравнивания потенциалов (СУП), соединённой с заземлением, наведённые в проводниках токи стекают в землю. Также СУП, установленная в ванной, защищает от статического электричества, возникающего при трениях молекул воды в потоке.

    Система уравнивания потенциалов

    Наведённое молнией, также как и статическое перенапряжение может достигать нескольких киловольт, чего достаточно для возникновения искры, что является критически опасным для трубопроводов и объектов хранения жидких, газообразных, пылеобразных горючих, легко воспламеняемых, взрывоопасных веществ.

    Поэтому нормативные требования по заземлению к таким объектам являются максимальными

    Применение заземляющих устройств в радиоаппаратуре

    В электронике заземление применяют для подавления влияния электромагнитных помех, защищая от них электронные цепи путём помещения их в заземлённый корпус, выполняющий роль экрана.

    Подобное экранирование осуществляется и для чувствительных проводов при помощи оплётки кабеля. Но не стоит путать заземление с термином «земля», означающим условное принятие нуля потенциала в некотором узле цепи.

    В радиопередающей технике заземление служит для улучшения эффективности излучения стационарной антенны, которое достигается увеличением емкости между излучателем и противовесом (землей).

    Источник http://www.zandz.by/otvety-na-voprosy/zazemlenie_chto_eto_takoe_i_kak_ego_sdelat.html

    Источник https://magazin-yar.ru/osveshhenie/sozdanie-zashhitnogo-zazemleniya.html

    Источник https://infoelectrik.ru/molniezashhita-i-zazemlenie/zachem-nuzhno-zazemlenie.html

    Вам будет интересно  Знак заземления