Автомат переключения на резервное питание

Содержание

Автомат переключения на резервное питание

3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.

При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.

Рассмотрим каждый из вариантов схемы поподробнее.

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:

    нормально разомкнутым
    нормально замкнутым

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.



Вот самая простая схема АВР:

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

    без разрыва ноля
    с разрывом нулевого провода

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

Трехфазная схема практически аналогична однофазной.

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.

Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:

    3 нормально разомкнутые
    1 нормально замкнутый КМ1

Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.

Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.

Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.

Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.

Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.

Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.

Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.

Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:

    реле напряжения
    реле контроля фаз и т.п.

Поэтому в последнее время, для сборки схем АВР, все чаще стали применяться специальные реле или контроллеры — ”мозги” всего устройства. Они могут быть разных производителей и выполнять функцию не только включения резервного питания от одного источника.

Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.

Алгоритм работы здесь следующий:

1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

Автоматическое переключение на резервный источник питания — 2

Предыдущая версия данного устройства могла сработать только тогда, когда пропадало напряжение основного источника, от понижение или повышения напряжения защитить нагрузку не могло. В новом варианте устройства были исправлены эти недочёты, а именно:

    Устройство не переключит нагрузку на резервный источник питания при наличии даже пониженного напряжения основного источника.

Устройство не способно работать при напряжении менее 6-ти вольт.

Устройство не защитит нагрузку при повышении напряжения сверх допустимой величины.

Новый вариант устройства обладает значительно улучшенными характеристиками.

Способно работать при входном напряжении основного источника от 6 до 15 в.

Защита нагрузки от пониженного или повышенного напряжения. Для контроля напряжения основного источника используются два компаратора. При отключении основного источника напряжения, работа устройства аналогична его предыдущей версии.

Ток потребляемый нагрузкой ограничен только максимальным током, который могут выдержать контакты применяемого электромагнитного реле.

Питается устройство от резервного источника питания на 12 в и потребляет ток около 100 ма, в случае если напряжение основного источника меньше 12-ти вольт, нужно применить стабилизатор и включить его в разрыв показанный на схеме, а также установить пороги срабатывания защиты построечными резисторами.

Схема устройства и принцип работы.

Работа устройства

Напряжение основного источника поступает на резисторы R6 и R12 с которых напряжение поступает на входы компараторов, где сравнивается с напряжением поступающим со стабилизатора VR1. Отдельный стабилизатор VR1 применён для того, чтобы при изменении величины напряжения резервного источника питания не менялись пороги срабатывания защиты. Кратко опишу для чего предназначены эти подстроечные резисторы. Резистор R12 отвечает за срабатывание защиты при падении напряжения ниже минимального порога, который этим резистором выставляется. В моём случае этот порог 10.5 вольт и для того, чтобы его выставить, нужно при входном напряжении 10.5 вольт с помощью этого резистора выставить на выводе 7 компаратора напряжение 1.3в, что ниже порога срабатывания компаратора, так как на 6 ноге микросхемы напряжение 1.65 вольта, сразу же сработает защита. Резистор R6 отвечает за срабатывание защиты в случае критического повышения напряжения основного источника. В моём случае величина максимального напряжения установлена на уровне 13 вольт. При этом напряжении резистором R6 необходимо выставить на 5-й ноге микросхемы напряжение 4 вольта, что приведёт к срабатыванию защиты и переключению нагрузки на резервный источник. Благодаря этим резисторам защита срабатывает при понижении напряжения до 10.5 вольт, или повышении до 13.

Самой интересной частью схемы является узел собранный на микросхемах DD1 и DD2. Он собственно и является схемой защиты. Два входа этого узла подключены к компараторам, но для того, чтобы на выводе 8 микросхемы DD1 появился уровень логической 1 и сработала защита должны быть созданы определённые условия. Данный узел интересен ещё и тем, что логическая единица на выходе 8 DD1.1 появится при наличии одинаковых логических состояний на входах, либо два 0 , либо две 1. Если на одном входе будет 1, а на другом 0, то защита не сработает.

Работает схема защиты следующим образом. При нормальном входном напряжении основного источника работает только компаратор DA1.2, так как напряжение выше минимального порога отключения и следовательно открытый выходной транзистора компаратора DA1.2 замыкает выводы 4 и 5 элемента DD2.4 на массу, что аналогично состоянию логического 0, а на входах 1 и 2 элемента DD2.3 действует напряжение около 4.5 — 5 вольт, что аналогично состоянию логической 1, так как напряжение не достигает 13 вольт и компаратор DA1.1 не работает. При таком условии защита не сработает. При повышении напряжения основного источника до 13 вольт начинает работать компаратор DA1.1, открывается выходной транзистор и замыкая входы 1 и 2 DD2.3 на массу принудительно создаёт уровень логического 0, тем самым на обоих входах принудительно появляется уровень логического 0 и срабатывает защита. Если напряжение упало ниже минимального порога, то напряжение подводимое к 7-й ноге компаратора падает до уровня ниже 1.65 вольта, выходной транзистор закроется и перестанет замыкать входы 4 и 5 элемента DD2.4 на массу, что приведёт к установлению на входах 4 и 5 напряжения 4.5 — 5 вольт(уровень 1). Поскольку DA1.1 уже не работает и DA1.2перестал, то создаётся условие при котором уровень логической единицы появится на обоих входах узла защиты и она сработает. Подробнее работа узла показана в таблице. В таблице показаны логические состояния на всех выводах микросхем.

Таблица логических состояний элементов узла.

Налаживание устройства

Правильно собранное устройство требует минимальной наладки, а именно установки порогов срабатывания защиты. Для этого необходимо вместо основного источника напряжения подключить к устройству регулируемый блок питания и с помощью подстроечных резисторов выставить пороги срабатывания защиты.

Внешний вид устройства

Расположение деталей на плате устройства.

АВР и все, все, все: автоматический ввод резерва в дата-центре

В прошлом посте про PDU мы говорили, что в некоторых стойках установлен АВР — автоматический ввод резерва. Но на самом деле в ЦОДе АВР ставят не только в стойке, но и на всем пути электричества. В разных местах они решают разные задачи:

  • в главных распределительных щитах (ГРЩ) АВР переключает нагрузку между вводом от города и резервным питанием от дизель-генераторных установок (ДГУ);
  • в источниках бесперебойного питания (ИБП) АВР переключает нагрузку с основного ввода на байпас (об этом чуть ниже);
  • в стойках АВР переключает нагрузку с одного ввода на другой в случае возникновения проблем с одним из вводов.


АВР в стандартной схеме энергоснабжения дата-центров DataLine.

О том, какие АВР и где используются, и поговорим сегодня.

Основных типа АВР два: ATS (automatic transfer switch) и STS (static transfer switch). Они отличаются принципами работы и элементной базой и используются для разных задач. Если вкратце, то STS — это более «умный» ATS. Он быстрее переключает нагрузку и чаще используется для больших нагрузок/токов. Он более гибок в настройке, зато «с капризами» к сети: может отказаться работать, если 2 ввода питаются от разных источников, например: от трансформатора и ДГУ.

АВР в ГРЩ

Главный АВР дата-центра двадцать лет назад выглядел как сложная система контакторов и реле.


АВР образца начала 2000-х.

Сейчас АВР — это компактное многофункциональное устройство.

Система АВР в ГРЩ управляет вводными автоматами и дает команды на запуск и остановку ДГУ. При нагрузке более 2 МВт на уровне ГРЩ нецелесообразно гнаться за скоростью. Даже если переключится быстро, то пройдет время, пока запустится ДГУ. В этой системе используются более «медленные» ATS и выставляются задержки (уставки). Работает это так: когда питание дата-центра от трансформаторов пропадает, АВР командует устройствам: «Трансформатор, выключись. Теперь ждем 10 секунд (уставка), ДГУ, включись, ждем еще 10 секунд».

АВР в ИБП

На примере ИБП посмотрим, как работает второй тип АВР — STS или static transfer switch.

В ИБП переменный ток преобразуется в постоянный на выпрямителе. Затем на инверторе он превращается обратно в переменный ток, но уже со стабильными параметрами. Это устраняет помехи и повышает качество энергии. При отключении основного источника питания ИБП переключается на аккумуляторные батареи и питает дата-центр, пока в работу включаются ДГУ.

Но что, если из строя выйдет какой-то из элементов: выпрямитель, инвертор или аккумуляторные батареи? На этот случай в каждом ИБП есть механизм обходного пути, или байпас. С ним устройство продолжает работу в обход основных элементов, сразу от входного напряжения. Также байпасом пользуются, когда нужно выключить ИБП и вывести его в ремонт.

STS в ИБП нужен, чтобы безопасно перейти на байпасный ввод. Если коротко, то STS контролирует параметры сети на входе и на выходе, дожидается, когда они совпадут, и переключается в безопасных условиях.

АВР в стойке

Итак, к стойке подведены два ввода электропитания. Если у вашего оборудования два блока питания, вы спокойно подключаете его к разным PDU, и пропадание одного ввода вам не страшно. А если у вашего сервера один блок питания?
В стойке АВР используют, чтобы профит от двух вводов не пропал даром. При проблемах с одним из вводов АВР переключает нагрузку на другой ввод.

Дисклеймер: Если можете, избегайте оборудования с одним блоком питания, чтобы не создавать точку отказа в системе. Дальше мы покажем, в чем недостатки такой схемы подключения.

Задача АВР в стойке — переключить оборудование на рабочий ввод так быстро, чтобы в его работе не было перерыва. Нужную для этого скорость нашли опытным путем: не больше 20 мс. Посмотрим, как это обнаружили.

Сбои в работе серверного оборудования происходят из-за провалов напряжения (из-за работ на подстанциях, подключения мощных нагрузок или аварий). Чтобы проиллюстрировать, как оборудование выдерживает разную амплитуду и длительность перепадов напряжения, разработали кривые безопасной работы электрооборудования CBEMA (Computer and Business Equipment Manufacturers Association). Сейчас они известны как кривые ITIC (Information Technology Industry Council), их варианты включены в стандарты IEEE 446 ANSI (это аналог наших ГОСТов).

Сверимся с графиком. Наша задача, чтобы устройства работали в «зеленой зоне». На кривой ITIC мы видим, что оборудование готово «терпеть» провал максимум 20 мс. Поэтому мы ориентируемся, чтобы АВР в стойке отрабатывал за 20 мс, а лучше — еще быстрее.


Источник: meandr.ru.

Устройство АВР. Типовой АВР (ATS) в стойке нашего ЦОДа занимает 1 юнит и выдерживает нагрузку 16 А.

На дисплее видим, от какого ввода питается АВР, сколько подключенные устройства потребляют в амперах. Отдельной кнопкой выбираем, отдать приоритет первому или второму вводу. Справа — порты для подключения к АВР:

  • Ethernet port — подключить мониторинг;
  • Serial port — зайти через ноутбук и посмотреть в логах, что происходит;
  • USB — вставить флешку и обновить прошивку.

Порты взаимозаменяемые: можно выполнить все эти операции, если есть доступ хотя бы к одному из них.

На тыльной стороне — вилки для подключения основного и резервного вводов и розеточная группа для подключения ИТ-оборудования.

Подробные характеристики АВР мы смотрим через веб-интерфейс. Там настраивается чувствительность переключения и видны логи.


Веб-интерфейс АВР.

Установка и подключение АВР. Устанавливать АВР по высоте лучше в середину стойки. Если мы заранее не знаем комплектацию стойки, то так оборудование с одним блоком питания сможет дотянуться проводами и с нижней, и с верхней части.

А вот дальше есть нюансы: глубина стандартной стойки гораздо больше, чем глубина АВР. Мы рекомендуем установить его как можно ближе к холодному коридору по двум причинам:

    Доступ к передней панели. Если установить АВР ближе к горячему коридору, мы увидим индикацию, но не сможем подключиться к нему через порты. А значит, не сможем посмотреть логи или перезагрузить устройство.

  • потоками воздуха, которые дуют на него извне;
  • крепежами, которые уводят лишнее тепло.

Если установить АВР со стороны горячего коридора и вдобавок зажать его пирогом из серверов, то мы получим печку. В лучшем случае у АВР сгорят мозги и он потеряет связь с внешним миром, в худшем — начнет хаотично переключать нагрузку или бросит ее.


АВР парится лицом к горячему коридору.

Был случай. Инженер на обходе услышал нехарактерные щелчки.
В недрах горячего коридора под грудой серверов обнаружился АВР, который постоянно переключался с основного ввода на резервный.

АВР заменили. Логи показали, что целую неделю он переключался каждую секунду — итого более полумиллиона коммутаций. Вот как это было

Какие еще АВР бывают в стойке

Вводный ATS для стойки. В нашем ЦОДе такой АВР выступает единственным источником распределения питания в стойке: работает как АВР+PDU. Занимает несколько юнитов, выдерживает нагрузку 32 А, подключается промышленными разъемами и может питать до 6 КВт оборудования. Использовать его можно, когда нет возможности смонтировать стандартные PDU, а одноблочное оборудование в стойке не обслуживает критичные нагрузки.

Cтоечный STS. STS в стойке используется для оборудования, чувствительного к перепадам напряжения. Этот АВР переключается быстрее, чем ATS.


Этот конкретный STS занимает 6 юнитов и у него немного «винтажный» интерфейс.

Мини-АВР. Бывают и такие малышки, но у нас в ЦОДе такого не водится. Это мини-АВР для одного сервера.


Этот АВР подключается прямо в блок питания сервера.

Как мы ищем идеальный АВР

Мы тестируем много разных АВР и проверяем, как они ведут себя в условиях высоких температур.

Вот как издеваемся над АВР, чтобы это проверить:

  • подключаем к нему регистратор качества сети, сервер и еще несколько устройств для нагрузки;
  • изолируем стойку заглушками или пленкой, чтобы достичь высокой температуры;
  • нагреваем до 50°С;
  • поочередно отключаем вводы по 20 раз;
  • смотрим, не было ли провалов питания, как себя чувствует сервер;
  • если АВР проходит тест — нагреваем до 70°С.


Фото тепловизором с одного из испытаний.


Анализатор сети фиксирует напряжение с течением времени. На записи видим, сколько длилось переключение: на этот момент синусоида прервалась

Кстати, берем АВР на тест: проверим ваше устройство на прочность и расскажем, что получилось 😉

АВР в стойке: скрытая угроза

Главная проблема с АВР в стойке в том, что он умеет только переключать нагрузку с основного на резервный ввод, но не защищает от короткого замыкания или перегрузки. Если на блоке питания происходит короткое замыкание, то по защите сработает автоматический выключатель уровнем выше: на PDU или в распределительном щите. В результате один ввод отключается, АВР это понимает и переключается на второй ввод. Если короткое замыкание еще остается, сработает автоматический выключатель второго ввода. В итоге из-за проблемы на одном оборудовании может обесточиться вся стойка.

Так что еще раз повторю: тысячу раз подумайте, прежде чем устанавливать АВР в стойку и использовать оборудование с одним блоком питания.

Да будет свет! Система резервного питания в загородном доме

Ничего не может быть хуже, чем отключение света зимой. Любой из загородных жителей рано или поздно сталкивается с ситуацией, когда лампочки гаснут, скважинный насос перестаёт качать воду, а батареи системы отопления остывают на глазах. Время задействовать резервное питание!

Большинство скажет: надо просто завести генератор и подключить к нему приборы и оборудование в доме. Не всё так просто. Пользователи forumhouse.ru хорошо знают, как запустить генератор на морозе.

Но есть и другое решение проблемы с перебоями электричества: система резервного питания дома или сокращённо – СРП.

Для правильного выбора такой системы питания необходимо понять, чем она отличается от системы автономного питания (САП).

СРП используется в том случае, когда дом подключён к основной электросети. При отключении основного питания резервное электропитание «подхватывает» основных потребителей электроэнергии: скважинный насос, котёл, холодильник, компьютер, телевизор и другое электрооборудование. САП – это основная система электропитания для дома, применяемая при полном отсутствии основной электросети.

Переходим к выбору системы резервного питания. По мнению Андрей-АА, существует 4 основных типа резервного питания для дома.

  • Если сеть отключается ненадолго, но суммарно в месяц более чем на 10 часов, то оптимальной будет система, состоящая из инвертора, зарядного устройства и блока аккумуляторов, заряжаемых от сети.
  • Если сеть отключают менее чем на 10 часов в месяц, то выгодней система из электрогенератора с двигателем внутреннего сгорания (ДВС), оборудованного системой автоматического пуска.
  • Если сеть отключают часто и надолго, или когда напряжение в сети слишком низкое, то оптимальной является система, состоящая из генератора, блока аккумуляторов, зарядного устройства и инвертора.
  • Если требуемую мощность можно ограничить 1-1,5 кВт, то в качестве резервной системы питания можно использовать автомобиль с подключённым к нему инвертором.

Остановимся подробнее на третьем варианте. Пользователь с ником galexy456 предлагает пошаговый план создания бюджетной системы резервного питания для дома.

1 В электрический щиток заводятся два кабеля из подсобного помещения. Первый кабель необходим, чтобы подать электричество на инвертор. Второй – чтобы передать электричество от инвертора в дом.

У меня на улице смонтирован маленький щиток, в котором реализована схема автоматического ввода резерва, или сокращённо АВР

2 В подсобное помещение ставим инвертор, аккумуляторы и коммутируем все устройства.

Я рекомендую выбирать инвертор с синусоидальным выходным напряжением.

В случае отключения электричества такая система работает следующим образом. АВР самостоятельно и быстро – так, что приборы не успевают отключиться, переключает питание с основного на резервное.

Теперь все подключённые энергопотребители продолжают работать от аккумуляторов и инвертора. Если энергоснабжение отсутствует больше 5-6 часов, то, не дожидаясь полного разряда аккумуляторов (от этого сильно сокращается срок их службы), для продолжения бесперебойного питания необходимо вручную завести генератор.

Существуют системы резервного питания с автоматическим запуском генератора, установленным в отапливаемом подсобном помещении и снабжённом принудительным отводом выхлопных газов. Главный недостаток таких СРП – это их высокая цена.

После запуска генератора инвертор переводит нагрузку на питание приборов от него и одновременно начинает заряжать аккумуляторы. Таким образом, продлевается время работы системы и экономится моторесурс генератора, т.к. он работает не в постоянном режиме.

Любая, даже самая продвинутая и дорогая система резервного питания, в первую очередь, приучает экономить энергоресурсы в доме, т.к. от этого напрямую зависит время работы системы резервного электроснабжения дома.

  • заменить все лампочки в доме на энергосберегающие;
  • проложить вторую, резервную линию электросети, к которой, в случае отключения электричества, можно подключить самое необходимое оборудование в доме;
  • как следует утеплить дом, чтобы уменьшить затраты на отопление;
  • при работе резервной системы питания не пользоваться мощными электроприборами: утюгом, электрочайником, пылесосом.

Включение фена, чайника или утюга на 3-7 минут сильно не разрядит аккумуляторы, но глажку или работу с мощным электроинструментом лучше не допускать.

Для построения СРП нагрузку в доме можно условно разделить на три части:

  1. Отопление.
  2. Водонагревательные приборы.
  3. Приборы, требующие обязательного резервного питания, а именно:
  • освещение;
  • циркуляционные насосы отопления;
  • скважинный насос и насосная станция;
  • компьютер;
  • холодильник, телевизор, Интернет.

Также в качестве резервной системы питания можно использовать и автомобиль. Для этого необходимо:

  1. Приобрести инвертор с синусоидальным выходом на 12-220 В мощностью до 2 кВт с защитой от перегрузки по току или по мощности.
  2. Прогреть двигатель автомобиля.
  3. Выключить двигатель.
  4. Подсоединить инвертор непосредственно к клеммам аккумулятора (не отсоединяя его от автомобиля).
  5. Завести двигатель.
  6. Подсоединить нагрузку к инвертору.
  7. После отключения нагрузки необходимо оставить двигатель авто заведённым, чтобы он подзарядил аккумулятор.

Я постоянно использую энергосистему своего авто в качестве резервного источника электричества на даче. Максимальное время работы в таком режиме составляло 10 часов, работали все основные потребители электрической энергии в доме.

Пользователи сайта FORUMHOUSE могут узнать, как самостоятельно сделать резервную систему питания питания. Вся информация по расчёту автономной системы питания собрана в этом дневнике. Автоматический запуск и использование генератора «от А до Я» описан в этой теме.

А в этом видео рассказывается о том, как инвертор и блок аккумуляторов могут увеличить электрическую мощность в доме.

Ручное управление и АВР для генератора в сети частного дома

Проблемы с перебоями в энергоснабжении существуют, пожалуй, со времен открытия электричества и знакомы каждому. Одним из выходов из создавшегося положения может стать резервный электрогенератор, на который можно перейти до устранения проблемы. Переключиться на него несложно и вручную, но если объект ответственный или у вас нет желания возиться с рубильниками, эту задачу можно возложить на автомат — АВР для генератора.

Требования к оборудованию резервного питания

Необходимость перехода на резервный источник, как правило, вызвана либо аварийной, либо нештатной ситуацией. В связи с этим нередко все переключения осуществляются неквалифицированным персоналом и зачастую в сложных условиях — в темноте, тесноте, под открытым небом. Именно поэтому требования к резервирующему оборудованию достаточно жесткие:

  1. Безопасность для оператора. Все резервное электрооборудование не должно иметь открытых токоведущих и движущихся частей (за исключением приводных ручек), а его металлические шасси и кожухи нужно заземлить. Отправляя даже неподготовленного человека на переключение, вы должны быть уверены, что он не попадет под напряжение и не повредит руки какими-нибудь фиксаторами или тягами, даже работая при плохом освещении.
  2. Безопасность для электрооборудования. Схема коммутации должна быть такой, чтобы даже при не полностью или не в той последовательности выполненном переключении оператор не смог создать аварийной ситуации — подать встречное напряжение, переключить не все фазы, вызвать короткое замыкание и пр. Все это обеспечит сохранность основных и резервных цепей даже при неумелых или ошибочных действиях человека.
  3. Оперативность. Переход на резервный генератор должен требовать минимум манипуляций и производиться по возможности быстро. Сами устройства коммутации должны быть максимально доступны, чтобы к ним не нужно было взбираться по стремянкам или лазить по люкам. Это особенно важно для ответственных объектов и специального электрооборудования (холодильные установки, системы микроклимата, котлы, печи и пр.).
  4. Наглядность и простота. Конструкция переключателей и рубильников должна быть максимально простой, а схема переключения — наглядной и интуитивно понятной. Это существенно сокращает вероятность ошибки человека и выхода из строя оборудования. Такие схемы проще обслуживать, а ремонт при их поломке будет стоить дешевле.

Стоит отметить, что каким бы методом переключения на резервное питание вы ни пользовались, ручным или автоматическим, все условия должны быть по возможности максимально соблюдены. Ведь именно от этого будет зависеть не только обеспечение бесперебойного питания объекта, но и безопасность людей.

Методы подключения резервного генератора

В зависимости от конкретных требований и возможностей (наличие или отсутствие дежурного персонала, его квалификации, финансов предприятия и пр.) переход на резервный источник может осуществляться одним из трех способов:

  1. Ручное переключение.
  2. Полуавтоматический переход.
  3. Автоматическое переключение.

Для небольших объектов и частных домов вполне подойдет ручная схема подключения бензогенератора к домашней сети. Оборудование таких систем стоит недорого, а присутствие людей в жилом доме подразумевается само собой. Полуавтоматический способ переключения требует участия оператора на том или ином этапе коммутации, а значит, он отлично подойдет как для частных домов, так и для объектов с постоянным, пусть даже неквалифицированным персоналом.

Полностью автоматический переход обычно используется на автоматизированных и ответственных объектах или участках, а также там, где постоянный персонал отсутствует.

Ручное подключение

Для реализации этого метода достаточно обычного перекидного рубильника на нужное количество полюсов и резервного генератора, подходящих мощности и напряжения.

Схема подключения генератора к сети дома через перекидной рубильник

Для того чтобы запитать дом от резервного источника, здесь достаточно лишь повернуть ручку рубильника, на оси которой находятся переключатели А и В. При этом ножи устройства сначала отключат потребителя от основного источника (сети), и лишь затем подключат его к резервному (генератору). В схеме необходимо коммутировать однофазную цепь, рубильник имеет два переключателя или, как принято говорить, полюса. Но существуют и многополюсные приборы, коммутирующие трехфазные линии.

Трехполюсные перекидные рубильник (слева) и переключатели

Первым на рисунке приведен двухпозиционный рубильник, два последних — переключатели, имеющие по три позиции. Рубильник позволяет подключить нагрузку либо к сети, либо к резервному источнику. Третьего не дано. Трехпозиционные приборы имеют третье (промежуточное) положение, в котором нагрузка уже отключена от сети, но еще не подключена к генератору.

Если потух свет, рубильник переключается на бензиновый или дизельный генератор и этот самый генератор запускается. Во время пуска на выходе напряжение частота начнут плавно увеличиваться от нуля до номинала.

В это время двигатели электроприборов сгорят. Будь в вашем распоряжении трехпозиционный переключатель, вы бы смогли сначала просто отключить дом от сети, потом спокойно запустить генератор, вывести его на режим, а уж затем переключиться к резервному электропитанию.

Полуавтоматический переход на другой источник

Этот метод подразумевает автоматизацию тех или иных (не всех) процессов переключения. Участие человека в таком типе переключения все равно необходимо, но сама коммутация становится намного проще и безопаснее как для человека, так и для оборудования.

Автомат переключения на резерв

Этот узел, который несложно собрать своими руками, предназначен для автоматического переключения нагрузки с основного на резервный источник при пропадании первого и наоборот. Для его реализации понадобится электромагнитный пускатель или реле, срабатывающие от 220 В и с контактами, выдерживающими ток домовых потребителей. В качестве примера взято электромагнитное реле РЭК77/3 с тремя группами переключающих контактов:

Электромагнитное реле РЭК77/3 с обмоткой 220 В / 50 Гц

Устройство выдерживает ток до 10 А, и вполне может использоваться в качестве автоматического переключателя на небольшом объекте или в частном доме. Схема же автомата будет выглядеть следующим образом:

Здесь реле исполняет роль автоматического перекидного выключателя. Одна группа контактов переключает фазу, другая — ноль, третья не используется. Обмотка реле питается от основной сети. В исходном положении в линии «Сеть» присутствует напряжение, реле включено и подает напряжение на нагрузку. При пропадании сети реле отпускает и переключает нагрузку на питание от генератора. При возобновлении электроснабжения реле К1 вновь срабатывает, и схема возвращается к питанию от основного источника.

Это полный автомат ввода резерва, но лишь в том случае, когда сам резервный источник всегда под напряжением. Если же в качестве резерва используется бензогенератор, а это чаще всего именно так, то понятно, что система будет полуавтоматической — генератор придется запускать вручную.

С запуском бензогенератора

Эта конструкция в состоянии самостоятельно запустить генератор. Единственное условие — сам генератор должен иметь стартер и дистанционную систему пуска хотя бы кнопкой. Для реализации этой идеи понадобится еще одно реле и пусковой таймер произвольной конструкции:

Подключение бензогенератора к сети дома, схема с автостартом

Здесь реле К1 исполняет те же функции — переключает нагрузку при пропадании основного напряжения. Но дополнительно оно своей третьей группой контактов подает напряжение на стартер и реле времени. Реле периодически пытается завести генератор, с его запуском появляется напряжение на резервной линии. При этом срабатывает реле К2 и своими контактами отключает систему автозапуска бензогенератора.

Но и эта конструкция не является полным автоматом. Во-первых, если генератор по каким-либо причинам не запустится (холодно, плохая регулировка пуска, нет топлива и пр.), устройство будет пытаться заводить его до тех пор, пока не сожжет стартер или не посадит пусковой аккумулятор. Во-вторых, при появлении основного напряжения автоматика переключит нагрузку на него, но не заглушит генератор.

Полный автомат ввода резерва

Для того чтобы полностью автоматизировать процесс, необходимо нечто большее, чем 2 реле — полноценная система контроля. Такая система существует и называется АВР — Автоматический Ввод Резерва. Создаются подобные устройства на базе программируемых AVR контроллеров, имеют в своем составе множество датчиков обратной связи и регуляторов. Сделать такое оборудование самостоятельно сможет лишь квалифицированный специалист.

Но оснастить свой дом или любой другой объект подобным автоматом можно — они есть в продаже, хотя и стоят недешево. Зато список функций, выполняемых стандартным АВР, достаточно велик:

  1. Отключение потребителей от основного источника при пропадании в нем питающего напряжения.
  2. «Умный» запуск генератора с контролем неудачного старта.
  3. Вывод бензогенератора на рабочий режим.
  4. Подключение потребителей к линии генератора.
  5. Подсчет моточасов, контроль температуры двигателя, расхода топлива и пр.
  6. Контроль напряжения, частоты и тока с автоподстройкой режима работы генератора.
  7. Автоматическое переключение на основной источник при возобновлении штатного электроснабжения.
  8. Остановка бензогенератора.
  9. Зарядка аккумулятора стартера.

Сегодня купить блок АВР можно как в комплекте с бензогенератором, так и отдельно. Первый вариант, конечно, проще (узлы адаптированы и подключены друг к другу уже производителем), но финансово неоправдан, если генератор уже есть. В этом случае достаточно приобрести АВР, но перед покупкой обязательно проконсультируйтесь со специалистом о том, сможет ли конкретная модель автомата работать именно с вашим генератором. Структурная же схема подключения генератора с АВР в домовую сеть будет выглядеть примерно так:

Общая схема подключения генератора с блоком АВР

Originally posted 2018-07-04 07:16:31.

Автомат переключения на резервное питание

Плавкие предохранители (Плавкие вставки) предназначены для защиты силовых, сигнальных и управляющих электрических цепей

/>Маркировка кабельных линий

Все кабельные трассы, согласно требованиям нормативных документов, должны быть промаркированы бирками с указанием на

/>Щит управления вентиляцией

Щит управления вентиляцией (ЩУВ) предназначен для автоматического управления работой приточно-вытяжной вентиляции, как

/>Tia Portal — язык программирования SCL. Часть2

Продолжим тему изучения программирования на SCL в среде Tia Portal, начатую в прошлой статье. Сегодня мы рассмотрим

Контроллеры Modicon M171/M172

В данной обзорной статье рассмотрим контроллеры фирмы Schneider Electric серии Modicon M171/M172. Данная линейка

2018-08-23 Статьи, Схемы 3 комментария

АВР (Автоматический ввод резерва) представляет собой систему обеспечения бесперебойной работы энергопотребителей. В случае пропадания основного источника питания АВР автоматически запускает резервный ввод.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

  • I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр.

Все потребители, относящиеся к данной категории должны быть запитаны от двух независимых источников питания ( это могут быть две трансформаторные подстанции, либо ТП и дизель генератор). Электроснабжение, при отключении одного из источников, должно прерываться лишь на время автоматического переключения на второй ввод. Очевидно, что в данном случае без системы АВР просто не обойтись.

Также к первой категории относят особую группу потребителей, которые должны бесперебойно функционировать с целью безаварийного останова производств для предотвращения возможной опасности жизни людей, пожаров и взрывов. Для этой группы предусматривается три независимых источника питания ( две ТП и дизель генератор). Для данной группы также необходимо использовать АВР.

  • II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта

Все объекты, попадающие в данную категорию, также должны быть запитаны от двух независимых источников питания, но в отличии от первой категории, допускается некоторое время простоя до восстановления электроснабжения. То есть в данном случае могут применяться автоматические системы ввода, но допускается и ручное переключение на резервный ввод.

  • III категория — все остальные потребители электроэнергии.

И наконец третья категория энергопотребителей, для которой электроснабжение осуществляется от одного источника питания. При этом перерыв в электроснабжении не должен превышать одних суток. В данную категорию попадают магазины, офисные помещения, частные дома и т.д. Хотя для данной категории системы АВР вроде как и не предусмотрены, но согласитесь, что находиться без электричества в течении суток не очень-то комфортно, поэтому по мере возможности АВР находят применение и здесь.

Как видно из всего вышеперечисленного устройства АВР являются неотъемлемой частью систем обеспечения бесперебойного питания электроприемников.

По типу исполнения АВР разделяют на

  • АВР одностороннего действия

— в данном исполнении присутствует два ввода — основной и резервный. Оба они подключены к одной секции, к которой подключена и нагрузка. В нормальном режиме в работе находится только основной ввод, а в случае неисправности устройство АВР отключает основной ввод и задействует в работу резервный ввод. Как только на основном вводе восстановится напряжение, система автоматически переключается на него. То есть система имеет приоритет основного ввода.

  • АВР двухстороннего действия

— в данной схеме задействованы два ввода, каждый из которых подключен к отдельной секции. Соединение двух секций выполнено с помощью секционного выключателя. Если на одной секции пропадает питание, то она автоматически будет подключена к рабочей секции. По данной схеме оба ввода являются равноценными и не имеют приоритета.

  • АВР двухстороннего действия + ввод от ДГУ.

В данном случае все работает также, как и в предыдущей схеме. Главное отличие — это присутствие третьего ввода от дизель генератора. Команда на запуск ДГУ дается при пропаже питания на обоих вводах.

В зависимости от типа исполнения система АВР может выполнять функции контроля состояния автоматических выключателей на вводе и выводе, защиту от повышенного напряжения, контроль последовательности чередования фаз, выбор автоматического или ручного запуска, задание временной выдержки на включение и отключение, индикацию состояния сети, дистанционную настройку и управление, передачу состояния устройства посредством SMS-сообщений по GSM связи и т.д. Функционал АВР может быть весьма обширным, здесь все зависит от реализованной схемы.

А схем исполнения устройств АВР много. В качестве коммутирующих устройств используются контакторы, автоматические выключатели либо рубильники с мотор-приводами, в качестве органов управления и контроля применяются реле контроля фаз, программируемые реле, блоки управления автоматическим переключением.

Несмотря на такое разнообразие, в основе всех устройств АВР лежит одинаковая логика работы — контроль параметров сети и автоматическое переключение на необходимый ввод.

Для начала рассмотрим самый простой пример с применением двух автоматических выключателей и двух контакторов.

При наличии напряжения на первом вводе питание через нормально-замкнутый контакт КМ2.1 приходит на катушку контактора КМ1. Силовые контакты КМ1 замыкаются и вся нагрузка таким образом будет подключена на 1 ввод. При исчезновении питания на 1 вводе контакт КМ1.1 вернется в исходное состояние, напряжение будет подано на катушку КМ2.1. Силовые контакты КМ2.1 замкнутся и питание потребителей будет осуществляться от 2 ввода. При восстановлении питания 1 ввода ничего происходить не будет, пока не пропадет питание со 2 ввода. То есть схема не имеет приоритета вводов и для того чтобы снова перейти на 1 ввод, придется вручную отключить автомат QF2.

На самом деле такая схема вряд ли может быть предложена для реализации, так как имеет целый ряд недостатков. Во первых контакторы не имеют механической блокировки, нет индикации состояния сети, отсутствует защита от повышенного — пониженного напряжения, в случае трехфазного исполнения данной схемы необходим контроль чередования фаз. Так что это скорее пример, показывающий общий принцип работы АВР, чем действительно рабочая схема.

Но если добавить в данную схему реле напряжения, то она примет уже вполне рабочий вид.

Во первых реле напряжения осуществляет защиту от повышенного — пониженного напряжения, а во вторых задает приоритет основного ввода. При появлении питания на 1 вводе, контакт реле KSV разомкнет цепь питания катушки КМ2 и произойдет автоматическое переключение со 2 ввода на основной 1 ввод.

Еще один пример, на этот раз трехфазной схемы АВР.

В отличии от предыдущего примера, данная схема имеет уже полностью законченный вид. Помимо контроля напряжения, здесь присутствует и индикация состояния вводов, за которую отвечают лампы HL1 и HL2 и механическая блокировка контакторов ( пунктирная линия с треугольником). Помимо автоматических выключателей QF1 и QF2, защищающих силовые цепи, добавлены автоматы защиты цепей управления SF1,SF2.

Помимо релейной логики в устройствах АВР для управления и контроля часто применяются специализированные блоки управления резервным питанием, такие как БУАВР от компании НПП ВЭЛ, МАВР Меандр, AVR-02G Евроавтоматика ФиФ, ATS022 ABB и другие.

Одним из наиболее популярных на рынке является блок БУАВР.

БУАВР осуществляет функции контроля за минимальным и максимальным напряжением, контроль чередования фаз, ассиметрии фаз, обрыва одной или нескольких фаз, управления контакторами либо автоматическими выключателями с мотор приводами, индикацию состояния входов — выходов.

В зависимости от выбора режима БУАВР может работать:

  • В автоматическом режиме, с приоритетом 1 ввода
  • В автоматическом режиме, с приоритетом 2 ввода
  • В автоматическом режиме, без приоритета вводов
  • С постоянно включенным 1 вводом
  • С постоянно включенным 2 вводом

Для разных типов АВР выпускаются БУАВР различных исполнений — например одна из самых популярных моделей БУАВР1 применяется в схемах на два ввода с одной нагрузкой, БУАВР.С — в схемах на два ввода, две нагрузки с секционным выключателем, БУАВР.2С — на два ввода, две нагрузки с двумя секционными выключателями.

Ниже приведена схема АВР на два ввода с одной нагрузкой на контакторах с использованием блока БУАВР1.

В изначальном состоянии, в зависимости от режима работы, который задается переключателем на лицевой панели, блок БУАВР подключает нагрузку к одному из вводов. Если во время работы напряжение оказывается за пределами допустимых значений в течении заданного времени (уставки по напряжению и время выдержки выставляются с помощью шести переключателей Umin, t зад.откл, Umax, t восст, t зад.вкл, U min2), БУАВР отключает нагрузку от данного ввода и с заданной выдержкой времени переключается на второй ввод. Выходные реле блока БУАВР K1 и К2 используются для включения контакторов КМ1 и КМ2 соответственно. На лицевой панели БУАВР имеются светодиодные индикаторы, которые сигнализируют о наличии,отсутствии или недопустимых значениях напряжения на вводах 1 и 2 (верхние светодиоды) и состоянии выходов (нижние светодиоды).

Также в последнее время для различных схем АВР широко применяются программируемые реле, например Zelio Logic от Schneider Electric, Siemens Logo, Easy от Eaton.

Они позволяют расширить функционал стандартных схем АВР, более гибко настраивать алгоритм работы под собственные нужды, передавать информацию о состоянии устройства дистанционно и т.д. На основе программируемых реле можно строить различные схемы АВР, Schneider Electric даже издал брошюру с типовыми схемами с использованием Zelio Logic, но подробно останавливаться на них я не буду, возможно в будущем напишу отдельную статью.

Кстати надо заметить, что программируемые реле не имеют функции контроля напряжения, поэтому применение реле напряжения или контроля фаз необходимо.

Вообще различных решений АВР очень много и в рамках одной статьи не получится рассказать обо всем, поэтому в дальнейшем я планирую продолжить эту тему.

Автоматический ввод резерва

Автоматический ввод резерва

Автоматический ввод резерва — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет Автоматический ввод резерва.

Автоматический ввод резерва может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

Автоматический ввод резерва

Автоматический ввод резерва

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Основные требования, предъявляемые к устройствам при построении системы гарантированного электроснабжения

  1. Как известно (см. ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.
  2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.
  3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.
  4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.
  5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.
  6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества:

Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки:

Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз.

В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии.

При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества:

Дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки:

Отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки:

Более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества:

Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства рубильника.

Недостатки:

Относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

Автоматический ввод резерва и дополнительные функции

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:

  • Целесообразно использовать автоматический ввод резерва электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т.п.)

Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:

  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше
  • Автоматический ввод резерва на контакторах и управляемых автоматических выключателях может быть реализован как трехвходовый (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки
  • регулировку диапазона контролируемых напряжений
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов
  • индикацию режима работы и состояния входов
  • регулировку задержки времени переключения

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС

Автоматический ввод резерва

Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны. В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

Автоматическое переключение линий питания

Одним из важнейших требований, предъявляемых к современным системам электроснабжения, является обеспечение бесперебойного и гарантированного питания нагрузок критичных к перерывам питания. Доля таких нагрузок неуклонно возрастает. Это и различные системы безопасности, и оборудование медицинских учреждений, и системы связи и обработки данных, многочисленные непрерывные технологические процессы. В большинстве случаев перерыв в питании этих систем может повлечь экономические потери, связанные с простоем и выходом из строя технологического оборудования, потерей информации, перерывами в работе систем связи, интернет-сайтов и другими последствиями. В ряде случаев перерыв электроснабжения может угрожать безопасности жизни людей, когда речь идёт о реанимационном оборудовании, системах дымоудаления и пожаротушения, аварийном освещении и других важных системах.

Применение высококачественного электрооборудования ведущих производителей, исключение ошибок при проектировании электроустановок и правильная их эксплуатация, конечно, значительно повышают показатели надёжности электроснабжения. Однако, в большинстве случаев необходимо резервирование каналов передачи электроэнергии, чтобы гарантировать питание критичных нагрузок. Системы Автоматического Ввода Резерва (АВР) предназначены для обеспечения автоматического переключения питания с основного источника на резервный при полном пропадании напряжения основного ввода, или если параметры напряжения основного источника отличаются от нормально допустимых.

В Правилах устройства электроустановок тематика АВР освещается в двух разделах, в первую очередь это разделы, касающиеся категорий электроприёмников (п.1.2.17-1.2.21; п.3.3.30-3.3.42):

  • Электроприёмники первой категории — электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.
  • Электроприёмники второй категории — электроприёмники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
  • Электроприёмники третьей категории — все остальные электроприёмники, не подпадающие под определения первой и второй категорий.

Области применения АВР охватывают все виды промышленных и гражданских объектов. Безусловно, при выборе решения АВР, необходимо учитывать категорию и характер объекта, экономические аспекты, функциональные и технические возможности различных решений.

Однолинейная схема 2-2

Пример схемы ГРЩ с применением АВР ATS500

Термины и определения

  • Автоматический Ввод Резерва (АВР) — устройство, предназначенное для автоматического переключения питания электрических нагрузок от неисправного источника энергии к рабочему источнику.
  • Основной ввод — ввод электропитания, от которого осуществляется питание всех нагрузок в течение длительного времени.
  • Резервный ввод — ввод электропитания, от которого осуществляется питание всех (или части) нагрузок во время отсутствия питания на основном вводе либо, если качество электроэнергии основного ввода неудовлетворительно. Во многих случаях в качестве источника резервного электроснабжения применяется дизельная электрическая станция.
  • Дизельная Электрическая Станция (ДЭС) — источник резервного электроснабжения на базе дизельного двигателя внутреннего сгорания и электрического генератора. Могут применяться и другие типы двигателей.
  • Программируемый Логический Контроллер (ПЛК) — специализированное электронно-вычислительное устройство, предназначенное для управления технологическим оборудованием.

Схемы АВР

Выбор той или иной схемы АВР определяется в первую очередь областью применения и категорией потребителей, а также возможностью разделения нагрузок на секции.

  • Два взаимно резервированных ввода от сети работают на одну секцию потребителей. Вводы могут быть равнозначными либо один из них может быть приоритетным. Приоритет вводов может настраиваться.
  • Два взаимно резервированных ввода работают на одну секцию потребителей. Первый ввод от сети, второй — от резервного источника. Ввод от сети приоритетный по отношению к вводу от резервного источника.
  • Два независимых ввода от сети, работающие на две секции потребителей. Резервирование осуществляется за счёт секционного аппарата.
  • Два независимых ввода от сети, работающие на две секции потребителей (схема «крест»). Резервирование осуществляется за счёт переключения секции потребителей на другой ввод.
  • Два независимых ввода, работающие на две секции потребителей. Первый ввод от сети, второй — от резервного источника. Резервирование осуществляется за счёт переключения потребителей на резервный ввод. Первая секция потребителей обычно назначена неприоритетной при работе от резервного источника
  • Два независимых ввода от сети, работающие на две секции потребителей (схема «крест»). Резервирование осуществляется за счёт переключения секции потребителей на другой ввод.
  • Три взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника. Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника. Взаимный приоритет вводов от сети может настраиваться.
  • ATS-B 3-1CGТри взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника. Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника. Взаимный приоритет вводов от сети может настраиваться.
  • Два независимых ввода от сети работают на две секции потребителей. Дополнительно, третий ввод от резервного источника подключается на первую секцию. Резервирование осуществляется за счёт секционного выключателя. Вторая секция потребителей может быть назначена неприоритетной при работе от резервного источника.
  • Два независимых ввода от сети работают на две секции потребителей. Дополнительно, третий ввод от резервного источника подключается на вторую секцию. Резервирование осуществляется за счёт секционного выключателя. Первая секция потребителей может быть назначена неприоритетной при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети и два ввода от резервных генераторов, работают на две секции потребителей. Резервирование осуществляется за счёт секционного выключателя.
  • Два независимых ввода от сети и два ввода от одного резервного генератора, работают на две секции потребителей. Резервирование осуществляется за счёт секционного выключателя.

Основные элементы АВР

Коммутационные аппараты для АВР

Основными коммутационными аппаратами, применяемыми в системах АВР, являются:

  • Контактор. Самым простым коммутационным аппаратом, применяемым в АВР, является электромеханический контактор. Преимущество контакторов заключается в том, что электромагнитный привод является его неотъемлемой частью, а управление им производится без каких-либо дополнительных аксессуаров. Серьёзным достоинством контакторов является их быстродействие и высокая коммутационная износостойкость.
    Тем не менее, при применении контакторов в схемах АВР, использование механической блокировки является обязательным условием. Кроме того, контактор не является аппаратом защиты, поэтому схему АВР необходимо дополнить автоматическими выключателями или предохранителями.
  • Реверсивный выключатель нагрузки с моторным приводом. Основные преимущества при применении реверсивных выключателей нагрузки с моторным приводом для схем АВР — компактность и надёжность. Механическая блокировка является неотъемлемой конструктивной частью аппарата. Моторный привод обеспечивает автоматическое переключение контактной группы.
  • Коммутационный аппарат автоматического переключения (КААП). Электрический аппарат, включающий в одном корпусе группу силовых контактов, моторный привод, микропроцессорное устройство и другие вспомогательные элементы, необходимые для контроля цепей питания и переключения нагрузки от одного источника питания к другому. Механическая блокировка является неотъемлемой конструктивной частью аппарата. Серьезным преимуществом аппарата является его компактность, а также минимальное количество внешних элементов и подключений.
  • Автоматический выключатель с моторным приводом. Самым распространённым коммутационным аппаратом для схем АВР является автоматический выключатель с моторным приводом. Автоматический выключатель сочетает функции защиты и коммутации в одном электрическом аппарате. Современные автоматические выключатели с электронными расцепителями защиты также позволяют реализовать дополнительные функции коммуникации, диспетчеризации и мониторинга.

Управляющие устройства АВР

Важное влияние на технические и функциональные параметры АВР оказывает система управления. Основные функции системы управления АВР – контроль наличия напряжения на вводах, управление коммутационными аппаратами и резервным генератором. Дополнительно, система управления может обеспечивать сигнализацию, мониторинг и дистанционное управление. В качестве элементной базы для систем управления могут применяться:

  • Схемы на основе релейной логики. Схемы на реле выгодно использовать для несложных схем АВР. Однако, с ростом требований к функциональным возможностям, количество элементов в схеме значительно возрастает. С одной стороны, это приводит к росту габаритов и стоимости системы, с другой снижает надёжность.
  • Специализированные блоки управления. Основное преимущество таких блоков заключается в том, что все внутренние соединения и программирование выполнено в заводских условиях, а также протестировано. Все элементы находятся в общем корпусе с высокой степенью защиты со стороны панели управления. Блоки управления позволяют настраивать все необходимые параметры АВР.
  • Программируемые логические контроллеры. Для реализации наиболее сложных схем АВР предпочтение следует отдать ПЛК. Они позволяют реализовать самые широкие возможности и гибкую реализацию основных функций системы управления для всех вариантов схем. При этом дополнительные функции, изменение настроек или алгоритма управления чаще всего не требуют применения дополнительного оборудования.

Человеко-машинный интерфейс

Для организации взаимодействия персонала, обслуживающего электроустановку, системой АВР предусматривается набор элементов индикации и управления – человеко-машинный интерфейс. Он позволяет контролировать состояние коммутационных аппаратов, наличие напряжения на вводах и, при необходимости, управлять АВР в ручном режиме.
Простейшим вариантом исполнения интерфейса являются сигнальные лампы, кнопки и переключатели. Более эффективным является построение человеко-машинного интерфейса на основе жидкокристаллических дисплеев. В зависимости от применяемых средств управления такие дисплеи могут быть монохромными или цветными, сенсорными или с клавишами.
Кроме базовых возможностей отображения состояния АВР и управления, дисплеи позволяют фиксировать события и настраивать многочисленные параметры. В дополнение к элементам интерфейса, установленным непосредственно на электроустановке, АВР с электронной системой управления может оснащаться также дистанционным интерфейсом.

Функциональные свойства АВР

Устройства АВР значительно различаются по функциональным возможностям и быстродействию. Для выбора того или иного варианта решения можно воспользоваться рядом критериев.

  • Блокировки. В большинстве случаев параллельное соединение вводов нежелательно либо недопустимо. Для исключения параллельного соединения вводов могут применяться блокировки.
  • Механическая блокировка. Достигается путём применения механических аксессуаров, которые исключают возможность одновременного включения двух аппаратов. Возможность установки механической блокировки определяется как конструкцией коммутационных аппаратов, так и схемой их соединения.
    Так, реверсивные выключатели нагрузки имеют механическую блокировку, как неотъемлемую часть их конструкции. Для всех типов автоматических выключателей и контакторов возможна механическая блокировка двух аппаратов. Для ряда воздушных выключателей возможна также механическая блокировка трёх аппаратов.
  • Электрическая блокировка. Применяется в тех случаях, когда обеспечить механическую блокировку невозможно. Электрическая блокировка исключает возможность подачи управляющего сигнала на обмотки контакторов или моторные приводы выключателей. В ряде случаев электрическая блокировка реализуется на программном уровне.
  • Питание цепей управления. Немаловажное значение имеет организация питания системы управления АВР, так как от надёжного питания цепей управления зависит работа АВР в целом. Фактически в составе автоматики может быть встроена схема АВР для цепей оперативного тока. Как правило, для этого используется система сблокированных контакторов.
  • Диагностика. Для АВР с электронными системами управления характерно наличие встроенных средств диагностики. Они позволяют вовремя обнаруживать неисправности системы управления и коммутационной аппаратуры и, таким образом, снижают вероятность внезапных отказов АВР.
    Электронные системы управления АВР осуществляют непрерывную самодиагностику и, в случае выявления проблем, немедленно о них сигнализируют.

Заключение

В данной статье была рассмотрена основная информация по решениям для систем автоматического ввода резерва низкого напряжения.

Более полную информацию по данной теме можно прочитать в специализированной брошюре “Автоматический Ввод Резерва. Обзор решений“, где в том числе подробно разобраны решения ABB для систем АВР.

Источник https://tokzamer.ru/novosti/avtomat-perekljucheniya-na-rezervnoe-pitanie

Источник https://powercoup.by/stati-po-elektromontazhu/avtomaticheskiy-vvod-rezerva

Источник https://blogforconsultants.ru/main/resheniya-dlya-avtomaticheskogo-vvoda-rezerva-avr/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: