Как проверить автоматический выключатель на срабатывание

Содержание

Как проверить автоматический выключатель на срабатывание

Автоматические выключатели служат для защиты электрических цепей напряжением до 1000 В от аварийных режимов работы. Надежная защита электрических цепей данными электрическими аппаратами обеспечивается только в том случае, если автоматический выключатель находится в исправном техническом состоянии, а его фактические рабочие характеристики соответствуют заявленным. Поэтому проверка автоматических выключателей является одним из обязательных этапов работ при вводе в работу электрических щитов различного назначения, а также при периодической их ревизии. Рассмотрим особенности проверки автоматических выключателей.

В первую очередь необходимо произвести визуальный осмотр аппарата. На корпусе автоматического выключателя должна быть нанесена необходимая маркировка, не должно быть видимых дефектов, неплотного прилегания частей корпуса. Необходимо произвести несколько операций включения и отключения аппарата вручную.

Автомат должен фиксироваться во включенном положении и свободно отключаться. Также необходимо обратить внимание на качество зажимов автоматического выключателя. При отсутствии видимых повреждений переходим к проверке его рабочих характеристик.

Автоматический выключатель конструктивно имеет независимый, тепловой и электромагнитный расцепители. Проверка автоматического выключателя заключается в проверке работоспособности перечисленных расцепителей при различных условиях. Данный процесс называется прогрузкой.

Прогрузка автоматических выключателей осуществляется на специальной испытательной установке, при помощи которой можно подать на испытуемый аппарат необходимый ток нагрузки и зафиксировать время его срабатывания.

Независимый расцепитель осуществляет замыкание и размыкание контактов автоматического выключателя при выполнении операций включения и отключения аппарата вручную. Также данный расцепитель автоматически отключает защитный аппарат в случае воздействия на него двух других расцепителей, осуществляющих защиту от сверхтоков.

Тепловой расцепитель осуществляет защиту от превышения тока нагрузки, протекающего через автоматический выключатель, выше номинального значения. Основной конструктивный элемент данного расцепителя – это биметаллическая пластина, которая нагревается и деформируется в случае протекания через нее тока нагрузки.

Пластина, отклоняясь до определенного положения, осуществляет воздействие на механизм свободного расцепления, который обеспечивает автоматическое отключение выключателя. Причем время срабатывания теплового расцепителя зависит от тока нагрузки.

Каждый тип и класс автоматического выключателя имеет свою времятоковую характеристику, в которой прослеживается зависимость тока нагрузки от времени срабатывания теплового расцепителя данного автоматического выключателя.

При проверке теплового расцепителя берется несколько значений тока, фиксируется время, за которое произойдет автоматическое отключение автоматического выключателя. Полученные значения сверяют со значениями из времятоковой характеристики для данного аппарата. Следует учитывать, что на время срабатывания теплового расцепителя влияет температура окружающей среды.

В паспортных данных к автоматическому выключателю приводятся времятоковые характеристики для температуры 25 0С, при повышении температуры время срабатывания теплового расцепителя снижается, а при снижении температуры – увеличивается.

Электромагнитный расцепитель служит для защиты электрической цепи от токов короткого замыкания, токов, которые значительно превышают номинальный. Величину тока, при котором срабатывает данный расцепитель, показывает класс автоматического выключателя. Класс показывает кратность тока срабатывания электромагнитного расцепителя к номинальному току автомата.

Например, класс «C» показывает, что электромагнитный расцепитель сработает при превышении номинального тока в 5-10 раз. Если номинальный ток автоматического выключателя 25 А, то ток срабатывания его электромагнитного расцепителя будет в пределах 125-250 А. Данный расцепитель, в отличие от теплового, должен сработать мгновенно, за доли секунды.

Проверка времени срабатывания автомата в сетях 0,4кВ

В большинстве случаев защита кабельной линии выполняется автоматическими выключателями (или как их обычно называют, автоматами). Автоматический выключатель защищает кабельную линию двумя способами: от перегрузки (тепловая отсечка) и от короткого замыкания (электромагнитная отсечка).

И если перед вами стоит проблема правильного выбора автоматического выключателя, то выбрать его по перегрузке достаточно просто. Вы знаете (или можете посчитать) ток нагрузки. Номинал автоматического выключателя должен быть больше тока нагрузки. С этим всё просто.

С номиналом автомата разобрались, осталось выбрать его характеристику срабатывания. Всего бывает пять характеристик срабатывания автомата: B, C, D, K, Z. Автоматы с кривыми срабатывания K и Z очень редко используются, в основном применяются автоматы с характеристиками срабатывания B, C, D. Наиболее распространены автоматы с характеристикой C. Кривые срабатывания имеют схожую форму и отличаются только величиной электромагнитной отсечки или кратностью срабатывания. Кратность срабатывания — отношение величины аварийного тока, при котором происходит отключение автомата, к номинальному току автомата. Iк/Iном. Для автоматов с характеристикой B эта величина колеблется в пределах 3. 5. Для автоматов с характеристикой C – 5. 10. Для автоматов с характеристикой D – 10. 20.

Рассмотрим автомат с характеристикой C. Производитель гарантирует, что автомат сработает, если ток короткого замыкания превысит номинальный ток автомата в 10 раз. Но может сработать и при превышении в 5 раз. Это зависит от внешних условий: температуры окружающей среды; был ли автомат под нагрузкой, когда произошло КЗ, или был отключен и его включили на КЗ из «холодного» состояния.

Что будет, если величина тока короткого замыкания меньше отсечки? Автомат всё равно может отключиться, т.к. уже сработает тепловая отсечка. Но это произойдёт не мгновенно, а спустя некоторое время. Допустимое время срабатывания автомата строго регламентировано Правилами Устройства Электроустановок (ПУЭ) и зависит от величины фазного напряжения. Согласно требованиям п.1.7.79 наибольшее допустимое время защитного автоматического отключения при фазном напряжении 220/230 В для системы заземления TN не должно быть более 0,4 с.

Итак, необходимо проверить время срабатывания автоматического выключателя. Еще данный расчет называют «расчет петли фаза-нуль». Для примера выполним проверку автомата с номинальным током 16 А с характеристикой C. Автомат установлен в групповом щите. Щит питается от ГРЩ, а ГРЩ от трансформаторной подстанции.

Параметры трансформатора:
Номинальная мощность трансформатора Sн = 630 кВА,
Напряжение короткого замыкания трансформатора Uк% = 5,5%,
Потери короткого замыкания трансформатора Pк = 7,6 кВт.

Параметры питающей линии:
Гр.27 от ЩО 1.2 – 60 м кабель 1х[ВВГнг LS 3×2,5],
ЩО 1.2 от ГРЩ3 – 80 м кабель 1х[АВВГнг LS 5×50],
ГРЩ3 от ТП 1126 – 217 м кабель АВВГнг 2x (4×185).

Параметры выключателя:
Номинальный ток автоматического выключателя Iном = 16 А
Кратность отсечки K = 10.

Реактивное сопротивление трансформатора:

Xт = 13,628 мОм

Активное сопротивление трансформатора:

Rт = 3,064 мОм

Активное сопротивление кабеля:

Rк = 580,38 мОм

Реактивное сопротивление кабеля:

Xк = 17,36 мОм

Сопротивление энергосистемы:
Xc = 1,00 мОм

Суммарное реактивное сопротивление участка:
XΣ=Xc+Xт+Xк=31,984 мОм

Суммарное активное сопротивление участка:
RΣ=Rт+Rк=583,444 мОм

Полное суммарное сопротивление:

RΣ=583,444 мОм

Ток однофазного короткого замыкания:

IK1=190 А > IминК1 = 10×16 = 160 А
Следовательно, автоматический выключатель отключится мгновенно (сработает электромагнитная отсечка, время отключения.

Чтобы скачать пример расчета в Word, нажмите на кнопку: СКАЧАТЬ ПРИМЕР

Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:

Как проверить автоматический выключатель на срабатывание

Настоящие методические указания определяют порядок проверки срабатывания расцепителей автоматических выключателей в режимах перегрузки и короткого замыкания с целью оценки качества автоматических выключателей и сравнением с нормами ПУЭ п.1.7.79, 1.8.34; СНиП 3.06.06-85, раздел 4 и данных завода-изготовителя. Методика выполнена на основании требований ГОСТ Р 50571.16- 2007 и ПУЭ и обязательна к использованию специалистами электролаборатории в Краснодаре и Краснодарском крае ООО “Энерго Альянс”.

2.1 Измерение изоляционных характеристик проводится в соответствии с методическими указаниями по проведению измерения сопротивления изоляции.

2.2 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, устанавливаются на основании РД 34.45-51.300-97 и утвержденных многолетних графиков.

2.3 Знание настоящих методических указаний обязательно для следующих работников Службы изоляции и испытаний и измерений: начальник, инженер, электромонтёр по испытаниям и измерениям.

3. Метод испытаний автоматических выключателей

3.1 Измеряемой величиной является время отключения автоматического выключателя (АВ) при заданной величине тока, превышающей номинальное значение.

3.2 Испытания работоспособности АВ выполняются методом прогрузки их первичным током путем создания искусственного короткого замыкания с регулируемым значением тока в цепи проверяемого автоматического выключателя с измерением времени отключения.

3.3 Для осуществления защитных функций АВ имеют максимальные расцепители от токов перегрузки и токов короткого замыкания. Защита от перегрузки осуществляется тепловыми или электронными устройствами. Защита от токов короткого замыкания осуществляется электромагнитными или электронными расцепителями.

3.4 Перед проведением измерения времени отключения проверяется:

· соответствие типов и параметров АВ проекту или паспорту на электроустановку;

· соответствие токов уставки АВ проекту;

· отсутствие видимых повреждений АВ,

· надежность затяжки контактных зажимов АВ;

· измерение изоляционных характеристик;

· измерение сопротивления постоянному току контактов выключателя.

3.5 До проведения измерения временных характеристик необходимо снять напряжение со всех частей проверяемого АВ и принять меры, препятствующие подаче напряжения на место работы, вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры. Проверить отсутствие напряжения на токоведущих частях. Оставшиеся под напряжением токоведущие части должны быть ограждены, на ограждениях вывешены предупреждающие и предписывающие плакаты.

3.6 Измерение характеристик однофазного АВ проводятся по схеме рис. 1.

Проверяемый расцепитель АВ подключается к прогрузочному трансформатору в цепи которого устанавливается трансформатор тока ТА1 с подключенным амперметром. Второй трансформатор тока ТА2 подключается к токовому реле РТ, контакты которого разрывают цепь секундомера. Первичная обмотка прогрузочного трансформатора через регулировочный трансформатор подключается к сети 220В. Путем изменения напряжения на регулировочном трансформаторе устанавливается ток соответствующий уставке тока данного типа расцепителя АВ. При токе К.З. и перегрузке расцепитель должен отключиться. Время срабатывания АВ определяется по шкале секундомера.

3.7 Измерение характеристик трехфазного АВ проводятся по схеме рис. 2.

Проверяемый расцепитель АВ подключается к прогрузочному трансформатору в цепи которого устанавливается трансформатор тока ТА1 с подключенным амперметром. Первичная обмотка прогрузочного трансформатора через регулировочный трансформатор подключается в сеть 220В. Путем изменения напряжения на регулировочном трансформаторе устанавливается ток соответствующий уставке тока данного типа расцепителя АВ.

Время срабатывания АВ определяется по шкале секундомера, в качестве выключателя которого используется свободный контакт АВ.

3.8 При проверке характеристик теплового и электромагнитного расцепителей автоматических выключателей применяется комплектное испытательное устройство «Сатурн-М» или «Сатурн-М1» и нагрузочный трансформатор НТ-12 с диапазоном 30-12000 А.

3.9 Работу с устройством типа «Сатурн-М» производить согласно «Техническому описанию и инструкции по эксплуатации» данного прибора.

3.10 При проверке характеристик автоматических выключателей могут применяться другие комплекты оборудования соответствующие заданному току, напряжению проверяемого автоматического выключателя и с классом точности не менее 0,5

4. Оценка состояния по результатам измерений

4.1 Испытания автоматических выключателей производятся в соответствии с требованиями ГОСТ Р 50345-92 путем проверки время – токовых характеристик.

4.2 При проверке теплового расцепителя через все полюса пропускается ток нерасцепления АВ. При этом автоматический выключатель не должен расцепиться. Затем в течение 5 секунд ток постепенно повышается до величины условного тока расцепления. Автоматический выключатель должен расцепляться в пределах условного времени. Значения токов и времени приведены в таблице 1.

4.3 При испытаниях АВ из «холодного» состояния через все полюса пропускается ток, равный 2,55 In. Время размыкания должно составлять не менее 1 с. и не более чем: 60 с. при номинальных токах до 32 А включительно, и 120 с. при номинальных токах выше 32 А.

4.4 При проверке мгновенного расцепителя у автоматических выключателей типа «В» через все полюса пропускается ток, равный 3 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 5 In и автоматический выключатель должен расцепляться за время менее 0,1 с.

4.5 При проверке мгновенного расцепителя у автоматических выключателей типа «С» через все полюса пропускается ток, равный 5 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 10 In и автоматический выключатель должен расцепляться за время менее 0,1 с.

4.6 При проверке мгновенного расцепителя у автоматических выключателей типа «D» через все полюса пропускается ток, равный 10 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 50 In автоматический выключатель должен расцепляться за время менее 0,1 с.

Как проверяются электролабораторией автоматы

Любая электрическая сеть является потенциальным источником двух факторов опасности: поражение электрическим током и вероятность пожара вследствие короткого замыкания. И если первый фактор присутствует только в сетях с напряжениями свыше 42 вольт, то опасность короткого замыкания сохраняется даже в низковольтной электропроводке. В связи с чем, проверка автоматических выключателей – обязательный пункт в смете как приёмосдаточных, так и планово-профилактических испытаний, выполняемых электролабораторией.

В отличие от дифференциального контроля токов утечки, эта категория защитной аппаратуры присутствовала в электросетях с момента их появления, поэтому технология их проверки достаточно строго стандартизирована.

Из каких этапов состоит проверка защитных автоматов

Согласно ГОСТ Р 50031-2012 полный цикл испытаний автоматических выключателей состоит из следующих этапов:

  • контроль стойкости маркировки;
  • проверка надёжности винтовых соединений;
  • тестирование выводов для внешней коммутации;
  • контроль электрической безопасности прибора (защита от поражения электротоком);
  • проверка электрического сопротивления диэлектриков, задействованных в конструкции прибора;
  • тест на соответствие температурным нормам;
  • проверка работоспособности в ходе длительного приложения нагрузки (28 суточный испытательный цикл);
  • измерение характеристик отключения при рабочем срабатывании прибора;
  • проверка коммутационной способности прибора;
  • устойчивость по токукороткого замыкания;
  • контроль сопротивляемости механическим ударам;
  • тестирование работоспособности в условиях повышенной температуры внешней среды;
  • проверка соответствия нормативам пожарной устойчивости (то есть, время сохранения коммутационных характеристик в условиях пожара или критической тепловой нагрузки);
  • тестирование устойчивости диэлектрика к образованию токопроводящих каналов (трекингостойкость);
  • проверка коррозионной устойчивости конструкционных элементов прибора при работе в нормальной или агрессивной среде (коррозиестойкость).

Приведенный перечень испытаний разработан, прежде всего, для первичной сертификации новых изделий и в полном объёме выполняется только после разработки нового прибора (цена такого «исследования» гораздо выше обычных лабораторных проверок).

Эксплуатационные испытания в электроустановках, проводимые ЭТЛ, разрабатываются на основе трёх базовых этапов:

  • проверка характеристик отключения;
  • контроль коммутационной способности;
  • испытание на устойчивость к токам короткого замыкания.

Измерение характеристик отключения

Целью данного этапа проверки является определение фактических рабочих уставок прибора и их соответствие время токовым характеристикам, оговоренным в заводской документации прибора.

Тестируемыми характеристиками в данном случае являются:

  • номинальный рабочий ток;
  • время отключения;
  • ток и время мгновенного действия (проверка электромагнитного расцепителя);

Согласно стандарту, этот этап тестирования также должен сопровождаться проверкой стабильности параметров защиты при изменении температуры окружающей среды. Но в эксплуатационную технологию испытаний электроустановок до 1000 в данный пункт, как правило, включает только при наличии соответствующих производственных условий.

Контроль коммутационной способности

Чтобы подтвердить работоспособность автоматического выключателя необходимо не только проверить его детекторы перегрузок, но и выполнить тест на отключающую способность под штатной и критической нагрузкой.

Данный тест заключается в многократном выполнении цикла «включение-отключение» с последующей проверкой переходного сопротивления контактов.

Устойчивость к токам короткого замыкания

Поскольку номинальный рабочий ток автоматического выключателя значительно меньше тока короткого замыкания, данный этап электроизмерительных испытаний предназначен для подтверждения работоспособности прибора после пропускания через его полюса токов короткого замыкания.

Испытание считается успешным, если коммутационный механизм сохранил свою работоспособность, и переходное сопротивление контактов осталось в пределах нормы.

Когда необходима проверка

Согласно требованиям ПУЭ и ПТЭЭП, контроль исправности защитных автоматов производится во всех случаях официальных электроизмерительных испытаний.

То есть, такая необходимость возникает:

  • при сертификации изделия после его разработки;
  • при вводе электроустановки в эксплуатацию (приёмосдаточные испытания);
  • в ходе планово-профилактических проверок электросети;
  • после капитальных, плановых или аварийных ремонтов.

В ходе испытаний производится прогрузка выключателя мощными импульсами тока и фиксируются временные показатели процесса срабатывания. Поскольку в данном случае граница между «годен» и «не годен» лежит в пределах нескольких миллисекунд, ни о каких самостоятельных выводах о работоспособности прибора и речи быть не может.

Любой вариант самостоятельных проверок (включая срабатывание по кнопке «тест» в тех устройствах, где она есть) подтвердит лишь факт исправности механической системы, но никак не правильность регулировок прибора.

Официальное экспертное заключение о соответствии характеристик автоматического расцепителя нормам и требованиям, озвученным в соответствующих стандартах, может дать лишь сертифицированная электроизмерительная лаборатория.

Какие нормативные документы используются при разработке алгоритмов проверки

  1. Основные термины и определения, а также базовые нормативные диапазоны, используемые для описания характеристик расцепляющих автоматов, приведены в стандарте ГОСТ 50031-2012.
  2. Конкретные алгоритмы проверок и рекомендуемые схемы стендовых испытаний приведены в ГОСТ Р 50345-2010 (а также в 8 разделе ГОСТ Р 50030.2-99).
  3. Измерение сопротивления изоляции производится согласно ПУЭ (п.1.8.37.3) и ПТЭЭП (Приложение 3.1, таблица 37).
  4. Организация условий измерений проводится в соответствии с приведенными выше стандартами и с учётом положений отраслевых СНИП.

Несмотря на достаточно чёткую нормативную проработку алгоритмов ревизии и наладки аппаратуры для защиты от сверхтоков, для каждого конкретного случая разрабатывается свой вариант технологической инструкции, ориентированный, как правило, на конкретный тип расцепителей и имеющееся в наличии измерительное оборудование.

Электротехническая лаборатория «Мега.ру» оказывает услуги по организации и проведению всех видов испытаний в электроустановках, включая всестороннюю проверку автоматических выключателей. Уточнить расценки и сделать заказ на выезд специалистов можно по телефонам, опубликованным на странице «Контакты».

Проверка автоматических выключателей

Назначение автоматического выключателя – пресекать аварийные режимы работы сети. Это – короткие замыкания и перегрузки. Но как узнать – работает ли эта защита и поможет ли она в нужный момент?

Для этого характеристики расцепителей автоматов проверяются. Это выполняется:

  • при вводе в эксплуатацию нового оборудования;
  • в процессе эксплуатации по истечении определенного срока;
  • при подозрении на отказ выключателя;
  • после аварийных ситуаций, связанных с прохождением через выключатель больших токов (совмещается с ревизией контактов);
  • для точной настройки характеристик расцепителей.

Виды автоматических выключателей

Самая узнаваемая для пользователей – бытовая серия модульных автоматических выключателей. Они устанавливаются на DIN-рейку и не имеют регулировок характеристик срабатывания. Все уставки расцепителей у модульной серии автоматических выключателей и дифференциальных автоматов отсчитываются от их номинального тока.

Модульный автоматический выключатель

Ток отсечки зависит от буквенного обозначения, стоящего перед значением номинального тока.

Буквенное обозначение Кратность тока отсечки
В 2-5 от Iном
С 5-10 от Iном
D 10-20 от Iном

Это означает, что реальное значение тока, при котором сработает автомат, лежит в некотором диапазоне. Завод-изготовитель гарантирует, что это будет так.

Тепловые расцепители автоматов модульной серии начинают работу при превышении номинального тока. Время, по истечении которого произойдет отключение, зависит от кратности проходящего через автомат тока перегрузки к номинальному. У автоматических выключателей разных производителей время отключения отличается. Определить его можно по характеристикам, которые определяются по справочным данным на данную серию автоматов. Но и эта величина имеет разброс, поэтому характеристика отключения представляет собой не одну кривую линию, а их семейство, обозначаемое заштрихованной зоной. При определенном токе через автомат ожидаемое время срабатывания лежит в диапазоне, определяемое на границах этой зоны.

Время-токовые характеристики модульных выключателей

До сих пор в распределительных щитках встречаются автоматы, имеющие в своем составе либо только тепловую, либо максимальную защиту. Проверка этих устройств наиболее актуальна, так как их электромеханическая часть отслужила много лет, часть деталей заржавела и недееспособна.

Устаревшие модели выключателей

Следующий вид автоматических выключателей имеет нерегулируемую отсечку и регулируемую тепловую защиту. Для этого на его передней панели есть регулятор, с помощью которого номинальный ток теплового расцепителя изменяется в пределах 0,5 – 1,0 от номинального тока автомата. Такие автоматы применяются для защиты электродвигателей и точной настройки на ток защищаемой кабельной линии, обеспечения селективности защит от перегрузки. Регулятором выставляется ток, при котором начинается работа тепловой защиты. Положение регулятора отражается и на семействе характеристик выключателя.

Автомат с регулируемой тепловой защитой

Еще сложнее конструкция выключателя, имеющего кроме регулируемого теплового расцепителя еще и регулируемый электромагнитный. Есть модели, в которых регулировка осуществляется механически: изменением усилия пружины, противодействующей усилию, создаваемому катушкой отключения. Такие устройства встречаются у выключателей старого образца.

У современных автоматов регулировки выполняются при помощи встроенного блока защиты. Это комплекс, включающий в себя датчики тока, установленные на всех трех фазах выключателя, и полупроводниковое устройство, обрабатывающее полученные сигналы.

Состав защит, устанавливаемых в максимальной комплектации в такие автоматы:

  • максимально токовая отсечка с регулируемой независимой от тока выдержкой времени;
  • защита от перегрузки с регулируемым стартовым током и характеристикой срабатывания по времени;
  • защита от токов однофазного замыкания, с регулируемой уставкой и выдержкой по времени.

Устройства для проверки выключателей

Комплексы, используемые для проверки выключателей, специально разрабатываются для этой цели. Исключением являются устройства серии РЕТОМ, которые изначально предназначены для проверки релейной защиты, но могут использоваться и для подачи токов на контактную систему выключателя с контролем момента отключения.

Наиболее подходит для этой цели РЕТОМ-21. Проверка срабатывания теплового расцепителя выполняется подачей непрерывного тока одновременно с запуском секундомера прибора, настроенного на фиксацию исчезновения тока при отключении. Электромагнитные расцепители проверяются токами, подающимися импульсами длительности, устанавливаемой пользователем. При плавном подъеме тока неизбежно срабатывание защиты автомата от перегрузки.

РЕТОМ-21

Важное достоинство РЕТОМа – ток, подающийся для проверки – синусоидальный. Большинство других устройств, специально разработанных для проверки автоматов, выдает импульсный ток, формируемый тиристорными регуляторами. Но их габариты меньше, а управление – проще.

Устройство для проверки автоматов РТ-2048

Таких устройств много. Ток для проверки отсечки они тоже подают увеличивающимися по амплитуде импульсами регулируемой длительности, а для проверки тепловой защиты выставляется требуемый ток и запускается секундомер.

Методика проверки автоматических выключателей

Перед проверкой модульного выключателя определяют его номинальный ток и кратность срабатывания. Затем по характеристике находят диапазон времени, в который укладывается тепловая защита при трехкратном номинальном токе. Таким током ее и проверяют.

Автомат подключается к испытательному устройству. Сначала проверяют отсечку. Автомат включают и через него кратковременно пропускают ток, увеличивая его величину ступенями. Большинство приборов выполняют подъем тока и выдержку времени между ступенями автоматически.

Паузы при подъеме нужны для того, чтобы исключить преждевременное срабатывание тепловой защиты. После срабатывания фиксируют ток отсечки, и автомат сразу же включают снова. Если он не включится, то сработала не отсечка, а тепловая защита. Это правило не относится к автоматам с полупроводниковыми расцепителями.

Затем автомату дают немного остыть и проверяют тепловой расцепитель. Ступенями поднимают ток до трехкратного номинального. Паузы делают для того, чтобы биметаллическая пластина расцепителя раньше времени не начала изгибаться. В этом случае результаты проверки исказятся.

Одновременно с запуском секундомера подают ток. Фиксируют время, за которое сработала защита, сравнивают его с диапазоном, определенным по характеристике.

При выходе измеренных параметров из допустимого диапазона автомат бракуют. Если срабатывания тепловой защиты не происходит за максимальное время, определенное по характеристике, испытание прекращают. Иначе от нагрева расплавится корпус автомата.

У трехполюсных выключателей проверяются все три фазы, характеристики срабатывания их примерно одинаковы, но не идентичны – элементы защиты у них разные и каждый имеет разброс параметров.

Проверка полупроводниковых расцепителей

Принцип проверки тот же, отличие лишь в том, что первоначально нужно выставить на расцепителе требуемые уставки. Поскольку такие автоматы используются для защиты производственных механизмов, питающих фидеров на трансформаторных подстанциях и распределительных устройствах, то эти данные берут из проекта.

Устройства для проверки имеют ограничения по максимально выдаваемому току. Поэтому мощные автоматические выключатели напрямую проверить удается не всегда. Ток отсечки в 10 000 А выдать не просто. Поэтому работники электролабораторий идут на хитрость. Уставка по току занижается до величины, которую способно выдать используемое проверочное устройство. После проверки она возвращается в исходное положение.

То же самое делается и с уставкой по току перегрузки. Если ее можно совсем вывести, то при проверке отсечки эта возможность обязательно используется. Ложного срабатывания защиты от перегрузки не произойдет.

Но ждать при проверке мощных автоматов придется все равно. Токи настолько велики, что нагревается проверочное оборудование и соединительные провода. Чтобы не вывести приборы из строя и не расплавить изоляцию, в работе регулярно делаются паузы.

Нормативы и методические указания к проведению электротехнических испытаний АВР

Автоматический ввод резерва

Системы передачи электроэнергии I и II категорий надёжности в большинстве случаев конструируются с автоматическим переключением на резервные линии питания. При этом, узел, осуществляющий такое переключение, должен обладать особой устойчивостью к отказам, иначе все затраты на организацию резервных линий или на подключение аварийных генераторов окажутся напрасными. Своевременная и квалифицированная проверка АВР – наиболее дешёвый способ достижения требуемого уровня отказоустойчивости.

Современные системы аварийного переключения являются достаточно сложными и дорогими устройствами, для разработки которых часто применяют промышленные микроконтроллеры, поэтому их проверка должна производиться в строгом соответствии с утверждённой технологией.

Когда необходимо испытание АВР

Периодичность испытаний систем автоматического ввода резерва регламентируется теми же правилами, что и для остальных элементов электрических сетей, где АВР классифицируется как коммутирующее устройство.

Но, в общем случае, можно выделить следующие моменты, когда автоматика резервирования проходит обязательные испытания:

  • сразу после изготовления (заводские испытания);
  • в ходе приёмо-сдаточных мероприятий;
  • после завершения внеплановых (аварийных) ремонтов;
  • в ходе плановых профилактических проверок тех участков электросети, которые непосредственно связаны с АВР.

Часто от исправности модуля резервной автоматики зависит много ответственного оборудования и график проверок может быть ужесточён по решению руководителя местного подразделения служб электротехнических ремонтов.

Нормативные документы

При организации работ по электроизмерительным испытаниям АВР учитываются положения, сформулированные в следующих нормативах и стандартах:

  • ПУЭ п.1.8.34 (4,5,6) и ГОСТР 50571.16-99 п. 612.9. (обоснование необходимости проверок и рекомендации по их периодичности);
  • ПОТ Р М. РД 153-34.0-03.150-00 (правила по охране труда, соблюдение которых обязательно при выполнении любых электротехнических работ);
  • ГОСТ Р 50571.3-94 (описание мер электротехнической защиты, которые должны быть реализованы на испытательном стенде);
  • ГОСТ Р 50571.16-99 (общий регламент проведения приёмо-сдаточных мероприятий);
  • ГОСТ Р 50571 (термины и определения, рекомендуемые к использованию при оформлении отчётной документации).

Согласно этим документам, электроизмерительные испытания данного типа должны производиться с оформлением наряда допуска и в условиях, определяемых в отраслевых СНиП.

Сотрудник, непосредственно выполняющий измерения, должен иметь допуск по III группе электробезопасности и квалификационный разряд не меньше 5-го.

Цели проверки

Несмотря на то, что в нормативных документах АВР классифицируется как релейное коммутирующее устройство, его испытания имеют свою специфику.

Это обусловлено тем, что существует несколько разновидностей аварийных переключателей, список контролируемых параметров для которых может отличаться.

Наиболее используемая модификация АВР – с приоритетом ввода. То есть, одна из двух питающих линий является основной, вторая – вспомогательной. В случае ухудшения качества электропитания в основной линии производится переход на вспомогательную линию. После восстановления нормального режима работы, потребители возвращаются на основную линию.

Если возврат на основную линию выполняется вручную, то контролируемыми параметрами являются:

  • общая работоспособность модуля;
  • напряжение, при котором срабатывает автоматический переключатель;
  • время перехода с основной линии питания на резервную;
  • устойчивость к кратковременным скачкам напряжения.

В тех же случаях, когда возврат в основной режим работы происходит в автоматическом режиме, к перечисленному списку контроля добавляется ещё два пункта:

  • проверка реакции на условия обратного перехода;
  • время обратного перехода.

Остальные модификации АВР являются частными случаями приведенной выше системы:

  • система резервного переключения без разделения приоритетов ввода (обе входные линии питания могут работать как основные);
  • распределённая схема подключения потребителей.

Цели проверок в данном случае частично пересекаются с базовым списком.

Описание принципов контроля

Прежде, чем приступать к детальному описанию технологии проверки АВР, рассмотрим общие принципы, на которых она основана.

Простейший АВР

Как видно из приведенной справа упрощённой схемы аварийного коммутатора, контролируемыми элементами являются:

  • цепь «главный ввод — потребители»;
  • цепь «резервный ввод — потребители»;
  • обмотки переключающих реле;
  • обмотки реле напряжения.

Потенциальными неисправностями в данном случае являются:

  • нарушение проводимости контактных зон переключающих реле (что выражается в изменении сопротивления первых двух цепей);
  • межвитковые замыкания в обмотках переключающих реле (обрыва нет, но не срабатывают при наличии сигнала от реле напряжения);
  • изменение рабочих параметров реле напряжения;
  • нарушение фазового соответствия между главным и резервным вводами.

Проверка первых двух цепей подразумевает контроль не только факта срабатывания реле, но и состояния контакторов. Поскольку подобные коммутаторы могут месяцами находиться в состоянии ожидания, весьма вероятно окисление контактных зон.

Проверить целостность обмоток переключающих реле можно по факту срабатывания схемы, что фиксируется с помощью основных приборов ЭТЛ (вольтметр, измеритель сопротивления).

Но вот точность срабатывания реле напряжения не может быть измерена без вспомогательных приборов.

К такому дополнительному оборудованию относятся:

  • трансформатор с регулируемым выходным напряжением (ЛАТР);
  • специальный секундомер, фиксирующий время существования напряжения на измерительных входах, запуск и останов которого производится электрическим импульсом.

Из вышесказанного следует, что лабораторная проверка АВР выполняется в стендовом режиме, с полным отключением входных и выходных цепей, также со сборкой дополнительных измерительных цепей.

Практическая методика контроля

Пример практической методики испытаний рассмотрим на примере тестирования переключающего модуля ЗАВР, широко используемого в промышленных сетях передачи электроэнергии.

Подготовка

Начинаются работы с отключения АВР от входных и выходных цепей питания. В оптимальном варианте шкаф (щит) должен быть демонтирован и смонтирован в измерительную схему в лабораторных условиях.

Схема присоединения дополнительного измерительного оборудования показана на следующем рисунке:

Схема присоединения дополнительного измерительного оборудования

Пунктиром обозначены линии для подключения секундомера.

К линии, предназначенной для питания потребителей, присоединяется нагрузка и измерительный прибор.

Контроль общей работоспособности

Проверку общего рабочего состояния производят путём подачи напряжения на стенд и имитацией обрыва по главному вводу. Если основные функции АВР в норме – произойдёт успешное переключение на резервную линию.

Время, затрачиваемое на переключение, регистрируется в таблице.

Проверка чувствительности реле напряжения

Вмонтированный автотрансформатор

Следующий этап – проверка соответствия рабочих характеристик реле напряжения их номинальным значениям.

Для этой цели во входную цепь монтируют автотрансформатор, позволяющий имитировать снижение напряжения по главному вводу.

Далее на стенд подаётся напряжение и фиксируется нормальная работа цепи «главный ввод-потребитель», после чего выполняется плавное снижение тестового напряжения.

В момент переключения регистрируется напряжение на главном вводе, а также время, затрачиваемое на переключение.

Данный цикл измерений также повторяется несколько раз.

Измерение времени отключения основного ввода

Время срабатывания, зафиксированное на предыдущем этапе, отражает общую «оперативность» АВР и в принципе достаточно хорошо характеризует работоспособность всего устройства.

Но для определения уставок, ответственных за устойчивость системы к кратковременным посадкам напряжения, необходим другой параметр – время отключения основного ввода.

Для его определения измерительную схему модифицируют таким образом, чтобы останов секундомера происходил одновременно с размыканием контактов главного переключающего реле (на приведенной в примере схеме, это реле К4).

В остальном, последовательность измерений полностью соответствует предыдущему этапу.

Электротехническая лаборатория «Мега.ру» принимает заказы на все виды электротехнических испытаний, проводимых в ходе плановых и внеочередных проверок систем передачи электроэнергии. Уточнить детали сотрудничества и оформить заявку на проведение работ можно по телефонам или через форму обратной связи, опубликованным в разделе «Контакты».

Как проверить автоматический выключатель на срабатывание – советы электрика

Назначение автоматического выключателя – пресекать аварийные режимы работы сети. Это – короткие замыкания и перегрузки. Но как узнать – работает ли эта защита и поможет ли она в нужный момент?

Для этого характеристики расцепителей автоматов проверяются. Это выполняется:

  • при вводе в эксплуатацию нового оборудования;
  • в процессе эксплуатации по истечении определенного срока;
  • при подозрении на отказ выключателя;
  • после аварийных ситуаций, связанных с прохождением через выключатель больших токов (совмещается с ревизией контактов);
  • для точной настройки характеристик расцепителей.

Виды автоматических выключателей

Самая узнаваемая для пользователей – бытовая серия модульных автоматических выключателей. Они устанавливаются на DIN-рейку и не имеют регулировок характеристик срабатывания. Все уставки расцепителей у модульной серии автоматических выключателей и дифференциальных автоматов отсчитываются от их номинального тока.

Модульный автоматический выключатель

Ток отсечки зависит от буквенного обозначения, стоящего перед значением номинального тока.

Буквенное обозначение Кратность тока отсечки
В 2-5 от Iном
С 5-10 от Iном
D 10-20 от Iном

Это означает, что реальное значение тока, при котором сработает автомат, лежит в некотором диапазоне. Завод-изготовитель гарантирует, что это будет так.

Тепловые расцепители автоматов модульной серии начинают работу при превышении номинального тока. Время, по истечении которого произойдет отключение, зависит от кратности проходящего через автомат тока перегрузки к номинальному. У автоматических выключателей разных производителей время отключения отличается.

Определить его можно по характеристикам, которые определяются по справочным данным на данную серию автоматов. Но и эта величина имеет разброс, поэтому характеристика отключения представляет собой не одну кривую линию, а их семейство, обозначаемое заштрихованной зоной.

При определенном токе через автомат ожидаемое время срабатывания лежит в диапазоне, определяемое на границах этой зоны.

Время-токовые характеристики модульных выключателей

До сих пор в распределительных щитках встречаются автоматы, имеющие в своем составе либо только тепловую, либо максимальную защиту. Проверка этих устройств наиболее актуальна, так как их электромеханическая часть отслужила много лет, часть деталей заржавела и недееспособна.

Устаревшие модели выключателей

Следующий вид автоматических выключателей имеет нерегулируемую отсечку и регулируемую тепловую защиту.

Для этого на его передней панели есть регулятор, с помощью которого номинальный ток теплового расцепителя изменяется в пределах 0,5 – 1,0 от номинального тока автомата.

Такие автоматы применяются для защиты электродвигателей и точной настройки на ток защищаемой кабельной линии, обеспечения селективности защит от перегрузки. Регулятором выставляется ток, при котором начинается работа тепловой защиты. Положение регулятора отражается и на семействе характеристик выключателя.

Автомат с регулируемой тепловой защитой

Еще сложнее конструкция выключателя, имеющего кроме регулируемого теплового расцепителя еще и регулируемый электромагнитный.

Есть модели, в которых регулировка осуществляется механически: изменением усилия пружины, противодействующей усилию, создаваемому катушкой отключения.

Такие устройства встречаются у выключателей старого образца.

У современных автоматов регулировки выполняются при помощи встроенного блока защиты. Это комплекс, включающий в себя датчики тока, установленные на всех трех фазах выключателя, и полупроводниковое устройство, обрабатывающее полученные сигналы.

Автомат с полупроводниковым расцепителем

Состав защит, устанавливаемых в максимальной комплектации в такие автоматы:

  • максимально токовая отсечка с регулируемой независимой от тока выдержкой времени;
  • защита от перегрузки с регулируемым стартовым током и характеристикой срабатывания по времени;
  • защита от токов однофазного замыкания, с регулируемой уставкой и выдержкой по времени.

Устройства для проверки выключателей

Комплексы, используемые для проверки выключателей, специально разрабатываются для этой цели. Исключением являются устройства серии РЕТОМ, которые изначально предназначены для проверки релейной защиты, но могут использоваться и для подачи токов на контактную систему выключателя с контролем момента отключения.

Наиболее подходит для этой цели РЕТОМ-21.

Проверка срабатывания теплового расцепителя выполняется подачей непрерывного тока одновременно с запуском секундомера прибора, настроенного на фиксацию исчезновения тока при отключении.

Электромагнитные расцепители проверяются токами, подающимися импульсами длительности, устанавливаемой пользователем. При плавном подъеме тока неизбежно срабатывание защиты автомата от перегрузки.

Важное достоинство РЕТОМа – ток, подающийся для проверки – синусоидальный. Большинство других устройств, специально разработанных для проверки автоматов, выдает импульсный ток, формируемый тиристорными регуляторами. Но их габариты меньше, а управление – проще.

Устройство для проверки автоматов РТ-2048

Таких устройств много. Ток для проверки отсечки они тоже подают увеличивающимися по амплитуде импульсами регулируемой длительности, а для проверки тепловой защиты выставляется требуемый ток и запускается секундомер.

Методика проверки автоматических выключателей

Перед проверкой модульного выключателя определяют его номинальный ток и кратность срабатывания. Затем по характеристике находят диапазон времени, в который укладывается тепловая защита при трехкратном номинальном токе. Таким током ее и проверяют.

Автомат подключается к испытательному устройству. Сначала проверяют отсечку. Автомат включают и через него кратковременно пропускают ток, увеличивая его величину ступенями. Большинство приборов выполняют подъем тока и выдержку времени между ступенями автоматически.

Паузы при подъеме нужны для того, чтобы исключить преждевременное срабатывание тепловой защиты. После срабатывания фиксируют ток отсечки, и автомат сразу же включают снова. Если он не включится, то сработала не отсечка, а тепловая защита. Это правило не относится к автоматам с полупроводниковыми расцепителями.

Затем автомату дают немного остыть и проверяют тепловой расцепитель. Ступенями поднимают ток до трехкратного номинального. Паузы делают для того, чтобы биметаллическая пластина расцепителя раньше времени не начала изгибаться. В этом случае результаты проверки исказятся.

Одновременно с запуском секундомера подают ток. Фиксируют время, за которое сработала защита, сравнивают его с диапазоном, определенным по характеристике.

При выходе измеренных параметров из допустимого диапазона автомат бракуют. Если срабатывания тепловой защиты не происходит за максимальное время, определенное по характеристике, испытание прекращают. Иначе от нагрева расплавится корпус автомата.

У трехполюсных выключателей проверяются все три фазы, характеристики срабатывания их примерно одинаковы, но не идентичны – элементы защиты у них разные и каждый имеет разброс параметров.

Проверка полупроводниковых расцепителей

Принцип проверки тот же, отличие лишь в том, что первоначально нужно выставить на расцепителе требуемые уставки. Поскольку такие автоматы используются для защиты производственных механизмов, питающих фидеров на трансформаторных подстанциях и распределительных устройствах, то эти данные берут из проекта.

Устройства для проверки имеют ограничения по максимально выдаваемому току. Поэтому мощные автоматические выключатели напрямую проверить удается не всегда. Ток отсечки в 10 000 А выдать не просто.

Поэтому работники электролабораторий идут на хитрость. Уставка по току занижается до величины, которую способно выдать используемое проверочное устройство.

После проверки она возвращается в исходное положение.

То же самое делается и с уставкой по току перегрузки. Если ее можно совсем вывести, то при проверке отсечки эта возможность обязательно используется. Ложного срабатывания защиты от перегрузки не произойдет.

Но ждать при проверке мощных автоматов придется все равно. Токи настолько велики, что нагревается проверочное оборудование и соединительные провода. Чтобы не вывести приборы из строя и не расплавить изоляцию, в работе регулярно делаются паузы.

Как проверить УЗО

Самое неприятное, что может случиться с защитной автоматикой электрической цепи – она не сработает в нужный момент.

Чтобы этого не случилось, всем устройствам проводятся неоднократные испытания, причем делается это не только при изготовлении, но и в процессе эксплуатации – это можно сделать и в домашних условиях.

При этом, если к защитным автоматам и принципу их работы все уже привыкли, то как проверить УЗО – насколько оно готово к возникновению нештатной ситуации – для пользователя неискушенного в электротехнике часто остается загадкой.

Принцип проверки работоспособности УЗО

Когда материал проверяют на прочность, его пытаются поломать. Для испытания защитных автоматов, надо создать условия, при которых они сработают – по этим правилам и проводятся все существующие проверки.

Устройство защитного отключения срабатывает если обнаруживает утечку тока, т.е. когда в электрическую цепь по фазному проводу подается больше тока, чем из нее выходит по нулевому. Подключение УЗО может быть выполнено в домах с заземлением и без него – для проведения проверок надо понимать разницу между этими способами защиты бытовых приборов и человека.

  • В первом случае, если нарушается изоляция проводки, то часть тока уходит на корпус электроприбора, откуда он сразу же пойдет на провод заземления, вследствие чего и возникает утечка, которую устройство защитного отключения сразу же регистрирует и размыкает цепь.
  • Если заземления нет, то при повреждении изоляции ток опять же попадает на корпус электроприбора, но так как дальше уйти ему некуда, то в целом баланс между входом-выходом сохраняется и УЗО пока не срабатывает. Утечка обнаружится только в том случае, если человек прикоснется к неисправному электроприбору – через тело потечет ток, баланс между входящим и выходящим током в основной цепи нарушится и УЗО сразу же отключит питание.

Разумеется, если заземления нет, то проверять работоспособность УЗО трогая фазный провод это, мягко говоря, очень экстремальный способ – если вдруг устройство неисправно, то ощутимый удар током неизбежен.

Несмотря на разницу в способах подключения, принцип работы устройства защитного отключения остается неизменным и все методы проверки прибора пригодны в обоих случаях. При этом точно так же выполняется проверка установленного дифавтомата, ведь это то же УЗО, только совмещенное в одном корпусе с автоматическим выключателем.

Кнопка Тест – встроенный имитатор возникновения тока утечки

На лицевой панели каждого устройства защитного отключения есть кнопка с литерой «Т» или надписью «Тест». Это самый простой способ, как быстро проверить УЗО – при нажатии этой кнопки в электрической цепи появляется дополнительная емкость или сопротивление, куда уходит часть тока. Возникает ток утечки, который вызовет сработку устройства защитного отключения.

При явной полезности этой функции, надо понимать, что кнопка «Тест» на самом УЗО не является панацеей и ее срабатывание или не срабатывание не дает полной информации о состоянии устройства. Варианты здесь могут быть следующие:

  • Если не срабатывает УЗО, но при этом оно только подключено, то кроме неисправности это может говорить о неправильном монтаже самого устройства. В таком случае в первую очередь надо перепроверить схему подключения.
  • Если раньше кнопка срабатывала, а теперь нет – в таком случае необходима более тщательная проверка УЗО и схемы его подключения.
  • Не срабатывает сама кнопка «Тест», а устройство защитного отключения в целом рабочее. Это проверяется только дополнительными способами, но в любом случае налицо брак устройства и его настоятельно рекомендуется заменить.
  • Дополнительные способы проверок подтверждают, что неисправно само устройство – здесь без вариантов замена прибора.

Проверка с помощью батарейки

Протестировать УЗО батарейкой это один из самых безопасных методов проверки – здесь не надо ждать, пока появится ток утечки, а создаются условия, при которых УЗО «думает», что он возник. Кроме того, ток, вырабатываемый батарейкой, никак не ощущается человеком.

Смысл в том, чтобы пропустить ток только через одну из катушек устройства – на второй его не будет и внутренний «калькулятор» прибора даст команду на размыкание цепи. Кстати, таким образом можно легко проверить работоспособность УЗО при покупке.

На практике это выглядит следующим образом:

  • Если устройство защитного отключения уже подключено к сети, то сперва производится его отключение от всех проводов.
  • К одному из полюсов прибора (левым или правым клеммам сверху и снизу) подсоединяются короткие проводки (чтобы ими можно было дотронуться до батарейки).
  • Концами проводов (зачищенными от изоляции) прикасаются к плюсу и минусу батарейки – через одну из катушек прибора потечет ток и если УЗО исправно, то сработает защита.

Наглядно про использование этого метода на следующем видео:

При такой проверке надо учитывать три главных момента:

  • Ток, выдаваемый батарейкой должен быть как минимум равным, а лучше превышать ток уставки прибора – если последняя равна 100мА, а батарейка выдает 50, то срабатывания не произойдет.
  • Вероятно, что придется соблюдать полярность – если после касания выводов батарейки срабатывания не произойдет, то надо поменять плюс и минус местами. Если срабатывания опять не произойдет, то тогда это уже указатель неисправности либо приобретаемое устройство защитного отключения электронное.

Подробнее про разницу в проверке электронного и электромеханического УЗО на видео:

Проверка срабатывания УЗО лампой-контролькой

В этом случае напрямую создается утечка тока из цепи, которую защищает УЗО. Для правильного проведения проверки здесь надо понимать, есть в цепи заземление или устройство защитного отключения подключено без него.

Чтобы собрать контрольку понадобятся сама лампочка, патрон для нее и два провода. По сути, собирается лампа-переноска, но вместо вилки остаются оголенные провода, которыми можно касаться проверяемых контактов.

Нюансы сборки контрольки

При сборке контрольки надо учитывать два важных нюанса:

  • Во-первых – лампа должна быть достаточно мощной, чтобы создать необходимый ток утечки. Если проверяется стандартное УЗО с уставкой 30 мА, то здесь проблем нет – даже лампочка на 10 Ватт будет брать из сети ток как минимум в 45 мА (высчитывается по формуле I=P/U => 10/220=0,045).
  • Во-вторых – если взять слишком мощную лампочку. Если вопрос только в том, как проверить УЗО на срабатывание, то на этот момент можно не обращать внимания. Если же дополнительно надо оценить не раскалибровалась ли величина уставки, то придется дополнять схему. К примеру, если собрать контрольку с лампочкой на 100 Ватт, то сила тока на ней будет порядка 450 мА. При этом неизвестно, при каком токе сработало устройство защитного отключения – если оно все-таки раскалибровалось и срабатывает вместо 30 на токе в 100 мА, то человек может получить смертельный удар электричеством. Чтобы проверить УЗО на срабатывание при номинальном токе, к контрольке надо добавить сопротивление, которое уменьшит силу тока в цепи до необходимой.

Расчет сопротивления контрольки

Высчитать нужное сопротивление поможет закон Ома – R=U/I. Если взять лампочку мощностью 100 Ватт для проверки устройства защитного отключения с уставкой 30 мА, то порядок расчетов следующий:

  • Измеряется напряжение в сети (для расчетов взят номинал в 220 Вольт, но на практике плюс-минус 10 вольт могут сыграть роль).
  • Общее сопротивление цепи при напряжении 220 Вольт и токе в 30 мА будет 220/0,03≈7333 Ом.
  • При мощности 100 Ватт на лампочке (в сети 220 вольт) будет сила тока 450 мА, значит ее сопротивление 220/0,45≈488 Ом.
  • Чтобы получить ток утечки ровно в 30 мА, к лампочке надо последовательно подключить резистор сопротивлением 7333-488≈6845 Ом.

Если брать лампочки другой мощности, то и резисторы будут нужны другие. Также обязательно надо учитывать мощность, на которую рассчитано сопротивление – если лампочка 100 Ватт, то и резистор должен быть соответствующий – либо 1 мощностью 100 Ватт, либо 2 по 50 (но во втором варианте резисторы подключаются параллельно и их общее сопротивление высчитывается по формуле Rобщ=(R1*R2)/(R1+R2)).

Для гарантии, после сборки контрольки можно включить ее в сеть через амперметр и убедиться, что через цепь с лампочкой и резистором проходит ток требуемой силы.

Испытание УЗО в сети с заземлением

Если проводка проложена по всем правилам – с использованием заземления, то здесь можно проверить каждую розетку отдельно.

Для этого индикатором напряжения находится к какой клемме розетки подведена фаза, и в нее вставляется один из щупов контрольки.

Вторым щупом надо коснуться контакта заземления и устройство защитного отключения должно сработать, так как ток из фазы ушел на заземление и не вернулся через ноль.

В таком случае требуются дополнительные проверки и если испытание заземления это отдельная тема, то проверка УЗО может быть выполнена напрямую следующим способом.

Испытание УЗО в однофазной сети без заземления

К правильно подключенному устройству защитного отключения провода от распределительного щитка приходят на верхние клеммы, а к защищаемым устройствам отходят с нижних.

Чтобы устройство решило, что произошла утечка, надо одним щупом контрольки коснуться нижней клеммы, с которой из УЗО уходит фаза, а другим щупом коснуться верхней нулевой клеммы (на которую приходит ноль из распределительного щитка). В таком случае, по аналогии проверки батарейкой, ток пойдет только через одну обмотку и УЗО должно решить, что происходит утечка и разомкнуть контакты. Если этого не происходит, значит устройство неисправно.

Проверка силы тока утечки, при котором срабатывает УЗО

Здесь используется все та же лампочка-контролька с резистором, но дополнительно к ним в цепь подключается амперметр и еще одно сопротивление – переменное. В качестве последнего часто используют диммер – выключатель света с регулировкой яркости.

Порядок проверки следующий:

  • Реостат (диммер) выставляется на максимальное сопротивление и вся схема подключается как при проверке устройства защитного отключения в сети без заземления – один щуп к выводу фазы «из УЗО», а другой ко входу ноля «в УЗО».
  • Далее медленно уменьшая сопротивление реостата надо наблюдать за показаниями Амперметра – при какой силе тока произойдет срабатывание, на такую и рассчитано УЗО.

Если уставка УЗО порядка 30 мА, нет ничего страшного, если срабатывание произойдет при меньшей силе тока – 10-25 мА – это своеобразный запас на случай резкого возрастания тока утечки, чтобы устройство защитного отключения успело гарантированно сработать и человек даже в крайнем случае не «получил» больше 30 мА.

Наглядно про методы проверки УЗО на следующем видео:

Проведение тестов на работоспособность УЗО — как итог

Все приведенные способы проверок УЗО это достаточно «грубые» испытания ведь на их точность как минимум влияет правильность расчетов и насколько «ровным» будет напряжение в сети.

Впрочем, для простой проверки работоспособности устройства их вполне достаточно. Главное – не забывать регулярно ее проводить.

Еще, надо помнить, что УЗО это достаточно сложное устройство – в случае обнаружения неисправности лучше все-таки не пытаться его отремонтировать, а сразу же заменить на новое.

Проверка автоматических выключателей. Прогрузка и испытание автоматов

Заказать услугу или задать вопросГлавная/Электролаборатория/Проверка выключателей

Электротехническая лаборатория ГК Эколайф оказывает услугу Проверка автоматических выключателей. Прогрузка и испытание автоматов. По результатам испытания составляется протокол в технический отчет ЭТЛ.

Содержание:1. Проверка работы расцепителей автоматических выключателей2. Как проверяется срабатывание автоматических выключателей?3. Сколько автоматических выключателей требуется проверить?4. Необходимость эксплуатационной проверки и прогрузки автоматов

5. Результаты проверки автоматических выключателей

Для подтверждения безопасности электрооборудования его требуется проверять на исправность и соответствие установленным требованиям. Ситуации, в которых требуется проверка автоматических выключателей:

  • прием в эксплуатацию после установки электроустановки;
  • спустя установленный системой ППР срок эксплуатации;
  • после проведения капитального ремонта электрических устройств;
  • после текущего ремонта;
  • в профилактических целях в межремонтный период.

В ходе испытаний проводится проверка соответствия характеристикам, которые задаются оборудованию производителем. Цель проверки — установить, обеспечивает ли оборудование такие параметры:

  • предотвращение поражения электрическим током при коротком замыкании (это условие обязательно в том случае, если других защитных мер для полной безопасности недостаточно);
  • защиту электросети от возгораний и перегрузок при технологических неисправностях или повреждении изоляции.

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:

  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?

Проверка работы расцепителей автоматических выключателей

Основная часть испытаний автоматов — это проверка исправной работы их расцепителей. Дополнительно проверяется качество монтажа выключателей, затяжка контактов, соответствие защитного оборудования проектной документации, но эти параметры уже второстепенны.

Существует большое количество модификаций автоматических выключателей: воздушные, модульные, предназначенные для защиты двигателей, в литом корпусе. Самыми распространенными являются модульные автоматические выключатели, устанавливаемые на DIN-рейку, поэтому целесообразно будет рассмотреть ход проверки на их примере.

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 “Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения” регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7 Время-токовые рабочие характеристики

Испытание Типрасцепителя Испытательныйток Начальноесостояние Время расцепленияили нерасцепления Требуемыйрезультат Примечание
a B, C, D 1,13 In Холодное t 63 А) Безрасцепления
b B, C, D 1,45 In Сразу же после испытания t 63 А) Расцепление Непрерывное нарастание тока в течение 5 с
c B, C, D 2,55 In Холодное 1 с 32 A) Расцепление
d B 3 In Холодное t Читайте также: Заземление в частном доме своими руками 220в — советы электрика

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают. Примечание – Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d.

a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Как проверяется срабатывание автоматических выключателей?

Порядок проведения проверок утвержден в нормативной документации. Так, срабатывание электромагнитных расцепителей проверяется согласно ПУЭ 1.8.37 путем проведения испытаний, которые рекомендует завод производитель.

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-3600». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

Для проведения испытаний выводы аппарата подключают к вводам автоматического выключателя. После этого подается ток и засекается, какое время пройдет до срабатывания механизма расцепления. При этом испытание проводится поэтапно:

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In32 А расцепление должно произойти за 2 минуты.

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей.

В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2% автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными.

В этом случае заказчику потребуется заранее подготовить их а необходимом количестве.

Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей

Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже.

Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его.

И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

К НАЧАЛУ СТРАНИЦЫ

Причины срабатывания автоматического выключателя

Автоматический выключатель или как его еще называют «автомат» находится на щитке приборов входа электроэнергии в дом или квартиру и предназначен для предупреждения последствий короткого замыкания или перегрузок электропроводки жилья.

Причины срабатывания автоматического выключателя могут быть разнообразными, однако существуют некоторые из них, которые встречаются наиболее часто.

Про них необходимо знать для того, чтобы не будучи профессиональным электриком вовремя сориентироваться в обстановке и самостоятельно устранить причину срабатывания электрического выключателя.

Автомат может срабатывать (вырубаться) по следующим причинам:

Автомат срабатывает от перегрузки сети

Автоматическое отключение электрического выключателя часто происходит из-за одновременного включения бытовых электроприборов большой мощности: кондиционер, стиральная машина, утюг, микроволновка, автономный водонагреватель и т. д. То есть если суммарный ток этих приборов превысит допустимое значение вашего выключателя он автоматически сработает, защитив всю электропроводку от перегрева, а в некоторых случаях и от пожара.

Перегрузка электрической цепи выбивает автоматы

Например, у вас автомат рассчитан на силу тока в 20 А, а вы включили стиралку (5А), микроволновку (3 А), утюг (3 А), кондиционер (5 А) и водонагреватель (6 А) в результате чего суммарное значение всех приборов составило 22 А, что превысило возможности автомата в 20 А и он, естественно, отключится.

Что делать? Есть два варианта: отключить часть бытовых электроприборов и снова запустить автомат или поменять автомат на более мощный, например, на 25 А.

Но последнее нужно делать осторожно, исходя из качества и возможности электропроводов и розеток, находящихся в квартире. Лучше, конечно, не рисковать, а прибегнуть к первому варианту, то есть отключит часть электроприборов.

Нужно обратить внимание на то, что сразу автомат включать не рекомендуется, а делать это следует после того как он остынет.

Выход из строя какого-либо бытового электроприбора

Если автомат начинает срабатывать в одно время с подключением какого-либо прибора значить необходимо обратить внимание на исправность этого прибора. Делается методом исключения.

Неисправность розеток – частая причина, по которой выбивает автомат

Например, если у вас включена электроплита, водонагреватель, утюг и вдруг отключился свет, то есть сработал электрический выключатель, отключите все приборы одновременно и пытайтесь, включая каждый по очереди, проследить за поведением выключатель. Наверняка вы в этом случае определите неисправный прибор.

Причина отключения автомата из-за короткого замыкания

Но если, вы убедились что все бытовые электроприборы исправны, а автомат все равно выбивает – ищите причину в замыкании электропроводки.

Другими словами, необходимо найти то место где фазовый провод соприкасается (коротит) с нулевым проводом.

Быстро это сделать иногда не получается и приходится шаг за шагом обследовать все соединения проводов, розетки, выключатели и вилки электроприборов. Бывает, правда, видны явные признаки проблемного места: нагрев, запах гари, появление дыма.

Короткое замыкание может возникнуть, например, при ремонте проводки

Нужно также обратить внимание на люстры и светильники где порой находится причина всех бед. Если же вы не смогли самостоятельно обнаружить в каком месте коротит вызывайте электрика, который с помощью тепловизора, мультиметра и других приборов определить причину короткого замыкания. Отнеситесь к этому вопросу серьезно!

Поломка самого ЭВ (электровыключателя)

Очень редко, но бывает что причиной выхода из строя электровыключателя является поломка самого электрического выключателя.

На эту мысль может навести проверка всех вышеописанных причин, которая дала положительный результат, а автомат все равно выбивает. Разобраться в этом поможет замена электровыключателя на другой новый или исправный.

При замене автомата нужно обращать внимание на бренд изделия и страну производителя.

Необходимо надежно крепить контакты

Хорошо зарекомендовали себя приборы из Швеции, где совместно с производителями из Австрии выпускаются автоматы марки АВВ. Французские электровыключатели LEGRAND и SCHNEIDER ELECTRIC являются качественным и надежным изделием.

Сюда также можно отнести немецкие электрические выключатели MOELLER.

Хотя за все эти изделия европейского качества нужно будет заплатить больше чем за аналоги из Китая, но нужно помнить, что электрический выключатель – это очень ответственный прибор, от которого зависит состояние вашего имущества, а порой даже жизнь.

Другие причины выхода из строя автомата

Бывают и другие причины выхода из строя автомата, которые весьма банальны, но они все же существуют и часто сбивают с толку рядового обывателя. К ним можно отнести следующие моменты:

Как выполняется проверка автоматических выключателей

Любая электрическая сеть является потенциальным источником двух факторов опасности: поражение электрическим током и вероятность пожара вследствие короткого замыкания.

И если первый фактор присутствует только в сетях с напряжениями свыше 42 вольт, то опасность короткого замыкания сохраняется даже в низковольтной электропроводке.

В связи с чем, проверка автоматических выключателей – обязательный пункт в смете как приёмосдаточных, так и планово-профилактических испытаний, выполняемых электролабораторией.

В отличие от дифференциального контроля токов утечки, эта категория защитной аппаратуры присутствовала в электросетях с момента их появления, поэтому технология их проверки достаточно строго стандартизирована.

Из каких этапов состоит проверка защитных автоматов

Согласно ГОСТ Р 50031-2012 полный цикл испытаний автоматических выключателей состоит из следующих этапов:

  • контроль стойкости маркировки;
  • проверка надёжности винтовых соединений;
  • тестирование выводов для внешней коммутации;
  • контроль электрической безопасности прибора (защита от поражения электротоком);
  • проверка электрического сопротивления диэлектриков, задействованных в конструкции прибора;
  • тест на соответствие температурным нормам;
  • проверка работоспособности в ходе длительного приложения нагрузки (28 суточный испытательный цикл);
  • измерение характеристик отключения при рабочем срабатывании прибора;
  • проверка коммутационной способности прибора;
  • устойчивость по токукороткого замыкания;
  • контроль сопротивляемости механическим ударам;
  • тестирование работоспособности в условиях повышенной температуры внешней среды;
  • проверка соответствия нормативам пожарной устойчивости (то есть, время сохранения коммутационных характеристик в условиях пожара или критической тепловой нагрузки);
  • тестирование устойчивости диэлектрика к образованию токопроводящих каналов (трекингостойкость);
  • проверка коррозионной устойчивости конструкционных элементов прибора при работе в нормальной или агрессивной среде (коррозиестойкость).

Приведенный перечень испытаний разработан, прежде всего, для первичной сертификации новых изделий и в полном объёме выполняется только после разработки нового прибора (цена такого «исследования» гораздо выше обычных лабораторных проверок).

Эксплуатационные испытания в электроустановках, проводимые ЭТЛ, разрабатываются на основе трёх базовых этапов:

  • проверка характеристик отключения;
  • контроль коммутационной способности;
  • испытание на устойчивость к токам короткого замыкания.

Следует отметить, что каждый из перечисленных этапов состоит из нескольких циклов, выполняемых с применением специального оборудования и различных схемных решений.

Измерение характеристик отключения

Таблица время-токовых характеристик

Целью данного этапа проверки является определение фактических рабочих уставок прибора и их соответствие время токовым характеристикам, оговоренным в заводской документации прибора.

Тестируемыми характеристиками в данном случае являются:

  • номинальный рабочий ток;
  • время отключения;
  • ток и время мгновенного действия (проверка электромагнитного расцепителя);

Обратите внимание, что в некоторых моделях автоматов время отключения увеличено, что необходимо для создания эффекта селективности при построении последовательных цепей защиты.

Согласно стандарту, этот этап тестирования также должен сопровождаться проверкой стабильности параметров защиты при изменении температуры окружающей среды. Но в эксплуатационную технологию испытаний электроустановок до 1000 в данный пункт, как правило, включает только при наличии соответствующих производственных условий.

Контроль коммутационной способности

Чтобы подтвердить работоспособность автоматического выключателя необходимо не только проверить его детекторы перегрузок, но и выполнить тест на отключающую способность под штатной и критической нагрузкой.

Данный тест заключается в многократном выполнении цикла «включение-отключение» с последующей проверкой переходного сопротивления контактов.

Устойчивость к токам короткого замыкания

Поскольку номинальный рабочий ток автоматического выключателя значительно меньше тока короткого замыкания, данный этап электроизмерительных испытаний предназначен для подтверждения работоспособности прибора после пропускания через его полюса токов короткого замыкания.

Испытание считается успешным, если коммутационный механизм сохранил свою работоспособность, и переходное сопротивление контактов осталось в пределах нормы.

Когда необходима проверка

Согласно требованиям ПУЭ и ПТЭЭП, контроль исправности защитных автоматов производится во всех случаях официальных электроизмерительных испытаний.

То есть, такая необходимость возникает:

  • при сертификации изделия после его разработки;
  • при вводе электроустановки в эксплуатацию (приёмосдаточные испытания);
  • в ходе планово-профилактических проверок электросети;
  • после капитальных, плановых или аварийных ремонтов.

Отдельно подчеркнём важный момент: проверку автоматических расцепителей может производить только квалифицированный персонал, имеющий удостоверения по электробезопасности не ниже 3 группы и при наличии соответствующего оборудования.

В ходе испытаний производится прогрузка выключателя мощными импульсами тока и фиксируются временные показатели процесса срабатывания. Поскольку в данном случае граница между «годен» и «не годен» лежит в пределах нескольких миллисекунд, ни о каких самостоятельных выводах о работоспособности прибора и речи быть не может.

Любой вариант самостоятельных проверок (включая срабатывание по кнопке «тест» в тех устройствах, где она есть) подтвердит лишь факт исправности механической системы, но никак не правильность регулировок прибора.

Официальное экспертное заключение о соответствии характеристик автоматического расцепителя нормам и требованиям, озвученным в соответствующих стандартах, может дать лишь сертифицированная электроизмерительная лаборатория.

Какие нормативные документы используются при разработке алгоритмов проверки

  1. Основные термины и определения, а также базовые нормативные диапазоны, используемые для описания характеристик расцепляющих автоматов, приведены в стандарте ГОСТ 50031-2012.

Несмотря на достаточно чёткую нормативную проработку алгоритмов ревизии и наладки аппаратуры для защиты от сверхтоков, для каждого конкретного случая разрабатывается свой вариант технологической инструкции, ориентированный, как правило, на конкретный тип расцепителей и имеющееся в наличии измерительное оборудование.

Электротехническая лаборатория «Мега.ру» оказывает услуги по организации и проведению всех видов испытаний в электроустановках, включая всестороннюю проверку автоматических выключателей. Уточнить расценки и сделать заказ на выезд специалистов можно по телефонам, опубликованным на странице «Контакты».

Выбивает автоматический выключатель – причины и устранение

Автоматический выключатель может самопроизвольно срабатывать по нескольким причинам. Так, это может быть неисправность самого устройства, короткое замыкание в проводке или иные факторы. Даже неопытный, в области электрики, человек может самостоятельно определить причину срабатывания механизма расцепления цепи. Это сделать абсолютно не сложно.

Перегрузка сети

Наиболее частая причина отключения автоматического выключателя (АВ) – это выполнение поставленных задач, то есть защита проводки от перегрузок и последующего выхода из строя.

К примеру, ваш электро-щиток оснащен автоматом на 16А (очень распространенная ситуация для не новой проводки) и Вы одновременно включили кондиционер, бойлер, электрочайник и стиральную машину.

Естественно, нагрузка на сеть значительно возросла, поэтому АВ и сработал, защитив тем самым электропроводку.

Данную проблему можно решить с помощью нескольких способов. Наиболее легкий – поочередно включать мощные бытовые приборы, дабы перегрузка просто не возникала. Другой способ – замена автомата на более мощный (25-амперный).

Это можно делать лишь в случае наличия качественной проводки в доме, чтобы она смогла выдержать возложенные на нее нагрузки (медная проводка, с сечением жил более 2,5 мм²). Третий способ – просто заменить проводку в доме на новую, способную выдерживать большие нагрузки.

Это наиболее надежный метод избежать отключения автоматических выключателей.

Стоит отметить, что после срабатывания автомата с тепловым расцепителем, нужно будет немного подождать, так как сразу включить его не получиться. Это связано с принципом функционирования прибора. Только после остывания механизма (несколько минут) его можно будет включить.

Проблемы с бытовой техникой

В случае, если автомат срабатывает регулярно в один период времени, нужно обратить внимание на бытовые приборы, скорее всего один из неисправен. Если автомат выключается после запуска определенной мощной техники, то стоит отключить это устройство и понаблюдать, как работает АВ без него. Срабатывание на происходит? Тогда следует искать неисправность именно в бытовой технике.

Для быстрого поиска неисправности нужно использовать метод исключения. Отсоедините все электроприборы от сети и поочередно включайте их. Во время включения неисправного прибора произойдет срабатывание автоматического выключателя.

Что делать? Ищем неисправную технику! Если автомат срабатывает даже после того, как вы отключили всю бытовую технику, то, скорее всего, дело в электропроводке. Как поступить в данной ситуации, поговорим далее.

Замыкание электропроводки

Короткое замыкание в электропроводке – это частая причина «выбивания» автомата. В определенном месте нуль соприкасается с фазой, поэтому и происходит замыкание.

Автомат, в свою очередь, выполняет свою работу – защищает проводку от замыкания. Необходимо полностью проверить всю проводку.

Это может занять достаточно много времени, кроме этого, необходимо быть особо внимательным, чтобы обнаружить место замыкания.

Прежде всего, следует разобрать все выключатели света и розетки, проверить качество подключения жил клеммам. В случае плохого закрепления, нужно подтянуть все винты. После проверки розеток, проверьте распределительные короба.

Необходимо убедиться, что провода хорошо соединены в них, нет никаких оголенных участков проводов, которые могут вызвать замыкание. Дальше можно перейти к проверке светильников.

Зачастую, неопытные электрики забывают проверять люстры, но это довольно часто является причиной замыкания.

Проверка проводки

В последнюю очередь следует проверять проводку, которая практически во всех домах и квартирах скрывается в стенах.

В данном случает оптимальным будет использование специального прибора, что позволит точно и быстро отыскать место короткого замыкания. Но вряд ли у каждого дома есть такой прибор, поэтому вместо данного прибора можно использовать обычный мультиметр.

Если и это не смогло помочь, то нужно вызвать специалиста, который сможет с помощью тепловизора найти замыкание и устранить его.

Автомат вышел из строя

Плохое качество АВ также может быть причиной его отключения. Он может срабатывать просто потому, что бракованный. Можно заменить автомат на аналогичный и убедиться в чем причина.

Иные причины

Кроме рассмотренных нами причин «выбивания» автомата могут быть и иные, редко происходящие. Рассмотрим и их тоже.

Автоматический выключатель может срабатывать во время перегорания обычной лампы. При сгорании лампочки происходит кратковременная перегрузка. Если у вас стоит автомат на 6-10А, то его может выбить. С люминесцентными и светодиодными лампами такого не происходит.

Иногда автомат срабатывает во время включения стабилизатора. В этом случае есть свои нюансы, что связаны с функционированием прибора и Вашей невнимательностью. При запуске стабилизаторы напряжения создают ток, который может превышать номинал автоматического выключателя, в этом случае его «выбьет». Причина может крыться и в самом стабилизаторе.

Если выключение происходит во время включения света, то стоит проверить мультиметром светильники.

Банальная причина – неправильное подключение данного прибора. Если жилы будут плохо соединены с клеммами, то будет наблюдаться перегрев в месте соединения. В результате сработает тепловой расцепитель. Выявить причину можно с помощью обычного визуального осмотра, можно наблюдать подплавленную изоляцию проводов и корпуса.

Если ваш щиток оснащен вводными и групповыми автоматами, то причину будет намного проще отыскать. АВ выбивает на вводе? Нужно проверить верность сборки электро-щитка. При отключении определенного автомата ниже главного, будет известна группу в которой находится неисправность (розетки, освещение или же отдельно подключенная стиральная машина).

Источник https://eclectic-style.ru/vopros-otvet/kak-proverit-avtomaticheskij-vyklyuchatel-na-srabatyvanie.html

Источник https://m-e-g-a.ru/elektrolaboratoriya/kak-proizvoditsya-proverka-avr

Источник https://orenburgelectro.ru/provodka/kak-proverit-avtomaticheskij-vyklyuchatel-na-srabatyvanie-sovety-elektrika.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: