Как сделать солнечную батарею для зарядки телефона

Содержание

Как сделать солнечную батарею для зарядки телефона

Солнечное зарядное устройство или солярбанк, это не обычный powerbank. Это правда, что многие из них оснащены встроенными батареями, в которых сохраняется энергия, но есть также модели, которые имеют только солнечные батареи и используются для прямой зарядки телефона.

У каждого зарядного устройства есть одна основная задача – зарядить оборудование как можно быстрее. Однако, в случае солнечных элементов приоритет немного отличается. Здесь самое главное, чтобы мы не должны заряжать оборудование от сети. Обычный powerbank, после того как запас энергии исчерпан, превращается в «просто кирпич» в рюкзаке.

, используя солнечную энергию. В российском климате мы получим лучшие результаты летом, когда дни долгие, а ближайшая к нам звезда светит высоко в небе. Тогда зарядка самая эффективная. Однако, хорошее солнечное зарядное устройство будет работать весь год. Просто процесс зарядки может занять больше времени.

Какие особенности нужно искать при выборе солнечного зарядного устройства? Прежде всего, выходная мощность, которая напрямую влияет на скорость зарядки. Это не всегда указывается напрямую, но часто в спецификации мы найдём напряжение и силу тока, поэтому мы можем сами рассчитать мощность. Напряжение обычно составляет 5В, поэтому, если ток равен 1А, мы получаем режим 5 Вт. В немного лучших моделях это может быть 5V x 2,1A = 10,5 Вт. Чем больше, тем лучше! Стоит помнить, что такие значения иногда включают в себя зарядку от встроенного аккумулятора, а не от солнечной панели. Солнечная нагрузка зависит, например, от угла солнечных лучей.

Во-вторых, солнечное зарядное устройство должно иметь более одного USB-порта, чтобы вы могли заряжать два телефона одновременно. Конечно, это не всегда необходимо – многим достаточно одного порта и для них это не будет проблемой.

В-третьих, зарядное устройство должно иметь четкий индикатор уровня заряда. Лучше всего небольшой дисплей с цифровым отображением или рядом диодов, которые гаснут, когда вы потребляете энергию от аккумулятора.

В-четвертых, мы должны обратить внимание на качество изготовления. В конце концов, солнечное зарядное устройство – это устройство, которое мы часто берём в поездки, на отдых, в поход и на лоно природы. Поэтому корпус должен быть прочным. Последний вопрос (для некоторых, даже самый важный) – это цена. В этом рейтинге вы также найдете дешевые солнечные зарядные устройства, но стоит понимать, что они, как правило, дороже, чем обычные powerbank, вместе с тем они имеют более широкие функциональные возможности и позволяют использовать бесплатную энергию

Последний вопрос (для некоторых, даже самый важный) – это цена. В этом рейтинге вы также найдете дешевые солнечные зарядные устройства, но стоит понимать, что они, как правило, дороже, чем обычные powerbank, вместе с тем они имеют более широкие функциональные возможности и позволяют использовать бесплатную энергию.

Давайте проверим, какое солнечное зарядное устройство стоит купить для вашего телефона.

Солнечные батареи.

При покупке солнечной панели следует знать, что солнечные панели бывают двух видов:

  • Поликристаллические.
  • Монокристаллические.

В чём же их отличие? Панели отличаются между собой по технологии производства так называемых солнечных элементов, из которых, и состоит солнечная панель.

У поликристаллической панели активная поверхность синего цвета, а у монокристаллической панели черного, с характерными углами.

Какая панель лучше?

Поликристалл однозначно лучше, так как он работает эффективнее при пасмурной погоде и слабом солнечном свете. Монокристаллические панели имеют меньшую площадь при одинаковых мощностях с поликристаллической панелью, поэтому в пасмурную погоду монокристаллические панели работают менее эффективно.

Наиболее чаще применяются 12 вольтовые панели, которые удобней адаптировать с 12 вольтовыми аккумуляторами. Обычно под значением 12V панель подразумевается 17V — 18V, это нужно для того чтобы когда панель в пасмурную погоду производит меньшее энергии она смогла компенсировать падение напряжения.

Солнечные панели при изготовлении уже имеют подключённые диоды Шоттки, которые защищают солнечные элементы от выхода из строя в момент, когда панель перестаёт генерировать электроэнергию и становится сама потребителем электроэнергии от аккумулятора. Именно диод препятствует обратному протеканию электрического тока.

Контроллер заряда.

Контроллер заряда аккумулятора управляет процессом заряда и препятствует чрезмерному заряду и разряду аккумуляторной батареи.

Принцип работы контролера следующий. Когда панель генерирует электрический ток, аккумулятор заряжается. Когда напряжение на клеммах 12 V аккумулятора достигнет предельного значения 14 V, контроллер отключает зарядку.

Когда солнечная батарея не работает в ночное время, система работает от аккумулятора. Когда напряжение на клеммах аккумулятора достигнет нижней границы 11V, контроллер отключит его от системы, тем самым предотвратит его полный разряд. К контроллеру можно подключить потребителей постоянного тока 12V через соответствующие клеммы (обозначены рисунком лампочкой), например светодиоды для освещения помещения.

Аккумуляторная батарея.

В системе аккумуляторная батарея выполняет функцию аккумулятора электроэнергии, который подзаряжает солнечная панель. Для подключения в систему можно использовать любые свинцово-кислотные аккумуляторы, а также гелевые. В жилом помещении лучше использовать аккумуляторы закрытого типа. Обычно используются 12V автомобильные аккумуляторы.

Инвертор.

Инвертор — он же преобразователь напряжения, подключается к аккумулятору и получает на входе постоянное напряжение, обычно 12V, на выходе из инвертора мы уже получаем переменное напряжение синус 50гц, 220V, к которому можно подключать бытовые приборы, работающие от сети переменного тока 220V.

Кабель.

При монтаже стационарных солнечных панелей производители рекомендуют использовать специальный кабель, для подключения солнечных батарей, который имеет повышенную защиту изоляции от ультрафиолетовых лучей. Можно использовать обычный медный кабель с дополнительной защитой из гофры. Это касается только кабеля который идёт от панели к контроллеру, на всех остальных участках используется обычный медный кабель.

iconBIT FTB Travel

Солнечный аккумулятор от именитого производителя батареек оснащён почти «по-взрослому»: два USB-порта для подключения девайсов, спаренный светодиод в роли фонарика и индикатор заряда на четыре сегмента.

Максимальный выходной ток что на одном, что на другом USB-интерфейсе колеблется в пределах 1 ампера, что для своей ёмкости считается нормой. Мощность составляет 1,5 Вт, поэтому подзарядить средненький смартфон можно без проблем.

Кроме того, модель получила хорошую пылезащиту и неплохие показатели влагостойкости, что подчёркивает её направленность на активный отдых. Прорезиненная конструкция позволит аппарату избежать ударов, а небольшой вес не станет обузой в длительном походе.

Владельцы этой солнечной батареи весьма лестно о ней отзываются. Особенно тёплые отклики можно увидеть в среде рыбаков и охотников, где каждый килограмм за плечом сродни тонне. Многие пользователи сетуют на некачественную зарядку некоторых смартфонов или вообще отсутствие таковой. Но здесь нужно понимать, что имеющаяся мощность рассчитана на аккумуляторы ёмкостью в 1000 и чуть больше мАч. А заряжать современный гаджет с прожорливым процессором и видеочипом, а также с батареей в 5000 мАч не самая лучшая идея. Для этого есть аппараты, обозначенные выше.

Ориентировочная стоимость – порядка 2000 рублей.

Рекомендации по выбору

Первое, на что необходимо обращать внимание при покупке зарядного устройства – это его выходные характеристики. Они должны соответствовать характеристикам, заряжаемых гаджетов

В противном случае устройство будет бесполезно.

Второй очень важный момент – это наличие вмонтированного аккумулятора. Он будет являться дополнительным источником питания, а также будет поддерживать работу устройства в пасмурные дни, темное время суток вместо солнечной зарядки.

Дополнительными критериями по выбору будут индивидуальные особенности использования гаджета в будущем. Если планируется брать устройство в поход, то необходимо приобретать мощное зарядное, которое способно накапливать большое количество энергии. При таких условиях эксплуатации встроенный аккумулятор обязателен.

Схема подключения солнечных батарей

Существует 2 способа, как можно подключить солнечную панель: параллельный и последовательный. При параллельном соединении, положительную клемму одного модуля соединяют с положительной клеммой другого, отрицательную – с отрицательной. Так соединяют необходимое количество элементов. Последний проводами соединяют с контроллером. Параллельное соединение дает напряжение в 220 В, но увеличивает выходную мощность.

Рассмотрим, как подключить солнечную батарею, если необходимо снять большее напряжение (например, 24 В). Для этого используется последовательное соединение солнечных модулей. В этом случае панели между собой соединяют так: положительную клемму первого модуля подключают к отрицательной клемме второго модуля. Такое подключение допускает любое количество элементов. Оставшиеся свободные провода выводят на контроллер. Как и при параллельном способе, последовательно подключать элементы не сложно.

Существует иной способ, подключения солнечной батареи. Последовательно-параллельный метод — комбинация из последовательно соединенных параллельным соединением групп элементов. Принцип работы данной схемы подключения аналогичен прочим, но позволяет одновременно регулировать выходную мощность и выходное напряжение.

Подключая солнечные батареи, необходимо купить подходящий аккумулятор. Если их несколько, устройства объединяют в цепи:

  • параллельно, что сохраняет величину напряжения и увеличит емкость
  • последовательно, что не дает увеличение емкости, но напряжение системы будет складываться из напряжения всех аккумуляторов
  • последовательно-параллельно — параллельное включение аккумуляторов внутри групп с дальнейшим последовательным подключением этих групп; данная схема увеличивает емкость (она равна суммарной емкости параллельно подключенных аккумуляторов) и напряжение (суммарное напряжение складывается из напряжений всех подключенных последовательно групп)

Аккумуляторы для гелиостанций должны отвечать ряду требований:

  1. простота эксплуатации
  2. широкий диапазон рабочих температур
  3. способность переносить большое количество разрядов/зарядов
  4. должны быть адаптированы для заряда током большой мощности
  5. низкий уровень саморазряда
  6. большая емкость (минимальная емкость должна быть равна количеству заряда, достаточному для поддержания резервируемых нагрузок в течение 4 часов+35% от этой емкости)

В зависимости от устройства аккумуляторы подразделяются на:

  • АСБ (автомобильные) применяются в основном для маломощного уличного освещения, выделяют вредные вещества (устанавливаются только в обособленных от жилья, хорошо вентилируемых помещениях) и быстро выходят из строя
  • литий-железо-фосфатные – энергоемкие, но дорогие; плохо переносят перегрев; в гелиосистемах применяются редко
  • свинцово-кислотные с жидким электролитом – долговечны, надежны, дорогие; подходят для мощных систем
  • свинцово-кислотные AGM (вместо жидкого электролита, стекловолокно пропитанное электролитом) – долговечнее обычных кислотных, заряжаются малыми токами, чувствительны к избыточному заряду, требует наличие смарт-контроллера
  • свинцово-кислотные GEL (серная кислота находится в связном состоянии благодаря оксиду кремния) – аналогичны AGM
  • щелочные – выдерживают глубокий заряд большими токами, но систематически теряют емкость.

Гелиосистемы не имеют повсеместного распространения, из-за высокой цены. Но ученые ведут разработки, направленные на удешевление конструкций и широкое внедрение станций, принцип работы которых основан на использовании энергии солнца. Принцип действия солнечных батарей позволяет применять их в качестве основного или дополнительного источника энергии практически в любой точке планеты.

Обзор популярных моделей

Таковых солнечных зарядок существует достаточно много, но лишь несколько из них заслуживают внимания и пользуются спросом.

Solar-Charger P1100F-2600

Характеристики этого зарядного устройства позволяют ему заряжать не только телефоны, но и цифровые камеры и еще несколько видов приборов. В комплектации данной модели состоит литий-ионный аккумулятор с емкостью в 2600 mA. А также обладает устройством контроля за зарядом. Вся зарядка обладает сравнительно малыми габаритами и малым весом. Очень удобен для прогулок загородом.

PETC S09

Зарядное устройство, которое относится к более простым и дешевым маркам и выпускается китайским производителем. Максимальное напряжение на выходе 5,5 V, а емкость аккумулятора до 600 mA. Рассчитан на работу только с телефонными устройствами.

PETC S08-2,6

Не имеет никаких принципиальных различий с другими моделями своей марки за исключением того, что эта модель выпускается без аккумулятора. Следовательно, использоваться может только в светлое время суток, а также в температурных условиях не выше, чем +60 °C.

Sititek Sun-Battery SC-09

Конструкторы «скромно» называют своё детище системой автономного питания и особо подчёркивают тот факт, что эту солнечную батарею можно подключать тремя способами: посредством солнечной панели с высокой отдачей, с помощью сетевого адаптера и через USB-порт персонального компьютера или ноутбука.

Панель выполнена из монокристаллического камня, поэтому скорость зарядки элемента имеет очень хороший показатель. Кроме того, несмотря на довольно демократичный ценник, модель отличилась высоким значением выходного тока. Далеко не все конкурирующие модели этого сегмента могут похвастаться двухамперными портами, в то время как Sititek Sun-Battery SC-09 способна справиться не только со всеми смартфонами, но и обслужить мощный планшет или средний ноутбук.

Модель получила массу положительных отзывов на специализированных форумах и высокие оценки экспертов. Пользователи по достоинству оценили технические возможности солнечной батареи и её КПД для разных мобильных девайсов. Также многим очень понравилась богатая комплектация аппарата, где производитель кроме рядовых аксессуаров положил ещё и группу разных переходников для большей универсальности.

Ориентировочная цена – около 3000 рублей.

Что представляет собой бытовая солнечная батарея

Чтобы понять, подходит ли гелиостанция для ваших нужд, надо понимать, что такое бытовая солнечная батарея. Само устройство состоит из:

  • солнечных панелей
  • контроллера
  • аккумулятора
  • инвертора

Если устройство предназначено для отопления дома, в комплект будут также включены:

  • бак
  • насос
  • комплект автоматики

Солнечные панели — прямоугольники 1×2 м либо 1,8×1,9 м. Для обеспечения электричеством частного дома с 4-мя жильцами надо 8 панелей (1×2 м) либо 5 панелей (1,8×1,9 м). Устанавливают модули на крышу с солнечной стороны. Угол наклона крыши 45° с горизонтом. Существуют вращающиеся солнечные модули. Принцип работы солнечной батареи с поворотным механизмом аналогичен стационарной, но панели поворачиваются вслед за солнцем благодаря фоточувствительным датчикам. Стоимость их выше, но КПД достигает 40%.

Конструкция стандартных солнечных батарей следующая. Фотоэлектропреобразователь состоит из 2 слоев n и p типа. n-слой изготавливают на основе кремния и фосфора, что приводит к избытку электронов. p-слой делают из кремния и бора, в результате чего образуется избыток положительных зарядов («дыр»). Слои помещают между электродов в таком порядке:

  • покрытие против бликов
  • катод (электрод с отрицательным зарядом)
  • n-слой
  • тонкий разделительный слой, препятствующий свободному переходу заряженных частиц между слоями
  • p-слой
  • анод (электрод с положительным зарядом)

Фотоэлектрические модули производят с поликристаллической и монокристаллической структурами. Первые отличаются большим КПД и высокой стоимостью. Вторые – дешевле, но менее эффективны. Мощности поликристаллических достаточно для освещения/отопления дома. Монокристаллические используются для генерации малых порций электричества (в качестве резервного источника энергии). Существуют гибкие солнечные батареи на основе аморфного кремния. Технология находится в процессе модернизации, т.к. КПД аморфной батареи не превышает 5%.

Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.

Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или рюкзаке. В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.

И как раз именно по этой причине на литий много нареканий — иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности — очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В

При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны

Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Популярные модели

Рассмотрим самые популярные модели зарядных устройств на солнечной батарее:

Anker 21W 2-Port USB Solar Charger

Отличное зарядное устройство, которое подходит для работы с ноутбуком. На выходе выдает 21 вольт. Стоимость составляет приблизительно 60 долларов.

CHOE 19W 2-Port Solar Phone Charger

Эта модель выдает на выходе 19 вольт. Для ноутбука может быть недостаточно, но вполне хватит для зарядки планшета или мобильного телефона, впрочем, с подключением ноутбуков также можно поэкспериментировать. Стоит такое устройство от 50 до 55 долларов.

ALLPOWERS 28W Foldable Solar Panel Laptop Charger

Эта зарядка способна зарядить батарею мощного ноутбука всего за 3 часа. Также подходит для зарядки телефонов и планшетов. Стоимость составляет приблизительно 100 долларов США.

Portable solar powerbank

Данная модель отлично подходит для зарядки телефонов и планшетов, но не может использоваться для более мощных гаджетов. Стоимость модели составляет приблизительно 20 долларов, а основная особенность заключается в наличии встроенного накопительного аккумулятора, что позволит заряжать телефон также ночью.

SunLabz Solar Charger Backpack (7w) INCLUDING 10,000 mAh Power Bank and 1.8L Hydration Pack

Эта модель также имеет встроенный накопительный аккумулятор и изготавливается в виде небольшого рюкзака, в который можно положить немало вещей. Пока рюкзак на спине, аккумулятор заряжается, после чего энергии хватит на две зарядки мобильного телефона. Стоимость составляет приблизительно 40 долларов.

SOLSOL Solar Hat

Данная модель имеет похожие характеристики с предыдущей, вот только это не рюкзак, а кепка, на козырьке которой находятся панели фотоэлементов. Стоимость такой кепки составляет приблизительно 65 долларов.

Также стоит вспомнить о предложениях китайских производителей, которые отличаются доступной стоимостью.

К таким зарядным устройствам можно отнести такие модели:

  • PETC- S14T;
  • Digital Boy 14 Вт;
  • GL-SCP7WB.

Выше указан список только самых популярных китайских зарядок. Ассортимент подобных устройств намного разнообразнее. При стоимости в 20 – 25 долларов, их вполне хватит для зарядки аккумулятора современного мобильного телефона. Однако, такие модели трудно назвать надежными.

Принцип работы солнечных батарей

Принцип работы солнечных батарей следующий. Поток света падают на слой полупроводника, выбивая из него электроны. Снабженные дополнительной энергией электроны, проскакивают через разделительный слой, попадая в p-слой; дырки перескакивают в n-слой. Это приводит к образованию разности потенциалов т.е. постоянному напряжению. Если к такому модулю подключить нагрузку, по цепи пойдет постоянный электрический ток напряжением 12 В или 24 В.

Напряжение, образующееся на фотоэлектрическом элементе, подается на контроллер. Его назначение – распределение энергии, полученной от солнечных панелей. В зависимости от потребления, контроллер направляет поток заряженных частиц на нагрузку либо в аккумуляторы. Различают контроллеры:

  • OnOff – блокирует поступление тока в аккумулятор при достижении 100% заряда, устаревшая модель
  • ШИМ – заряжает аккумуляторы на 100%, автоматически переключая режимы заряда, потери энергии до 40%
  • MPPT – смарт устройство, распределяющее напряжение между потребителем и аккумулятором путем сравнения напряжений в каждый из моментов времени до полной зарядки АКБ; имеет максимальное КПД

Принцип работы подключения: с контроллера часть энергии поступает в аккумулятор. Другая часть напряжения идет напрямую на инвертер, далее потребителю. С аккумулятора ток проходит через инвертер, далее подается потребителю. Аккумулятор и инвертер заземляют. Кратко, соединение солнечных батарей таково:

  • солнечная панель
  • контроллер
  • аккумулятор
  • инвертер
  • резервируемая нагрузка (холодильник, водяной насос, отопительная система, камеры видеонаблюдения, аварийные осветительные приборы)
  • не резервируемая нагрузка (прочие электроприборы и освещение, не влияющие на жизнеобеспечение)

Возможна схема подключения солнечных батарей без аккумулятора. В этом случае, ток от фотоэлектрических панелей добавляется в сеть переменного тока от магистрального подключения. В первую очередь расходуется электричество от солнечной батареи, но при отключении магистрального тока, использование солнечной установки не возможно.

Схемы подключения системы

Схема подключения солнечных батарей состоит из нескольких устройств:

  1. Солнечная панель, которая будет аккумулировать свет, и преобразовывать его в электричество.
  2. Контроллер, который будет отслеживать уровень заряда в устройстве. Когда аккумуляторы заряжены, это приспособление автоматически отключает зарядку, а когда уровень заряда упадет, контроллер снова заработает.
  3. Аккумулятор, который нужен для сбора сгенерированной энергии.
  4. Инвертор – это устройство создает нужное напряжение для сети, получая из аккумулятора электроэнергию и преобразовывая её в 220 В.

Между всеми участниками сети должны быть обязательно установлены предохранители, дабы избежать короткого замыкания и поломки одного из устройств.

Если планируется использовать одну солнечную панель, то здесь всё понятно.

При установке же двух и более для начала необходимо выбрать одну из следующих схем подключения солнечных батарей загородного дома или квартиры:

  • Параллельная. Такой способ укладки панелей происходит посредством соединения одноименных клемм. Напряжение при этом не меняется и остается на том же уровне.
  • Последовательная. В такой схеме плюс одного из фотоэлементов подключается к минусу другого. Осуществить такое соединение достаточно просто, однако на выходе получится 24 В.
  • Смешанная. Такая система состоит из нескольких групп. Элементы внутри группы соединяются параллельно, а крайние панели групп объединяются между собой последовательно.

Последняя параллельно-последовательная схема подключения солнечных батарей является оптимальной для того, чтобы сэкономить на приобретении контроллера, поскольку мощное устройство для такой схемы не понадобится. В такой системе создается баланс между высокими напряжениями, которые возникают при последовательном соединении и большими токами параллельной схемы.

Как выбрать и где приобрести преобразователи

Дешевле будет приобрести фотоэлементы на китайских интернет-площадках, хоть, конечно же, там зачатую продаются заводские детали, имеющие брак. Для старта и это неплохо, тем более, что цена у них ниже. А после того, как придет опыт в сборке батарей, можно брать более качественные детали с завода.

Некоторые продавцы продают преобразователи все скопом запаянные в воск, дабы во время транспортировки они не повредились, ведь кремниевые пластины хрупкие, как хрусталь. Очищение их от воска – весьма трудоёмкое занятие

Для начала необходимо погрузить их в горячую воду и после того, как воск расплавится, очень осторожно разделить их. После нужно опустить каждый фотоэлемент в мыльный раствор, а потом в чистую горячую воду

И так, пока воск не отстанет от пластин полностью. Потом нужно разложить их сушиться на махровом полотенце. В общем, это лишние хлопоты, так что лучше покупать пластины без воска.

На проверенных китайских площадках Ebay и Alibaba приобретать фотоэлементы для установки солнечных батарей своими руками надёжно. Для покупки нужно зарегистрироваться и вписать в поисковую строку нужный запрос. На экран выведется несколько предложений.

Выбирать нужно не только из тех соображений, что понравился именно этот товар – необходимо обязательно обращать внимание на отзывы и рейтинг продавца. Если нет желания переплатить за товар вдвое из-за платной доставки, нужно посмотреть, есть ли у выбранного товара опция «бесплатная доставка»

Если нет – это неподходящий вариант, так как это — чересчур затратное дело.

Деньги за товар нужно перечислить сразу. Продавцу они попадут только после подтверждения о получении товара покупателем. Платить можно прямо платежной картой или через промежуточные сервисы – всё зависит от степени доверия к таким торговым интернет-ресурсам. Возвратить товар тоже можно, но лучше сразу отовариваться у продавца с хорошей репутацией, дабы избежать тяжб по поводу возврата. Посылка может идти и месяц, и полтора – это уже во власти почты.

Способы подключения АКБ

Одного аккумулятора для солнечной батареи будет недостаточно. Чтобы обеспечить полноценную работу электростанции, необходимо использовать несколько однотипных устройств. Желательно, чтобы они были даже из одной партии, тогда все характеристики будут совпадать.

Если нужно повысить общую емкость системы, то следует использовать один из трех способов соединения данных батарей. Речь идет о параллельном, последовательном или комбинированном соединении.

При параллельном складываются емкости имеющихся батарей и сравниваются с общим напряжением, которое используется.

При последовательном соединении суммируется последний показатель. К нему берется емкость только одной батареи, а не общая.

На данный момент чаще всего используются комбинированные соединения. При нем нужно суммировать емкость и напряжение. Однако этот способ имеет свои недостатки. При таком соединении аккумуляторы для солнечной батареи могут разбалансироваться. В итоге суммарное напряжение будет прежним, а емкости начнут меняться. Из-за этого одни устройства будут недозаряжаться, другие — перезаряжаться. Соответственно, их эксплуатационный срок будет понижаться. Именно поэтому в комплект к системе нужно приобретать специальный контроллер, а также перемычки, при помощи которых можно выровнять напряжение батарей.

Устройство и принцип работы

Зарядное устройство для гаджетов на солнечной батарее имеет встроенный блок преобразователей. Он состоит из нескольких двухслойных пластин кристаллического кремния, которые соединены между собой проводами. Принцип работы такого устройства базируется на фотоэлектрическом эффекте.

Данный эффект был открыт еще в девятнадцатом веке и базируется на одном полезном в практическом применении свойстве кремния. Данный элемент является полупроводником.

Если расположить две пластины кристаллического кремния очень близко друг к другу, после чего нагреть верхнюю пластину при помощи воздействия световых лучей, то можно будет наблюдать очень интересный эффект, который многие могут помнить из школьного курса физики. Атомы кремния верхней кремневой пластины высвободят электроны, которые будут захвачены нижней пластиной. Такой эффект создаст постоянное напряжение в сети, которое будет сохраняться до момента, пока не исчезнет источник света.

Кремний может быть нанесен двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Именно второй вариант является максимально эффективным, поскольку в таких кремниевых пластинах электроны могут двигаться прямолинейно, что обеспечивает больший КПД.

Эффективность зарядки

Все-таки основная часть покупателей рассчитывает на возможность эксплуатации солнечных батарей в режиме полной автономии относительно электросети. То есть встает вопрос о том, насколько, в принципе, может быть эффективна зарядка от альтернативного источника. Как показывает практика, полное восполнение заряда батареи происходит за 6-10 часов. Столь широкий диапазон времени обусловлен тем, что солнце может иметь разные параметры свечения. Понятно, что при самых благоприятных условиях такой способ зарядки проиграет снабжению от розетки, на которое уходит в среднем 3-4 ч. В заряженном состоянии солнечная батарея для телефона способна обеспечивать питание телефона в течение 1-2 ч. Малопроизводительному кнопочному аппарату этого времени вполне достаточно для полного восполнения энергии. Однако современные модели смартфонов с большими экранами и емкими аккумуляторами зачастую требуют гораздо большего времени на зарядку.

Зарядное устройство от солнечной батареи своими руками

Было бы здорово, если бы вы могли заряжать батарею мобильных телефонов, используя солнце вместо зарядного устройства USB, неправда ли?

Общая стоимость этого проекта, за исключением батареи, составляет чуть менее 5 долларов США. Батарея добавит еще от $4 до $5 баксов. В итоге у нас получится портативный блок питания.

Таким образом, общая стоимость проекта составляет около 10 долларов США. Все компоненты доступны на АлиЭкспресс по действительно хорошей цене.

Для этого проекта нам понадобятся:

  1. 5В солнечная батарея (убедитесь, что она составляет 5В и не меньше);
  2. монтажная плата общего назначения, макетная плата;
  3. 1N4007 высоковольтный высокоомный диод (для защиты от обратного напряжения). Этот диод рассчитан на ток в прямом направлении 1А с пиковым значением обратного напряжения 1000 В;
  4. Медный провод;
  5. 2x клеммные колодки PCB;
  6. держатель батареи 18650;
  7. аккумулятор 3.7V 18650;
  8. плата защиты аккумулятора TP4056 (с защитой IC или без нее);
  9. усилитель мощности 5В;
  10. некоторые соединительные провода;
  11. оборудование для пайки.

Обзор солнечной батареи 5В

В процессе эволюции человечество научилось добывать электрическую энергию, используя природные ресурсы. Это могут быть полезные ископаемые (теплоэлектростанции, использующие нефть, уголь или атомные, использующие ядерное топливо), водные ресурсы (гидроэлектростанции), поток ветра (ветроэлектростанции). Солнечные батареи – это набирающий популярность источник дешевого электричества, получаемого из солнечных лучей. Солнечная батарея состоит из фотоэлементов на основе кремния, которые прямо преобразуют солнечную энергию в постоянный электрический ток.

К преимуществам солнечных батарей относятся:

постоянство – если полезные ископаемые могут закончиться, то наcчет солнечной энергии беспокоиться не стоит;

обширная область использования – могут применяться как в сельской местности, так и в космосе.

Однако у солнечных батарей есть и недостатки:

cсолнечное освещение – непостоянная величина и КПД (коэффициент полезного действия) батареи будет снижаться в пасмурную погоду.

Солнечная батарея 5В 1.2 Вт (рис. 1) идеально подходит для зарядки небольших аккумуляторных батарей и питания маломощных устройств.

Технические характеристики

Максимальная выходная мощность: 1.2 Вт;

Напряжения холостого хода: 5 В;

Рабочий ток: 200 мА;

Коэффициент полезного действия (КПД) : 17%;

Размеры: 70 х 55 х 3 (±0.2) мм;

Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650. Мы решили проверить, и вот что у нас получилось

Для нетерпеливых сразу отвечу. Да, заряжать литиевые аккумуляторы напрямую от солнечных батарей можно. Нужно только чтобы солнечная панель отвечала определенным требованиям.

Каким должно быть правильное зарядное для литиевых аккумуляторов

Заряжать литиевые аккумуляторы 18650 мы будем напрямую от солнечной панели. Панель изготовим сами, такую, чтобы максимально подходила для нашей цели. Но как правильно заряжать литиевый аккумулятор? Давайте разбираться.

  • Усредненное, расчетное напряжение на литий-ионном Li-ion аккумуляторе типа 18650 считается U=3,7V. Но оно не постоянно и изменяется по мере разряда аккумулятора.
  • Заряженным считается аккумулятор у которого U=4,2V (значение может незначительно отличаться у разных производителей)
  • Разряженным считается li ion аккумулятор напряжение которого 2.8V
  • Разряжать литиевый аккумулятор ниже 2.8V и заряжать его выше 4,2V категорически не рекомендуется. Иначе в батарее начнутся необратимые процессы, что плохо скажется на емкости и времени жизни.

Li ion аккумуляторы заряжают по принципу CC-CV (constant current — constant voltage) Приблизительно, кривые заряда во многих зарядных устройствах выглядят так:Вначале заряда, устройство устанавливает максимальный ток, допустимый для данного вида аккумуляторов. Это этап CC — constant current. По достижению 80-90% емкости аккумулятора ток сбрасывается и аккумулятор заряжается постоянным напряжением — этап CV — constant Voltage.

Рассчитываем солнечное зарядное для литиевых аккумуляторов

Исходя из вышесказанного наша задача при заряде литиевого аккумулятора от солнечной батареи — ограничить зарядный ток и не допустить перезаряда батареи свыше 4,2В.

По поводу максимального тока. Некоторые li ion аккумуляторы допускают заряд током в 3С, где С это заявленная емкость. Т.е. если С = 2000 mAh то можем заряжать током 6А. Некоторые 1С. Но несомненно для всех аккумуляторов — чем меньше зарядный ток тем меньшим «стрессам» мы подвергаем батарею. Правда, в таком случае мы проигрываем в длительности заряда.

Для практически всех моделей 18650 подойдет ток 1000 mA (1A) — такой ток мы и выберем для нашего зарядного. Как его обеспечить?

Монокристаллическая кремниевая пластина 125х125 мм купленная на Aliexpress выдает ток короткого замыкания Iкз 5,4А — при интенсивности солнца 1000 Вт/м² (центр Украины около 950 Вт/м² в солнечный июльский полдень).

Значит чтобы получить с нашей солнечной батареи, ток 1А нам нужно изготовить ее из элементов в 1/5 от целой пластины. При резке пластины на части, общая производительность ее частично теряется. Поэтому кроить каждую пластину мы будем на 4 равных элемента. С расчетом получить с каждой из частей ток около 1 — 1,3А. Точнее сказать трудно, т.к. много факторов влияют на конечные характеристики частей полученных при порезке пластины.

Напряжение Uxx холостого хода каждого из кремниевых солнечных элементов приблизительно равно 0,55 V. Может незначительно отличаться в зависимости от качества изготовления солнечной пластины.

Если солнечные элементы мы будем соединять параллельно то общий ток такой сборки будет суммироваться а напряжение будет равно не более 0,55V. Если же их соединять последовательно, то ток останется неизменным и будет зависеть от размера каждого из элементов, а напряжение станет суммироваться.

Давайте посмотрим на Вольт-Амперную кривую нашего китайского солнечного элемента

Из графика мы понимаем, что максимальный ток который способен генерировать элемент зависит от яркости солнца. А напряжение в меньшей мере зависит от погоды. И даже в пасмурный день наш аккумулятор будет заряжаться до максимального напряжения, только за более длительное время.

Изготовление солнечного модуля для зарядки литиевых аккумуляторов

Итак конфигурация нашей солнечной панели будет следующая. Одну пластину 125х125 кроим на 4 равных части. Таких частей берем 8 штук и соединяем последовательно. Рассчитываем получить модуль с Uxx около 4,5V и 1,2 А.

Более подробно о том как самостоятельно изготовить солнечную панель мы писали ранее. А сейчас перед вами уже готовый тестовый модуль — зарядное для литиевых аккумуляторов, изготовленный по нашим расчетам при содействии специалистов из киевской фирмы «Пролог Семикор».

Давайте проверим его характеристики. Направляем модуль на солнце и измеряем Uxx=4,57V; Ikz=1,16A. Через пол часа модуль прогревается на солнце и мы получаем Uxx=4,42V; Ikz=1,15A. Подключаем модуль напрямую к аккумулятору. Плюс на плюс, минус на минус. Последовательно с аккумулятором включаем резистор 0,1 Ом. Измерив напряжение на этом резисторе и умножив его на 10, мы узнаем текущий ток заряда.

Результаты измерений

Далее данные замеров тока и напряжения при испытании зарядного устройства литиевых аккумуляторов от солнца, приведем сразу в виде графиков.

Как видим данные немного скачут, это связанно с тем что небо в день эксперимента было не идеально чистым. И еще приходилось разворачивать и направлять модуль на солнце. Но общая картина вполне однозначна. И вот что мы видим из полученных данных:

  • Аккумулятор зарядился до 4,42V что равно Uxx модуля. И что конечно же многовато для литиевого аккумулятора 18650
  • Кривые очень схожи с кривыми зарядных устройств для литиевых аккумуляторов. Это говорит о том что такой метод зарядки хорошо подходит для данного типа АКБ.
  • Чем ближе напряжение на аккумуляторе к Uxx, тем меньше ток заряда
  • несмотря на то что Ikz у нас был свыше 1А, максимальный ток заряда не превышал 600 mA. Возможно стоит изготовить модуль не из четвертинок а из половин.

Решаем проблему перезаряда

Здесь все на самом деле очень просто. Мы имеем 4,42V, значит 0,2V нам надо где-то потерять. Включаем последовательно с солнечным модулем диод Шоттки, как показано на схеме ниже. Он выполняет двойную функцию. Первое — на диоде падает как-раз 0,2V, второе — диод Шоттки защищает литиевый аккумулятор от разряда на модуль при плохом освещении (это если у элементов вдруг высокие обратные токи, что может случиться при некачественной порезке солнечной пластины)

Резистор 0,1 ом на нуже для того чтобы измерить текущий ток заряда. В свою схему вы можете его не включать. Помимо этого, при токе в 1А на резисторе упадет 0,1В.

Выводы

Ну что же, я и не ожидал что результат окажется настолько положительным. Солнечное зарядное для литиевых аккумуляторов, при подключении напрямую, отлично справляется со своей задачей. В начале оно выдает большой зарядный ток, который ограничен размерами пластин. По мере заряда ток уменьшается к минимуму, что очень хорошо для долговечности Li-ion элемента.

Если выходное напряжения солнечного модуля было бы значительно выше, ну к примеру 30V. То подключив этот модуль напрямую к литиевому аккумулятору, ток заряда все равно не смог бы превысить Ikz. Не причинив никакого вреда нашему аккумулятору. А напряжение провалилось бы до ≈ 4V. Это я к тому что даже если у вас под рукой отсутствует подходящее зарядное для литиевых аккумуляторов. Вы можете зарядить их с помощью солнечного модуля. Но если его напряжение выше 4,2 V, то следите за напряжением на АКБ, дабы не допустить перезаряд.

В следующей статье мы попробуем заряжать литиевые аккумуляторы от солнечного модуля 5,5V (десять последовательных солнечных элементов) и платы защиты TR4056. Следите за нашими материалами.

Эндоскоп с Aliexpress. Обзор, примеры фото и видео.

Эндоскоп представляет из себя шнур диаметром 5мм , на конце котор�…

Как летнюю жару превратить в тепло зимой. Автономное отопление на солнечных батареях.

В этом материале постараемся теоретически решить задачу автоном…

Трехфазный регулятор мощности на тиристорах

Данный трехфазный регулятор мощности был разработан для управле…

Садовый пруд на солнечных батареях. Биоплато, экопруд.

Чтобы очистить садовый пруд нужно организовать биоплато. Чем бол…

Можно ли заряжать литиевые аккумуляторы напрямую от солнечных батарей

Возможно ли использовать солнечную панель как зарядное для лити�…

Aiek M-5 телефон-кредитка. Обзор

Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительн…

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Солнечные зарядные устройства

Зарядное устройство для мобильных телефонов

В комплекте используется фотоэлектрическая батарея мощностью 5-6 Вт с номинальным напряжением 5-6 В. Напрямую эту панель можно подключать для заряда обычных мобильных телефонов.
В солнечный день аккумулятор телефона заряжается в течение нескольких часов. На выходе фотоэлектрической батареи под нагрузкой напряжение около 4,5 В. Такое напряжение подходит для заряда аккумуляторной батареи номинальным напряжением 3,6 В (используется в большинстве моделей мобильных телефонов). Заряд происходит даже при рассеянном свете.
В смартфонах есть защита от подключения «неподходящих» зарядных устройств, поэтому напрямую подключить модуль к смартфону не получится. Для заряда смартфонов потребуется электронный согласующий блок, которые будет обеспечивать выходное напряжение солнечной панели в допустимых пределах. Такие электронные блоки продаются, например, здесь. Они стабилизируют напряжение от солнечной батареи и преобразуют его в подходящее для любого смартфона. Там же вы можете купить блоки внешних аккумуляторов для зарядки смартфонов.

С таким зарядным устройством вы будете абсолютно мобильны и независимы от источников энергии. Все, что Вам нужно — это солнечный день. От такой батареи можно также заряжать все виды батареечных аккумуляторов, (walkman-ы и discman-ы, малые рации, электронные органайзеры и т.п.) с напряжением от 3 до 6 В (т.е. там, где используется 2-4 пальчиковых батарейки).

Подходит горным туристам, путешественникам, геологам, строительным работникам, а также является занятным подарком.

К выходу батареи припаян провод длиной 1 м. Развязывающий диод не предусмотрен.

Cистема для зарядки и энергопитания мобильных устройств

Солнечная система предназначена для зарядки аккумуляторов, энергопитания малых переносных устройств, например, мобильных телефонов, кассетных и CD-плейеров, GPS-устройств, и т.п.
Комплект состоит из фотоэлектрической батареи мощностью 10-15 Вт, аккумулятора и контроллера заряда. Контроллер заряда имеет выход USB 5В на ток до 1 или 2 А. Если для вашего аккумулятора достаточно такого тока заряда, то можно подключать его напрямую для заряда. Подходит и для смартфонов, т.к. использует стабилизированное напряжение от внешнего аккумулятора, пониженное контроллером до 5В.

Если вам нужен ток заряда больше 1-2 А, то вам потребуется дополнительное автомобильное зарядное устройство для вашего гаджета. В этом случае автомобильное зарядное устройство подключается к выходу 12В солнечного контроллера и обеспечивает максимальный ток в пределах допустимого для солнечного контроллера (5 или 10А в зависимости от выбранной модели).
вашегЗа счет мягкости характеристики солнечной батареи обеспечивается соответствие питающего напряжения напряжению заряжаемой аккумуляторной батареи.

Возможные области применения

  • зарядные устройства для мобильных телефонов, переносных радиостанций, GPS навигационных систем, CD-плейеров, охранных сигнализаций на основе GSM телефона;
  • самостоятельное зарядное устройство для аккумуляторов типа АА (контейнер для аккумуляторов в настоящее время не поставляется).

Зарядное устройство для автомобильной аккумуляторной батареи

Фотоэлектрический модуль, установленный на приборной панели, подключается к разъему автоприкуривателя. Такое приспособление чрезвычайно необходимо при продолжительной стоянке автомобиля, а также и для подзаряда батареи, особенно зимой. Мощность модуля подобрана таким образом, что контроллер заряда не требуется.

Комплект включает в себя фотоэлектрический модуль мощностью 15-20 Вт, развязывающий диод и кабель с разъемом для соединения бортовой сетью автомобиля. Такой модуль может подзаряжать батарею емкостью 45-75 Ач без применения контроллера заряда. Можно заказать модули как на стекле, так и на текстолите.

Внимание! Ваш автомобиль должен подавать напряжение на разъем прикуривателя при выключенном зажигании. Проверьте это перед покупкой солнечного зарядного устройства. Если на прикуриватель при отключенном зажигании напряжение не подается, вам нужно будет вывести провода непосредственно от аккумулятора к солнечному модулю. В этом случае штеккер прикуривателя не требуется.

Шаг 5: Схема проводки

Чтобы завершить сборку электрокомпонентов, спаяем их в соответствии со схемой. Я приложил схему в программе Fritzing и фото физического соединения.

  1. + контакт разъема питания соединяем с одним из контактов выключателя, а – контакт разъема питания соединяем с пином GND стабилизатора 7805
  2. Второй контакт выключателя соединяем с пином Vin стабилизатора 7805
  3. Устанавливаем три конденсатора 100 нФ параллельно между Vin и GND пинами стабилизатора напряжения (для этого используйте макетную плату)
  4. Устанавливаем конденсатор 100 нФ между пинами Vout и GND стабилизатора напряжения (на макетной плате)
  5. Соедините Vout пин стабилизатора напряжения с IN+ пином модуля TP4056
  6. Соедините пин GND стабилизатора напряжения с IN- пином модуля TP4056
  7. Соедините + контакт батарейного отсека с B+ пином модуля TP4056, а – контакт батарейного отсека соедините с В- пином модуля TP4056

На этом соединения завершены. Если вы используете 5 В блок питания, пропускайте все пункты с подключениями к стабилизатору напряжения 7805, и подключайте + и – блока напрямую к IN+ и IN- пинам модуля TP4056 соответственно.
Если вы будете использовать 12В блок питания, при прохождении тока 1А стабилизатор 7805 будет нагреваться, это можно исправить теплоотводом.

Как выбрать

Выбирая солнечную батарею для зарядки ноутбука, смартфона, планшета, в первую очередь обращайте внимание на соответствие выходного напряжения и мощности панели. От этого будет зависеть возможность подключения того или иного потребителя.

  • Для мобильных телефонов вполне достаточно напряжения 5 В при мощности 5-8 Вт.
  • Для ноутбуков и других переносных электронных устройств подойдет солнечная зарядка, выдающая не менее 20 Вт.
  • Не лишней будет возможность параллельного подключения нескольких панелей для увеличения выходной мощности.

Наиболее производительными считаются солнечные панели из монокристаллического или аморфного кремния. Они работают и при несколько сниженном уровне освещенности.

По каждой из представленных солнечных зарядок готовы предоставить бесплатную консультацию. Звоните или оставляйте заявку на сайте, поможем сделать правильный выбор.

Как работает TP4056

Если посмотреть на саму плату, то мы увидим, что она имеет чип TP4056 наряду с несколькими другими компонентами, представляющими для нас интерес.

На плате один красный и один синий светодиод. Красный загорается, когда он заряжается, а синий — при полной зарядке. Также есть мини-USB-разъем для зарядки аккумулятора от внешнего USB-зарядного устройства. Еще есть также два места куда вы можете припаять свою собственную зарядную единицу. Эти места отмечены как IN- и IN +.

Мы будем использовать их для питания этой платы. Батарея будет подключена к этим двум точкам, обозначенным как BAT + и BAT-. Плата требует входного напряжения от 4,5 до 5,5 В для зарядки аккумулятора.

На рынке доступны две версии этой платы. Один с модулем защиты от разряда батареи и один без него. Обе платы имеют ток зарядки 1А и отключении по завершении.

Кроме того, один с защитой отключает нагрузку, когда напряжение аккумулятора падает ниже 2,4 В, чтобы защитить батарею от слишком низкого тока (например, в пасмурный день), а также защищает от перенапряжения и обратной полярности (обычно уничтожает себя вместо батареи), однако, пожалуйста, проверьте, правильно ли вы всё подключили в самый первый раз.

Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650. Мы решили проверить, и вот что у нас получилось

Для нетерпеливых сразу отвечу. Да, заряжать литиевые аккумуляторы напрямую от солнечных батарей можно. Нужно только чтобы солнечная панель отвечала определенным требованиям.

Каким должно быть правильное зарядное для литиевых аккумуляторов

Заряжать литиевые аккумуляторы 18650 мы будем напрямую от солнечной панели. Панель изготовим сами, такую, чтобы максимально подходила для нашей цели. Но как правильно заряжать литиевый аккумулятор? Давайте разбираться.

  • Усредненное, расчетное напряжение на литий-ионном Li-ion аккумуляторе типа 18650 считается U=3,7V. Но оно не постоянно и изменяется по мере разряда аккумулятора.
  • Заряженным считается аккумулятор у которого U=4,2V (значение может незначительно отличаться у разных производителей)
  • Разряженным считается li ion аккумулятор напряжение которого 2.8V
  • Разряжать литиевый аккумулятор ниже 2.8V и заряжать его выше 4,2V категорически не рекомендуется. Иначе в батарее начнутся необратимые процессы, что плохо скажется на емкости и времени жизни.

Li ion аккумуляторы заряжают по принципу CC-CV (constant current — constant voltage) Приблизительно, кривые заряда во многих зарядных устройствах выглядят так:Вначале заряда, устройство устанавливает максимальный ток, допустимый для данного вида аккумуляторов. Это этап CC — constant current. По достижению 80-90% емкости аккумулятора ток сбрасывается и аккумулятор заряжается постоянным напряжением — этап CV — constant Voltage.

Рассчитываем солнечное зарядное для литиевых аккумуляторов

Исходя из вышесказанного наша задача при заряде литиевого аккумулятора от солнечной батареи — ограничить зарядный ток и не допустить перезаряда батареи свыше 4,2В.

По поводу максимального тока. Некоторые li ion аккумуляторы допускают заряд током в 3С, где С это заявленная емкость. Т.е. если С = 2000 mAh то можем заряжать током 6А. Некоторые 1С. Но несомненно для всех аккумуляторов — чем меньше зарядный ток тем меньшим «стрессам» мы подвергаем батарею. Правда, в таком случае мы проигрываем в длительности заряда.

Для практически всех моделей 18650 подойдет ток 1000 mA (1A) — такой ток мы и выберем для нашего зарядного. Как его обеспечить?

Монокристаллическая кремниевая пластина 125х125 мм купленная на Aliexpress выдает ток короткого замыкания Iкз 5,4А — при интенсивности солнца 1000 Вт/м² (центр Украины около 950 Вт/м² в солнечный июльский полдень).

Значит чтобы получить с нашей солнечной батареи, ток 1А нам нужно изготовить ее из элементов в 1/5 от целой пластины. При резке пластины на части, общая производительность ее частично теряется. Поэтому кроить каждую пластину мы будем на 4 равных элемента. С расчетом получить с каждой из частей ток около 1 — 1,3А. Точнее сказать трудно, т.к. много факторов влияют на конечные характеристики частей полученных при порезке пластины.

Напряжение Uxx холостого хода каждого из кремниевых солнечных элементов приблизительно равно 0,55 V. Может незначительно отличаться в зависимости от качества изготовления солнечной пластины.

Если солнечные элементы мы будем соединять параллельно то общий ток такой сборки будет суммироваться а напряжение будет равно не более 0,55V. Если же их соединять последовательно, то ток останется неизменным и будет зависеть от размера каждого из элементов, а напряжение станет суммироваться.

Давайте посмотрим на Вольт-Амперную кривую нашего китайского солнечного элемента

Из графика мы понимаем, что максимальный ток который способен генерировать элемент зависит от яркости солнца. А напряжение в меньшей мере зависит от погоды. И даже в пасмурный день наш аккумулятор будет заряжаться до максимального напряжения, только за более длительное время.

Изготовление солнечного модуля для зарядки литиевых аккумуляторов

Итак конфигурация нашей солнечной панели будет следующая. Одну пластину 125х125 кроим на 4 равных части. Таких частей берем 8 штук и соединяем последовательно. Рассчитываем получить модуль с Uxx около 4,5V и 1,2 А.

Более подробно о том как самостоятельно изготовить солнечную панель мы писали ранее. А сейчас перед вами уже готовый тестовый модуль — зарядное для литиевых аккумуляторов, изготовленный по нашим расчетам при содействии специалистов из киевской фирмы «Пролог Семикор».

Давайте проверим его характеристики. Направляем модуль на солнце и измеряем Uxx=4,57V; Ikz=1,16A. Через пол часа модуль прогревается на солнце и мы получаем Uxx=4,42V; Ikz=1,15A. Подключаем модуль напрямую к аккумулятору. Плюс на плюс, минус на минус. Последовательно с аккумулятором включаем резистор 0,1 Ом. Измерив напряжение на этом резисторе и умножив его на 10, мы узнаем текущий ток заряда.

Результаты измерений

Далее данные замеров тока и напряжения при испытании зарядного устройства литиевых аккумуляторов от солнца, приведем сразу в виде графиков.

Как видим данные немного скачут, это связанно с тем что небо в день эксперимента было не идеально чистым. И еще приходилось разворачивать и направлять модуль на солнце. Но общая картина вполне однозначна. И вот что мы видим из полученных данных:

  • Аккумулятор зарядился до 4,42V что равно Uxx модуля. И что конечно же многовато для литиевого аккумулятора 18650
  • Кривые очень схожи с кривыми зарядных устройств для литиевых аккумуляторов. Это говорит о том что такой метод зарядки хорошо подходит для данного типа АКБ.
  • Чем ближе напряжение на аккумуляторе к Uxx, тем меньше ток заряда
  • несмотря на то что Ikz у нас был свыше 1А, максимальный ток заряда не превышал 600 mA. Возможно стоит изготовить модуль не из четвертинок а из половин.

Решаем проблему перезаряда

Здесь все на самом деле очень просто. Мы имеем 4,42V, значит 0,2V нам надо где-то потерять. Включаем последовательно с солнечным модулем диод Шоттки, как показано на схеме ниже. Он выполняет двойную функцию. Первое — на диоде падает как-раз 0,2V, второе — диод Шоттки защищает литиевый аккумулятор от разряда на модуль при плохом освещении (это если у элементов вдруг высокие обратные токи, что может случиться при некачественной порезке солнечной пластины)

Резистор 0,1 ом на нуже для того чтобы измерить текущий ток заряда. В свою схему вы можете его не включать. Помимо этого, при токе в 1А на резисторе упадет 0,1В.

Выводы

Ну что же, я и не ожидал что результат окажется настолько положительным. Солнечное зарядное для литиевых аккумуляторов, при подключении напрямую, отлично справляется со своей задачей. В начале оно выдает большой зарядный ток, который ограничен размерами пластин. По мере заряда ток уменьшается к минимуму, что очень хорошо для долговечности Li-ion элемента.

Если выходное напряжения солнечного модуля было бы значительно выше, ну к примеру 30V. То подключив этот модуль напрямую к литиевому аккумулятору, ток заряда все равно не смог бы превысить Ikz. Не причинив никакого вреда нашему аккумулятору. А напряжение провалилось бы до ≈ 4V. Это я к тому что даже если у вас под рукой отсутствует подходящее зарядное для литиевых аккумуляторов. Вы можете зарядить их с помощью солнечного модуля. Но если его напряжение выше 4,2 V, то следите за напряжением на АКБ, дабы не допустить перезаряд.

В следующей статье мы попробуем заряжать литиевые аккумуляторы от солнечного модуля 5,5V (десять последовательных солнечных элементов) и платы защиты TR4056. Следите за нашими материалами.

Эндоскоп с Aliexpress. Обзор, примеры фото и видео.

Эндоскоп представляет из себя шнур диаметром 5мм , на конце котор�…

Как летнюю жару превратить в тепло зимой. Автономное отопление на солнечных батареях.

В этом материале постараемся теоретически решить задачу автоном…

Трехфазный регулятор мощности на тиристорах

Данный трехфазный регулятор мощности был разработан для управле…

Садовый пруд на солнечных батареях. Биоплато, экопруд.

Чтобы очистить садовый пруд нужно организовать биоплато. Чем бол…

Можно ли заряжать литиевые аккумуляторы напрямую от солнечных батарей

Возможно ли использовать солнечную панель как зарядное для лити�…

Aiek M-5 телефон-кредитка. Обзор

Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительн…

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Как сделать зарядное устройство своими руками?

Хотя современные зарядки уже перестали быть приборами премиум-класса и вполне доступны по цене рядовому потребителю, если хочется сэкономить, всегда есть возможность изготовить такой девайс самому.

Чтобы сделать простое солнечное ЗУ нужно приобрести несколько основных элементов:

  • поли- или монокристаллическую панель;
  • держатель для аккумуляторов;
  • блокирующий диод Шоттки;
  • гнездо для разъема;
  • контроллер заряда (впрочем, если зарядка будет вырабатывать 0,5-5В можно использовать вместо контроллера более дешевый повышающий преобразователь на 5В).

Что касается самой панели, здесь нужно сделать небольшой расчет количества элементов, исходя из мощностей прибора, который планируется заряжать.

Например, если ток заряда для аккумулятора составит около 10% его емкости, то для зарядки в 20 000 мА нужен ток 2А, и для питания прибора понадобится около 14 часов. Если же увеличить ток вдвое до 4А, время на подзарядку сократится до 7 часов.

В зависимости от параметров тока для будущей зарядки (2 или 4А) выбираются и кристаллические элементы. Обычно, 1 деталь вырабатывает около 0,5В, то есть чтобы получить хотя бы 5В понадобится 10-12 элементов.

Затем их нужно последовательно спаять между собой. Если же используется панель от фонарика, то даже стандартная 70*70 см может выдавать от 2,5 до 4,5В, поэтому лучше проверить вольтметром.

Завершающий этап – заключить самодельную зарядку в любой подходящий каркас (подойдет даже банка из-под конфет) и оснастить USB-разъемом. Затем к разъему нужно припаять блокирующий диод, а также провода от солнечной панели к преобразователю и держателю согласно нижеприведенной схеме.

Осталось проверить работу устройства на солнце с любым разряженным девайсом. Если все в порядке, можно использовать соответствующие переходники и заряжать различные приборы.

Портативная зарядка на солнечных батареях в кармане

Привет друзья.
Сегодня я сделаю небольшое отступление и поговорим о мелочах, которые в самый не нужный момент (как это часто бывает) могут стать для нас чуть ли не трагедией. Или ни у кого из вас не садился телефон в самый критичный момент? Вот именно. Поэтому я и хочу рассказать о том, как самому сделать карманное зарядное устройство от солнца. Тогда не важно где вы находитесь — в походе, в открытом море, да хоть на необитаемом острове. Главное чтобы было солнце, и вы всегда сможете зарядить свой гаджет.

портативная зарядка на солнечных батареях

Сегодня немыслимо представить свою жизнь без мобильных устройств. Но наслаждаться всеми прелестями цивилизации мы можем до тех пор, пока не сядет его аккумулятор. Ну не придумали еще такие аккумуляторы, которые бы один раз зарядил, и этого бы хватило на долгие годы. Ох уж эти ученые, не хватает на них Кулибиных со своей свободной энергией и конспирологией. Однако оставим мистику, и чтобы быть всегда на связи, рассмотрим конкретный пример того, как сделать простое карманное зарядное устройство своими руками.

Энергия солнца в кармане

Смастерить устройство, которое способно не только накапливать энергию от солнца, но и хранить ее не так уж и сложно. Для этого нам потребуются некоторые компоненты и материалы.

зарядка на солнечных батареях, схема

Схема зарядного устройства на солнечных батареях

Компоненты для портативного зарядного устройства:

  • литий-ионный аккумулятор на 3,7 В;
  • солнечная батарея на 5 В и выше;
  • контроллер зарядки литий-ионного аккумулятора;
  • выпрямительный диод 1N4001;
  • повышающая USB-схема постоянного тока;
  • разъем 2,5 мм с креплением на панель;
  • разъем 2,5 мм с проводом;
  • провода .

И также другие материалы:

  • жестяная коробочка или другой какой корпус;
  • припой;
  • двусторонняя лента из пеноматериала;
  • винилки (термо-усадочные трубки);
  • изолента.

А для работы понадобятся:

  • дремель;
  • дрель;
  • паяльник;
  • кусачки;
  • клеевой пистолет»
  • инструмент для зачистки проводов.

[su_note note_color=»#e7c5a6″ text_color=»#000″]На заметку: не берите слишком маленькую солнечную батарею, запас по мощности должен быть. Но и слишком большая, с шахматную доску, будет явно лишней для мобильного — во всем должна быть мера.[/su_note]

С чего начать?

Большую часть необходимых компонентов для устройства можно найти в интернет-магазине, а что-то и у себя в доме. Для данной модели будут использоваться литиевые аккумуляторы 3,7 В с защитой от перезаряда.

портативное устройство для зарядки

Зарядка для гаджетов в процессе сборки и тестирования

Контроллер заряда можно собрать и самим, но в целях экономии времени и средств, мы воспользуемся готовыми схемами. Напрямую подключить USB-порт к аккумулятору не получиться, так как стандартное напряжение для порта 5 В, а наш аккумулятор – на 3,7 В. Кроме повышающей схемы напряжения в самодельных USB-зарядах имеется и понижающая, но нам для солнечной системы она не подойдет.

Можно было бы приобрести дешевое зарядное USB-устройство и разобрать его, но нам нужна схема, которая преобразует из 3 В в 5 В.

Начинаем сборку

Для портативной зарядки возьмем небольшие солнечные батареи на 5 В, можно и на 6 В. Зачищаем провода от изоляции и припаиваем к контактам на тыльной стороне солнечной батареи. Места пайки изолируем изолентой либо горячим клеем.

Выбрав коробочку (прекрасно подходит жестяная продолговатая банка от шпротов) под устройство укладываем в нее все компоненты по своим местам и намечаем места сверлений. После этого сверлим. Отверстие для порта солнечной батареи делаем диаметром 2,5 мм и аккуратно обрабатываем его дремелем.

Подключение контроллера

Припаиваем два провода и диод от разъема к контроллеру. Если положить его перед собой, то получается левый контакт – минус, средний – плюс, а правый не используется. Один конец провода припаиваем к левому контакту, а другой к минусу на плате.

Еще один проводок припаиваем к ножке выпрямительного диода – рядом с ней стоит метка. Другую сторону диода (без метки) припаиваем к средней ножке разъема и подпаиваем провод к плюсовому контакту на плате.

Подсоединение USB-схемы к аккумулятору

Отрезаем несколько проводков и припаиваем их к плюсовым и минусовым контактам на USB-схеме. Соединяем эти провода с проводами, отходящими от аккумуляторного модуля. Все как всегда – черные – минус, красные – плюс. Припаиваем их к контактам на обратной стороне платы контроллера зарядки.

Электро-изоляция компонентов

Прежде чем расположить все электронные компоненты в жестяной коробочке, заизолируем корпус, проклеивая нутро изолентой либо пролив корпус горячим клеем. Устанавливаем разъем (2,5 мм) и закрепляем его плоской гайкой. Далее устанавливаем USB-схему и фиксируем аккумуляторный модуль клеем либо двусторонним скотчем.

Где-то на рыбалке или в походах всегда возникает необходимость питания гаджетов. И если раньше устранить эту проблему представлялось невозможным, то теперь это поправимо благодаря портативному зарядному устройству, преобразующего солнечную энергию в электрический ток. Но выбирая зарядку необходимо учесть его выходной ток и напряжение, которые зависят от характеристик батареи.

Есть правда один нюанс. Поскольку солнечные батареи способны работать только в светлое время суток, то зарядки в которых они применяются должны оснащаться аккумулятором. Именно он буден накапливать энергию днем и отдавать ее вашему телефону, планшету или гаджету, в любое время суток. Однако учтите, что для стабильной зарядки мобильной техники требуется чтобы на выходе зарядника было напряжение, соответствующее этому параметру этой техники.

Вот собственно и все, карманное зарядное устройство готово к работе и теперь вам не придется волноваться за не вовремя севшую батарею мобильного телефона. На этом у меня все, до новых статей. И, стабильного вам заряда ваших устройств )

Источник https://prooneplus.ru/other/solnecnaa-batarea-dla-telefona

Источник https://xn--80atabmgh.xn--p1ai/zaryadnoe-ustrojstvo/solnechnaya-zaryadka-dlya-litievogo-akkumulyatora-svoimi-rukami.html

Источник https://odnastroyka.ru/portativnaya-zaryadka-na-solnechnyx-batareyax-v-karmane/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: