Содержание
Солнечная батарея своими руками
Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.
Как мы писали выше, солнечная батарея (СБ) — это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.
Преобразователи бывают трёх видов:
- монокристаллические;
- поликристаллические;
- аморфные или тонкопленочные.
Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.
схема преобразования солнечной энергии в элементах
Преимущества и недостатки
К преимуществам солнечной батареи относятся:
- простота монтажа и обслуживания;
- отсутствие вреда для окружающей среды;
- небольшая масса панелей;
- бесшумная работа;
- независящие от распределительной сети поставки электрической энергии;
- неподвижность элементов конструкции;
- небольшие денежные затраты на изготовление;
- долгий срок эксплуатации.
В число недостатков солнечной батареи входят:
- трудоёмкость процесса изготовления;
- бесполезность в тёмное время суток;
- потребность в большой площади для установки;
- восприимчивость к загрязнениям.
Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.
Фотоэлектрические системы частного дома
Электрические домашние системы энергообеспечения с использованием солнечных элементов можно разделить на 3 вида:
- автономная;
- гибридная;
- безаккумуляторная.
Если дом подключен к центральной энергосети, то оптимальным вариантом будет смешанная система: днем питание производится от солнечных батарей, а ночью – от аккумуляторов. Центральная сеть в данном случае является резервом. Когда нет возможности подключиться к центральному энергоснабжению, его заменяют топливными генераторами – бензиновыми или дизельными.
Контроллер необходим для предотвращения короткого замыкания в момент максимальной нагрузки, аккумулятор – для накопления энергии, инвертор – для распределения и подачи ее к потребителю
При выборе наиболее удачного варианта следует учитывать время суток, в которое происходит максимальное потребление энергии. В частных домах пиковый период выпадает на вечер, когда солнце уже зашло, поэтому логичным будет использовать либо подключение к общей сети, либо дополнительное применение генераторов, так как солнечное энергоснабжение происходит в дневное время.
В фотоэлектрических системах энергоснабжения используют сети и с постоянным, и с переменным током, причем второй вариант подходит для размещения приборов на расстоянии более 15 м
Для дачников, режим работы которых часто совпадает со световым днем, подходит солнечная энергосберегающая система, которая начинает функционировать вместе с восходом солнца, а заканчивает вечером.
Инструменты и материалы
Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.
Для изготовления солнечной батареи понадобятся:
- фотоэлементы (для создания гелиопанели);
- набор специальных проводников (для соединения фотоэлементов);
- алюминиевые уголки (для корпуса);
- диоды Шотке;
- крепёжные метизы;
- винты для крепежа;
- лист поликарбоната (прозрачный);
- силиконовый герметик;
- паяльник.
Выбор фотоэлементов
Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.
Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.
При выборе фотоэлементов необходимо обратить внимание на следующее:
- чем больше ячейка, тем большее количество энергии она производит;
- элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).
Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.
Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.
Поли- и монокристаллические панели легко отличить даже на первый взгляд
Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой — это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.
Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.
Преимущества самодельных солнечных экосистем:
- при правильном использовании продолжительность эксплуатации составляет 25–30 лет;
- для создания фотоэлектрических пластин используются легкие материалы, что считается важным достоинством для домов, у которых фундамент не рассчитан на большие нагрузки;
- чтобы сконструировать солнечную батарею в домашних условиях, вам не потребуются специальные знания и навыки;
- фотоэлектрические панели редко выходят из строя, чаще всего это происходит из-за механических повреждений, но неисправные элементы легко заменить;
- гелиосистемы не представляют угрозы для окружающей среды, и работают бесшумно, в отличие от ветрогенераторов.
Наравне с очевидными достоинствами, самодельная солнечная панель имеет также некоторые недостатки. Во-первых, придется регулярно очищать поверхность батареи от грязи, из-за которой снижается чувствительность и светопропускная способность фотоэлементов. Во-вторых, для монтажа оборудования потребуется много свободной площади, но главное — гелиосистемы зависимы от погодных условий и времени суток. Стабильно генерировать солнечную энергию возможно лишь днем и в хорошую погоду. В других ситуациях показатели мощности снижаются в 7–10 раз, а КПД падает до 8–10%. Обязательно учитывайте эти нюансы.
Что такое солнечная батарея
Солнечная батарея представляет собой панель, состоящую из соединённых между собой фотоэлементов. Она напрямую преобразует солнечную энергию в электрический ток. В зависимости от устройства системы, электрическая энергия аккумулируется или сразу идёт на энергообеспечение зданий, механизмов и приборов.
Солнечная батарея состоин из соединённых между собой фотоэлементов
Простейшими фотоэлементами пользовался почти каждый. Они встроены в калькуляторы, фонарики, аккумуляторы для подзарядки электронных гаджетов, садовые фонарики. Но этим использование не ограничивается. Существуют электромобили с подзарядкой от солнца, в космосе это один из основных источников энергии.
В странах с большим количеством солнечных дней батареи устанавливаются на крышах домов и используются для отопления и нагрева воды. Этот вид называют коллекторами, они преобразуют энергию солнца в тепловую.
Нередко электроснабжение целых городов и посёлков происходит только за счёт этого вида энергии. Строятся электростанции, работающие на солнечной радиации. Особенное распространение они получили в США, Японии и Германии.
Заряжаем телефон от солнца
Теперь мы расскажем, как самому собрать солнечную батарею, способную заряжать мобильный телефон. Изготавливая батарею, состоящую из отдельных частей, основанных на монокристаллическом кремнии – один из самых популярных типов элементов, не исключены проблемы при их пайке, связанные с хрупкостью панелей. Если вы не уверены, что сможете все сделать самостоятельно, лучше выберите уже спаянные модули. Хорошо, если они будут состоять из десяти монокристаллических элементов и обладать выходным напряжением в пять Вольт.
Солнечные элементы могут присутствовать и в калькуляторах, фонариках, питаемых от солнца, откуда их можно вытащить. В этих приборах используют в основном аморфные элементы, где слой полупроводника расположен на маленькой пластине из стекла. Учитывая, что модули такого типа дают около полутора вольт, нам понадобятся четыре штуки, которые надо соединить последовательно. Не забываем к положительному выводу батареи подпаять диод, который будет не давать аккумулятору тратить заряд через солнечную батарею. Достать диод можно с платы фонаря.
Крайне желательно после солнечной батареи установить простой линейный стабилизатор на 5 Вольт и USB разъем. Это необходимо для ограничения напряжения, так как при неправильном подключении можно испортить заряжаемое устройство. Приобрести стабилизатор можно в любом магазине радиодеталей или выпаять из нерабочей платы.
Дабы наше изделие служило более надежно, заливаем термоклеем поперечные грани модулей для защиты от механических повреждений.
Обзор более сложной модели
Итак, в данной статье мы подсказали вам, как сделать солнечную батарею своими руками из подручных материалов. Из всех вариантов, а именно: изготовление батареи из пивных алюминиевых банок, кремния, фольги, транзисторов, на одних диодах и т.д. Мы предложили простую сборку из медных пластинок, а также описали способ, где солнечные модули можно изъять из калькулятора или фонарика, и правильно подсоединив, использовать для зарядки телефона.
- Как сделать зарядку для аккумулятора в домашних условиях
- Как меньше платить за свет легально
- Самое экономичное отопление дома
Рациональное размещение батарей
От размещения модулей в большой степени зависит, сколько энергии будет производить система. Чем больше лучей попадёт на фотоэлементы, тем больше они произведут энергии. Для оптимального расположения нужно соблюдать следующие условия:
Для экономии места батареи чаще всего размещают на крышах.
Требования к монтажу
Сделать солнечные батареи не составит труда
Но важно не только правильно сконструировать устройство, но и грамотно его установить. Соблюдение правил производства и монтажа позволит получить максимум выгоды от такой конструкции
К бытовым экосистемам предъявляют 4 основных требования:
- пластины хрупкие, поэтому сначала лучше подготовить каркас, а потом только монтировать фотоэлементы;
- боковые бортики корпуса не должны создавать препятствий прямому попаданию лучей солнца на фотоэлектрические элементы, поэтому их высота должна быть минимальной;
- наружную и внутреннюю поверхность корпуса надо обработать влагостойкой краской для надежной защиты от атмосферных воздействий;
- в нижней части конструкции обязательно должны быть предусмотрены технологические отверстия для вентиляции, чтобы, выводить газ, который образуется при нагревании панелей.
Из чего можно сделать гелиопанель в домашних условиях
Несмотря на все преимущества батарей промышленного производства, главным их недостатком является высокая цена. Этой неприятности можно избежать, изготовив простейшую панель своими руками из подручных материалов.
Из диодов
Диод — это кристалл в пластиковом корпусе, выступающем в роли линзы. Она концентрирует солнечные лучи на проводнике, в результате возникает электрический ток. Соединив между собой большое количество диодов, получаем солнечную батарею. В качестве платы можно использовать картон.
Проблема в том, что мощность полученной энергии мала, для выработки достаточного количества понадобится огромное количество диодов. По финансовым и трудозатратам такая батарея намного превосходит заводскую, а по мощности сильно ей уступает.
Кроме того, выработка резко падает при уменьшении освещённости. Да и сами диоды ведут себя некорректно — нередко возникает самопроизвольное свечение. То есть сами же диоды потребляют произведённую энергию. Вывод напрашивается сам: неэффективно.
Из транзисторов
Как и в диодах, главный элемент транзистора — кристаллик. Но он заключён в металлический корпус, не пропускающий солнечный свет. Для изготовления батареи крышка корпуса спиливается ножовкой по металлу.
Батарею небольшой мощности можно собрать из транзисторов
Затем элементы крепят к пластине из текстолита или другого материала, подходящего на роль платы, и соединяют между собой. Таким способом можно собрать батарею, энергии которой достаточно для работы фонарика или радиоприёмника, но большой мощности ожидать от такого устройства не стоит.
Но в качестве походного источника энергии небольшой мощности вполне подойдёт. Особенно если вас увлекает сам процесс создания и не очень важна практическая польза от результата.
Умельцы предлагают использовать в качестве фотоэлементов CD-диски и даже медные пластины. Портативную зарядку для телефона несложно изготовить из фотоэлементов от садовых фонариков.
Лучшим решением будет покупка готовых пластин. Некоторые интернет-площадки продают модули с небольшим производственным браком по приемлемой цене, они вполне пригодны для использования.
Инструкция по изготовлению
Процесс изготовления солнечной батареи состоит из нескольких этапов:
- Подготовка фотоэлементов и пайка проводников.
- Создание корпуса.
- Сборка элементов и герметизация.
Подготовка фотоэлементов и пайка проводников
На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.
С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.
Качество пайки является главным требованием для эффективной работы солнечной батареи
Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.
Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.
Проверка устройства выполняется на солнечной стороне
Как собрать корпус
Подготовить уголки из алюминия с невысокими бортиками.
Для метизов предварительно выполняются отверстия.
Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи
Важно обратить внимание на отсутствие незаполненных мест.
После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.. Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы. Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы
Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы
Сборка элементов и герметизация
- Очистите прозрачный материал от загрязнений.
- Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
- На каждый фотоэлемент нанесите монтажный силикон.
Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.
Герметизация конструкции обеспечит плотное прилегание панелей друг к другу
Правила установки
Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:
- Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
- При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
- Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
- Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.
Диодная конструкция
Для бытовых гелиосистем допускается использовать специальные фотодиоды или обычные диоды без металлического корпуса. Попадающий на p-n-переход солнечный свет заставляет электроны двигаться, и происходит генерация электрического тока. Но учитывайте тот факт, что напряжение в диодах очень маленькое, — чтобы получить мощную батарею для бытовых нужд, потребуется использовать большое количество электронных элементов. Но разумно ли это?
В теории на солнечных батареях диодного типа напряжение возрастает пропорционально числу используемых в системе фотодиодов, вот только на практике получается совсем другая картина. С добавлением большого количества электронных элементов одновременно увеличивается и площадь, которая необходима для их размещения, что неизбежно приводит к потерям мощности.
При этом некоторые фотодиоды всегда будут потреблять часть вырабатываемого тока. Устранить этот недостаток пока не представляется возможным. Но главная проблема — выработка электроэнергии происходит только под воздействием прямых лучей солнца. Если небо затянуто облаками, то на выходе вы получите нулевое напряжение.
Эффективная альтернатива или всеобщее заблуждение?
Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».
Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно
Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, – чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%
Но это в идеале, а на практике все несколько иначе.
Следующий момент, на который стоит обратить внимание, – необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно
Дешёвая энергия: солнечная батарея своими руками
Солнечная энергетика быстро набирает популярность в обществе. Процент интереса к солнечным панелям стремительно увеличивается за счёт владельцев загородных домов, коттеджей, вилл. Не остаются в стороне и владельцы дачных хозяйств, для кого дешёвая энергия солнца также необходима. Вариант — солнечная батарея, обещает существенное снижение расходов на содержание любой недвижимости. Счета на оплату за потребление электрической энергии традиционно входят в книгу рекордов Гиннеса. А тут — электрический ток практически даром. Так ли это в действительности? Рассмотрим тему.
Определение солнечной батареи
Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.
Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.
Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки
На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.
Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):
- Арсенид галлия GaAs (кристаллический 25,1).
- Фосфит индия InP ( 21,9).
- Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).
Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.
Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.
Эффективность солнечных батарей
Достичь высокой степени эффективности от использования солнечной батареи крайне проблематично. Тем более, когда солнечная батарея изготавливается своими руками, и делаются попытки получить энергию под бытовые нужды целого дома или хозяйственные нужды дачного участки.
Такая промышленная бытовая установка генерирует 150 ватт мощности при напряжении сети 12 вольт. Правда, заявленная мощность гарантируется при полностью открытом солнечном небосводе
Чтобы получать максимальную эффективность от солнечного генератора энергии, необходимо постоянно определять и точно согласовывать сопротивление нагрузки.
Здесь без привлечения технологичных электронных устройств – контроллеров управления, не обойтись никак. А сделать подобный контроллер своими руками – задача сложная.
Фотоэлементам, на основе которых выстраивается структура солнечных панелей, присуща температурная нестабильность. Практика применения указывает на значительное падение производительности фотоэлементов в результате повышения температуры их поверхности.
Так появляется ещё одна, не менее трудная задача. Её решение требует использования солнечного света, лишённого тепла. Сделать нечто подобное в кустарных условиях видится бесперспективной идеей.
И ещё недостатки альтернативной энергетики:
- потребность в значительных площадях под размещение панелей батареи;
- бездействие установки в тёмное время суток;
- наличие в составе компонентов батареи ядовитых веществ (свинца, галлия, мышьяка и т.п.);
- значительные эксплуатационные издержки.
Тем не менее, профессиональное изготовление солнечных генераторов энергии стабильно наращивается. Существует уже как минимум пять компаний, готовых предложить к установке современные конструкции, в том числе предназначенные для объектов жилой недвижимости:
- Canadian Solar
- Jinko Solar
- Hanwha Qcells
- JA Solar
- Trina Solar
Солнечная энергия в доме своими руками
Самостоятельное изготовление батареи на базе солнечных панелей, пригодной для нужд частного хозяйства, видится реальным делом только в рамках скромных проектов.
Батарея солнечная, собранная самостоятельно из кремниевых пластин, разложенная под прямыми лучами солнца, готова к тестированию на присутствие напряжения
К примеру, изготовление солнечной батареи своими руками для подзарядки небольшого аккумулятора, энергия которого используется для питания двух-трёх маломощных (6 – 12 вольтовых) фонарей.
По таким проектам делаются установки, вырабатывающие напряжение не выше 20 вольт при токе не более 1 А. Рассмотрим один из возможных вариантов создания солнечной батареи с похожими рабочими характеристиками.
Для реализации проекта потребуются:
- Пластины кремниевых фотоэлементов.
- Паяльник электрический.
- Олово паяльное.
- Этиловый спирт.
- Канифоль сосновая для пайки.
- Инструмент электро-монтажника.
- Вспомогательные электронные компоненты и модули.
Пластины фотоэлементов (кремниевых) проще всего приобрести уже готовые. Вполне пригодные конструкции разных размеров продаются по доступной цене. Также доступны предложения на отечественном Маркете:
Инструмент электро-монтажника, у человека знакомого с электроникой, как правило, имеется по умолчанию. Из вспомогательной аппаратуры потребуется регулятор заряда аккумулятора, инвертор.
Сборка солнечной батареи: пошаговая инструкция
Пошаговая сборка генератора на солнечных панелях выглядит примерно следующим образом:
- отдельных пластин с фотоэлементами в единую солнечную батарею.
- Проверка работы собранной батареи измерительным прибором.
- Укладка панелей внутрь защитной конструкции.
- Подключение собранной батареи через контроллер заряда к АКБ.
- Преобразование энергии АКБ в требуемое напряжение.
Спайка отдельных панелей в единую батарею – работа кропотливая, требующая навыков пайки и внимания. Сложность действий для сборщика обусловлена здесь хрупкой конструкцией кремниевых пластин.
Пайку на пластинах выполняют аккуратно паяльником подходящей мощности, предварительно заточив жало под угол 45 градусов, используя качественный припой
Соединять пластины одну с другой рекомендуется плоскими ленточными проводниками. Цель – минимизировать, насколько это возможно, сопротивление проводников. Места пайки следует предварительно обрабатывать этиловым спиртом. Паять рекомендуется с минимальным использованием канифоли и олова.
Завершив спайку, нужно проверить конструкцию на работоспособность. Делается эта процедура обычным образом, с помощью измерительного прибора – тестера (стрелочного, электронного).
Проверка работоспособности солнечной батареи, сделанной своими руками с помощью обычного цифрового прибора для измерения напряжения, тока, сопротивления
На выходных проводниках замеряют выходное напряжение и ток в условиях максимальной и минимальной освещённости полотна. При качественной спайке всех пластин и без наличия дефектов, результат получается, как правило, положительный.
Контроллер заряда аккумулятора
Энергетическая солнечная установка станет надёжнее и безопаснее, если в состав её схемы включить контроллер заряда (разряда) аккумулятора. Этот прибор можно купить уже в готовом виде.
Но если имеются способности в области электроники и желания к совершенству, контроллер заряда нетрудно сделать своими руками. Для справки можно уточнить: разработаны два вида таких приборов:
- PWM (Pulse Width Modulation).
- MPPT (Maximum Power Point Tracking).
Если перевести на русский язык, первый вид устройств действует на принципах широтно-импульсной модуляции. Второй вид приборов создан под вычисление так называемой максимальной точки мощности.
В любом случае, обе схемы собраны на классической элементной базе, с той лишь разницей, что вторые устройства отличаются более сложными схемными решениями. В систему контроллеры заряда включаются так:
Классическая структурная схема включения контроллера заряда: 1 — солнечная панель; 2 — контроллер заряда/разряда АКБ; 3 — аккумулятор; 4 — инвертор напряжения 12/220В; 5 — нагрузочная лампа
Главная задача контроллера заряда АКБ энергетической солнечной установки – отслеживание уровня напряжения на клеммах аккумуляторной батареи. Недопущение выхода напряжения за границы, когда нарушаются условия эксплуатации АКБ.
Благодаря присутствию контроллера, остаётся стабильным срок службы аккумуляторной батареи. Конечно же, помимо этого прибор контролирует температурные и другие параметры, обеспечивая безопасность работы АКБ и всей системы.
Для сборки контроллера MPPT своими руками можно взять массу схемных решений. В поиске схемотехники проблем нет, стоит только сделать соответствующий запрос в поисковой системе. Например, собрать контроллер можно на основе такой вот, несложной на первый взгляд, структурной схемы:
На основе этой структурной схемы собирается достаточно эффективное и надёжное устройство контроля заряда АКБ по типу MPPT технологии
Однако для бытовых целей вполне достаточно простейшего ШИМ-контроллера, так как в составе бытовых энергоустановок, как правило, не используются массивные солнечные панели. Для контроллеров же типа MPPT, характерной особенностью является именно работа с панелями большой мощности.
На малых мощностях они не оправдывают их схемной сложности. Для пользователя приобретение таких приборов оборачивается лишними расходами. Поэтому логично рекомендовать для дома простой PWM аппарат, собранный своими руками, к примеру, по этой схеме:
Принципиальная схема простого ШИМ-контроллера для домашней солнечной установки. Работает с выходным напряжением панели 17 вольт и обычным автомобильным аккумулятором
Солнечная батарея: схема инвертора
Полученную от солнца энергию аккумулируют. В домашних условиях для накопления энергии обычно используется стандартная автомобильная батарея (или несколько батарей).
Напряжения и силы тока аккумулятора вполне достаточно для питания маломощных бытовых приборов, рассчитанных под напряжение 12 (24) вольт. Однако этот вариант устраивает далеко не всегда.
Поэтому дополнительно к собранной конструкции подключают инвертор – устройство, преобразующее напряжение аккумулятора в переменное напряжение 127/220 вольт, пригодное для питания бытовых приборов или хозяйственной техники.
Найти подходящую схему инвертора несложно. Есть множество идей на этот счёт. Традиционно схема инвертора включает следующие компоненты:
- полупроводниковую солнечную панель,
- интегральную микросхему типа SG3524 (регулятор заряда),
- аккумуляторную батарею,
- интегральную микросхему управления МОП-транзисторами,
- силовые МОП-транзисторы,
- трансформатор.
Структурная схема регулятора в паре с инвертором выглядит примерно так:
Структурная схема регулятора напряжения аккумуляторной батареи в ассоциации с инвертором-преобразователем напряжения для солнечной энергетической установки
Защитная конструкция солнечной панели
Собранную из хрупких кремниевых пластин солнечную батарею необходимо дополнительно защитить от внешнего воздействия. Защитный корпус делают на основе прозрачного материала, который легко поддаётся чистке.
Полиуретановые или алюминиевые уголки каркаса и прозрачное органическое стекло подойдут в самый раз. Разъяснять тонкости сборки защитного корпуса не имеет смысла. Это простейшая сборка, собранная своими руками при помощи набора бытовых инструментов.
Пример реализации домашней энергоустановки на видео
Представленное ниже виде демонстрирует существующие возможности сборки и эксплуатации домашнего энергетического источника от природы. Однако, как показывает практика, достичь с помощью самодельных устройств реально высоких мощностей в условиях бытовых — задача крайне затруднительная:
КРАТКИЙ БРИФИНГ
Z-Сила — публикации материалов интересных полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мульти-тематическая информация — СМИ .
Солнечная электростанция своими руками
Стоимость солнечных панелей ежедневно снижается. Приобретение или самостоятельная сборка и установка автономных солнечных систем стали доступными для простых потребителей. Мы решили создать это руководство, чтобы потребители разобрались с нужными компонентами, и смогли собрать солнечную электростанцию для дома своими руками.
Для самостоятельного проектирования автономной системы нужны знания основ электротехники и определенные познания в математике. Для сборки самой простой солнечной электростанции потребуется 4 компонента:
- Солнечная батарея (PV панель);
- Контроллер заряда;
- Инвертор;
- Аккумулятор.
Кроме вышеуказанных компонентов, потребуется медный кабель, коннекторы, устройства защиты и кое-какая мелочевка. Дальше мы пошагово объясним, как можно выбрать компоненты именно под ваши потребности.
Шаг 1: Расчет нагрузки
Прежде, чем выбрать компоненты, необходимо рассчитать нагрузку приборов, которые будут подключаться к вашей солнечной электростанции и сколько времени они будут работать. Для этого нужно сделать следующее:
- Определите, какую технику (освещение, вентилятор, телевизор, насос и т.д.) вы будете подключать, и сколько времени (часов) она будет работать;
- Ознакомьтесь со спецификациями ваших приборов для определения их мощности;
- Рассчитайте величину потребляемого электричества в Ватт-часах (Вт*ч), которая равна произведению номинальной мощности ваших приборов (Вт) на время работы (ч).
Например Вы хотите включить какой-то прибор мощностью 10 ватт на 5 часов от солнечной панели. Количество потребленной электроэнергии будет: 10Вт х 5ч = 50Вт*ч. Таким же образом необходимо рассчитать общую величину потребляемой энергии, а именно рассчитать для каждого прибора и сложить полученные величины.
Пример: настольная лампа = 10Вт х 5ч = 50 Вт*ч + вентилятор = 50Вт х 2ч = 100Вт*ч, телевизор = 50Вт х 2ч = 100 Вт*ч, всего = 50 + 100 + 100 = 250 Вт*ч.
Когда закончите расчет нагрузки, пора приступать к выбору компонентов в соответствии с вашим требованием нагрузки.
Шаг 2: Выбор аккумуляторов
Все солнечные панели являются источниками постоянного тока. Электроэнергию они генерируют только днем. Если есть желание подключить нагрузку постоянного тока днем, то с этим нет никаких проблем, можно подключиться непосредственно от панелей. Но сделать это – не самое хорошее решение, потому что:
- Большинству приборов необходимо постоянное номинальное напряжение для эффективной работы. Передаваемое солнечными панелями напряжение и ток непостоянны. Они меняются в зависимости от интенсивности солнечного света, пасмурная погода – «не есть хорошо».
- Если вы хотите включить что-то ночью, то это что-то попросту не включится.
Указанная проблема решается использованием аккумуляторов, для накопления энергии в дневное время, и использования её в ночное. Существует много видов аккумуляторов. Аккумуляторы «открытого типа» с жидким электролитом, к которым относятся автомобильные аккумуляторы — предназначены для выдачи высокого тока в течение небольшого промежутка времени. Они не предназначены для глубокого разряда, у них задачи другие. Аккумуляторы для солнечных батарей являются аккумуляторами глубокого цикла, они легко переносят частичные разряды и предназначены для глубокого медленного разряда. Для солнечных электростанций хорошо подходят гелевые и литиевые аккумуляторные батареи (о том какие аккумуляторы лучше для солнечных электростанций мы писали тут).
Примечание: Перед тем как выбирать компоненты, определите, какую систему по напряжению вы хотите иметь: 12/24 или 48В. Чем выше напряжение, тем меньший ток будет в медных проводниках и тем меньше будут потери. Кроме того, чем выше рабочее напряжение, тем меньше потребуется сечение проводников. Чаще всего в качестве домашней электростанции используют системы с рабочим напряжением 12В или 24В. Это связано с тем, что часть домашних приборов можно питать напрямую от вашей электростанции, без двойного преобразования напряжения (вверх-вниз), которое приводит к потере мощности. В этом проекте рассмотрим систему 12В.
- Емкость аккумулятора рассчитывается в ампер-часах (Aч).
- Мощность (Вт)= Напряжение (В) х Ток (А). • Вт*час = Напряжение (В) х Ток (А) х Время (ч) = Вт*ч.
- Напряжение батареи = 12В (для нашей системы).
Емкость аккумулятора (Ач) = Мощность нагрузки (Вт)*Время работы (ч)/напряжение(В) = 250/12 = 20,83Ач.
Нужно понимать, что КПД аккумуляторов не может быть 100%, чаще всего КПД равен 80%. Учитывая это, имеем емкость аккумулятора (Ач) = 20,83/0,8 = 26Ач. Поскольку мы используем преобразователь напряжения, который имеет свой КПД, обычно его также принимают равным 80%, добавим его: 26/0,8 = 32,5Ач. Но и это еще не все — даже не смотря на использование аккумуляторов глубокого цикла, для продолжительного срока службы, их не рекомендуется разряжать до полной разрядки, и по-хорошему нужно оставлять хотя бы 30% заряда — чем больше оставим, тем дольше он прослужит, получается: 32,5*1,3 = 42,25Ач Округляем вверх, для того что бы получить целое число и выбираем аккумуляторы глубокого разряда емкостью от 45 ампер-часов (Ач).
Шаг 3: Выбор панелей
О том как правильно выбирать солнечных батарей в блоге магазина MyWatt есть отдельная статья, поэтому останавливаться на этом долго не будем. Рассматривать будем только монокристаллические или поликристаллические, а аморфные и прочие тонкопленочные панели рассматривать не будем, в виду их быстрой деградации – потери мощности.
Основные отличия моно и поли:
Монокристаллические панели дороже и эффективнее, чем поликристаллические панели. Но в целом эффективность отличается незначительно, она зависит не только от типа ячейки, но и от качества самих ячеек и добросовестности производителя.
Характеристики солнечных панелей, как правило, приводятся к стандартным условиям испытаний (STC):
- освещенность = 1 кВт/м2;
- воздушная масса (AM) – 1,5;
- температура – 25°C.
Как самостоятельно рассчитать мощность солнечных батарей?
Мощность солнечных батарей должна выбираться таким образом, чтобы потребляемая мощность нашими электроприборами, была восполнена обратно. Иными словами – сколько взяли, столько и нужно отдать + потери на преобразование, а также собственное потребления инвертора с контроллером заряда.
В связи с тем, что солнечный свет в течение дня поступает непостоянно и с разной интенсивностью, нельзя знать сколько выработает та или иная панель сегодня, но исходя их статистических данных это можно предположить достаточно точно.
Например, для средней полосы России в летнее время хорошим показателем считается если каждый 1 Ватт солнечной батареи выработал 6Вт*ч за световой день, но если рассматривать пасмурный, дождливый день этот показатель может быть в несколько раз меньше, поэтому при расчетах учтем этот факт и вместо 6Вт*ч, подставим 3Вт*ч.
Итак, наше потребление в Ватт-часах, с учетом КПД составило 32,5Ач * 12В = 390Вт*ч, разделим на 3Вт*ч и получим мощность солнечной батареи 130Вт, если у Вас получается не целое число – округляйте вверх.
Зимой и в весенне — осенний период запас по мощности требуется делать значительно больше, поскольку световой день короче — солнце находится над горизонтом меньше времени.
Шаг 4: Выбор контроллера заряда для солнечных батарей
Контроллер представляет собой устройство, которое помещается между солнечной панелью и аккумулятором. Он регулирует напряжение и ток, приходящий от солнечных панелей для поддержания надлежащего качества зарядки аккумуляторных батарей.
Чаще всего используют 12-вольтовые аккумуляторы, однако солнечные панели могут вырабатывать гораздо большее напряжение, чем требуется для зарядки аккумуляторов. Контроллер заряда фактически преобразует лишнее напряжение в ток, тем самым уменьшая время, необходимое для полной зарядки аккумуляторных батарей. Это позволяет солнечным батареям быть достаточно эффективными в любой момент дня.
Типы контроллеров заряда:
- Вкл./Выкл. (ON/OFF);
- ШИМ — широтно — импульсная модуляция (PWM — pulse-width modulation);
- ТММ — слежение за точкой максимальной мощности (MPPT — Maximum power point tracker).
Рекомендуем Вам отказаться от контроллера заряда Вкл./Выкл. (ON/OFF), так как это наименее эффективный контроллер. ТММ (MPPT) контроллеры имеют самую высокую эффективность, но цена на них выше. Таким образом, мы рекомендуем Вам использовать либо ШИМ (PWM), либо ТММ (MPPT) контроллеры, в зависимости от того, какими финансами вы оперируете.
Параметры контроллера заряда:
- Так как наша система рассчитана на 12В, контроллер заряда также должен поддерживать 12В;
- Контроллер заряда выбирается по мощности солнечных батарей, для каждого контроллера в паспорте указывается максимальная мощность, которую к нему можно подключить. Для данной системы 12В на 130Вт прекрасно подойдет контроллер на 10А;
- Если Вы хотите получать максимум энергии — выбирайте MPPT контроллер заряда, а если Вы хотите снизить стоимость системы, выбирайте ШИМ (PWM) контроллер заряда, но желательно проверенного производителя.
Шаг 5: Выбор инвертора
Солнечные батареи получают солнечные лучи и конвертируют их в электричество, они являются источниками постоянного тока (DC), также как аккумуляторная батарея, а нам для подключения розеток требуется переменный ток с напряжением 220В. Постоянный ток (DC) преобразуется в переменный ток (AC) через устройство под названием инвертор.
Виды волн переменного тока на выходе инвертора:
- Прямоугольная волна – меандр;
- Модифицированная синусоида;
- Чистая синусоида.
Инвертор прямоугольной волны дешевле всех, но подходит не для всех приборов. Инвертор модифицированной синусоиды тоже не предназначен для обеспечения электричеством приборов с электромагнитными или ёмкостными компонентами, типа: микроволновых печей; холодильников; различных типов электродвигателей. Инверторы с модифицированной синусоидой работают с меньшей эффективностью, чем инверторы с чистой синусоидой.
- Мощность инвертора должна быть равной или больше, чем мощность всех приборов нагрузки, включенных одновременно;
- Если есть приборы с пусковыми токами (электродвигатели), нельзя чтобы она превышала максимальную мощность инвертора с учетом других электропотребителей;
- Предположим, что у нас будет: телевизор (50Вт) + вентилятор (50Вт) + настольная лампа (10Вт) = 110Вт;
- Чтобы иметь запас по мощности, выбираем инвертор от 150Вт. Так как наша система 12В, мы должны выбрать инвертор постоянного тока 12В в 220В/50Гц переменного тока с чистой синусоидой.
Примечание: Такая техника как стиральная машина, холодильник, фен, пылесос и т.д. имеют начальную потребляемую мощность во много раз больше, чем их нормальная рабочая мощность. Как правило, это вызвано наличием электрических двигателей или конденсаторов в таких приборах. Это должно быть принято во внимание при выборе мощности преобразователя (инвертора).
Шаг 6: Монтаж солнечных модулей
После того как все рассчитано и куплены все комплектующие приходит время монтажа солнечной электростанции своими руками. Сначала выберите подходящее место на крыше, где нет никаких препятствий для солнечного света – никакой тени от деревьев и других построек.
Угол наклона солнечных батарей
Чтобы получить максимум от солнечных панелей, необходимо установить их в направлении, которое позволит захватить максимум солнечного света. Чем дольше панель будет находиться перпендикулярно солнцу, тем больше она выработает электроэнергии. Для средней полосы России оптимальный угол наклона 30° — 40° для лета и 70° — 80° для зимы.
С углом наклона разобрались, ориентация же панелей должна быть на юг, если нет такой возможности, то Юго-восток или юго-запад, но стоит понимать, что в таком случае выработки будет меньше. Существуют системы с изменяемым положением панелей (солнечный трекер), но его в этой статье рассматривать не будем в силу дороговизны реализации и наличием трущихся деталей.
Если у вас нет компаса, можете скачать приложение на свой смартфон и по нему определить, где у вас находится юг. Если нет возможности найти компас или установить приложение – запомните положение солнца в 12-00 часов – это и будет юг.
Стойку или крепеж для крыши солнечных батарей можно купить или смастерить своими руками хоть из дерева, хоть из металла. Главное, чтобы она была надежна, ведь панель имеет большую парусность, плюс нужно учесть расстояние между панелью и крышей – плотное прилегание недопустимо. Мы используем и рекомендуем Вам воспользоваться специальными крепежными элементами, именно для солнечных батарей.
На обратной стороне панели есть небольшая по размеру распаячная коробка, в ней находятся диоды Шоттки. Из распределительной коробки выводятся провода с уже установленными разъемами стандарта MC4. Всегда старайтесь использовать промаркированные провода, например красный и черный для подключения положительного и отрицательного разъемов. Если есть возможность подключить заземление, то используйте для этого желтый провод с зеленой полоской.
Шаг 7: Выбор последовательного или параллельного подключения
После расчета мощности аккумулятора и выбора солнечной панели вы должны подключить их. Во многих случаях довольно тяжело получить одной панелью или одним аккумулятором расчетные мощности, поэтому приходится объединять несколько панелей или объединять несколько аккумуляторов. Если у нас отдельно взятый аккумулятор или отдельно взятая панель соответствуют требованиям по напряжению, то соединяем их параллельно, через контроллер заряда, но бывают ситуации, когда нам понадобится последовательное соединение, например, для увеличения напряжения.
- Последовательное соединение. Для подключения любого устройства к цепи последовательно необходимо подключить положительный полюс одного к отрицательному полюсу другого устройства. В нашем случае такими устройствами будут панели солнечных батарей или аккумуляторы. При таком подключении напряжения всех устройств складываются. Пример: Имеем 4 аккумулятора 12В. Соединяем их последовательно и в результате получаем 12 + 12 + 12 + 12 = 48 вольт. При таком подключении напряжения складываются, а ток остается неизменным. Таким образом, если каждый аккумулятор имел емкость 100Ач, то при последовательном мы получим связку 48В и емкостью 100Ач, запас электроэнергии в таком банке аккумуляторов составит 48В * 100Ач = 4800 Вт*ч – именно на этот параметр нужно обращать внимание, поскольку аккумулятор 100Ач на 12В имеет запас электроэнергии в 1200 Вт*ч, хотя «емкость» у них якобы одинаковая. Если бы это были не аккумуляторы, а солнечные панели, к примеру, по 17В и 5А (мощность в таком случае: 17В * 5А = 85Вт), то серия последовательно соединенных панелей имела бы напряжение = 17+17+17+17=68В, ток 5А и мощность бы составила 68В * 5А = 340Вт.
- Параллельное подключение. При параллельном подключении необходимо подключить положительный полюс первого устройства к положительному полюсу следующего устройства и отрицательный полюс первого устройства к отрицательному полюсу следующего устройства. При параллельном подключении напряжение остается неизменным, а номинальный ток цепи является суммой токов каждого устройства в цепи. Пример: имеем два аккумулятора 12В, 100Aч соединенных параллельно, напряжение сети остается 12 вольт, но ток 100 + 100 = 200Aч. Аналогично, если 2 солнечные панели по 17В и 5А соединены параллельно, то имеем цепь с напряжением 17В и током 10А.
Шаг 8: Размещение оборудования
На этом моменте не будем долго задерживаться, тут нужно отталкиваться в от места установки. Главный момент — расположить оборудование недалеко друг от друга, чтобы использовать перемычки небольшой длины, для уменьшения потерь напряжения. Оборудование имеет активное или пассивное охлаждение и необходимо оставлять воздушный зазор согласно документации.
Шаг 9: Схема подключения солнечной электростанции
Сначала подсоединяем контроллер заряда. Обычно в нижней части контроллера заряда есть 3 пары контактов. Первый слева — подключение солнечной панели с отметками (+) и (-). Второй — выход для подключения аккумуляторов с отметками (+) и (-), и третий — выход для прямого подключения нагрузки постоянного тока, например, лампочки на 12В – инвертор туда подключать нельзя!
Нужно подсоединить контроллер заряда к аккумуляторам: черный (-) и красный (+). В этом случае контроллер сможет определить необходимое рабочее напряжение (12В, 24В или 48В), можно сразу настроить контролер заряда на нужный тип аккумулятора.
Примечание: Сначала подсоедините черный/отрицательный провод от батареи к отрицательному выводу контроллера, а затем подключите положительный провод. После подключения батареи к контроллеру вы увидите, как светится светодиод индикации уровня заряда.
Теперь нужно подключить панели к контроллеру. На тыльной стороне панели установлена распределительная коробка с 2 проводами (+) и (-) и коннекторами MC4, как правило, они небольшие по длине. Чтобы подсоединить панель к контроллеру заряда, необходимы провода со ответной частью разъемов MC4. После подключения солнечных панелей к контроллеру заряда загорится светодиодный индикатор, если солнечный свет присутствует.
Примечание: Если Вы не используете автомат защиты между солнечными батареями и контроллером заряда, всегда подключайте солнечную панель, когда на нее не попадают солнечные лучи, например вечером, если нет такой возможности, то обязательно укройте панель светонепроницаемой тканью, потому что ток от «работающей панели» может создать, опасную для здоровья, электродугу и повредить оборудование.
Затем устанавливаем инвертор на место и подключаем его к АКБ. В подключении инвертора, тоже ничего сложно нет, главное соблюдать полярность подключения.
Безопасность
Важно отметить, что мы имеем дело с постоянным током. Так положительный контакт панели (+) должен быть подключен к положительному контакту контроллера заряда (+) и отрицательный контакт панели (-) должен быть подключен к отрицательному контакту контроллера заряда (-). Если вы перепутаете контакты произойдет неполадка, которая может привести к пожару. Рекомендуется использовать провода разного цвета, красный (+) и черный (-). Если у вас нет возможности использовать провода разного цвета, то можно обернуть красной и черной изолентой провода рядом с клеммами.
Последними должны подключаться: нагрузка постоянного тока и инвертор.
Дополнительная защита
Хотя контроллер заряда и инвертор имеют встроенные предохранители для защиты, вы можете поставить выключатели и предохранители в следующих местах для обеспечения защиты:
- В разрыве между солнечной панелью и контроллером заряда;
- В разрыве между контроллером заряда и аккумуляторами;
- В разрыве между аккумуляторами и инвертором.
Измерение и регистрация данных
Если вы заинтересованы в том, чтобы знать, сколько энергии вырабатывается Вашей солнечной электростанцией, то стоит сделать выбор контроллера заряда, который способен регистрировать данные по выработке электроэнергии и другие показатели.
После подключения всего вышеописанного система готова к использованию.
Глубокие технические подробности компонентов мы сознательно затрагивать не стали. Дело в том, что принцип построения солнечных электростанций небольшой мощности, остается почти неизменным.
Источник https://oboiman.ru/ingeneer/solnecnaa-batarea-svoimi-rukami-kak-sdelat-samodelnuu-solnecnuu-panel.html
Источник https://zetsila.ru/%D0%B4%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D1%8F%D1%8F-%D1%81%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D0%B0%D1%8F-%D0%B1%D0%B0%D1%82%D0%B0%D1%80%D0%B5%D1%8F/
Источник https://mywatt.ru/poleznaya-informaciya/solnechnaya-elektrostanciya-svoimi-rukami