Тихоходный ветрогенератор своими руками из автомобильного генератора

Содержание

Тихоходный ветрогенератор своими руками из автомобильного генератора

Тихоходный ветрогенератор своими руками из автомобильного генератора, изображение №1

Ветрогенератор, изготовленный из автомобильного генератора, может помочь в ситуации, когда в частном доме нет возможности подключения к линии электропередачи. Либо послужит вспомогательным источником альтернативной энергии. Такое устройство можно сделать своими руками из подручных материалов, используя наработки народных умельцев.

Конструкция ветрогенератора

Существует огромное видовое разнообразие ветрогенераторов и чертежей их изготовления. Но любая конструкция включает в себя следующие обязательные элементы:

  • генератор;
  • лопасти;
  • накопительная батарея;
  • мачта;
  • электронный блок.

Ветровое колесо

Лопасти, пожалуй, самая важная часть ветрогенератора. От конструкции будет зависеть работа остальных узлов устройства. Изготавливают их из разных материалов. Даже из пластиковой канализационной трубы. Лопасти из трубы просты в изготовлении, стоят дёшево и не подвержены воздействию влаги. Порядок изготовления ветроколеса следующий:

  1. Необходимо рассчитать длину лопасти. Диаметр трубы должен быть равен 1/5 от общего метража. К примеру, если лопасть будет метровая, то подойдёт труба диаметром 20 см.
  2. Разрезаем трубу лобзиком вдоль на 4 части.
  3. Из одной части изготавливаем крыло, которое послужит шаблоном для вырезания последующих лопастников.
  4. Заусенца на краях сглаживаем абразивом.
  5. Лопасти фиксируют к алюминиевому диску с приваренными полосами для крепления.
  6. Далее к этому диску прикручивается генератор.

После сборки ветроколесо нуждается в балансировке. Его закрепляют на штативе горизонтально. Операцию проводят в закрытом от ветра помещении. В случае правильно проведённой балансировки колесо не должно двигаться. Если же лопасти вращаются сами, то их требуется подточить до придания равновесия всей конструкции.

Только после успешного завершения данной процедуры следует перейти к проверке точности вращения лопастей, они должны крутиться в одной плоскости без перекоса. Допускается погрешность в 2 мм.

Схема сборки генератора

Мачта

Для изготовления мачты подойдёт старая водопроводная труба диаметром не менее 15 см, длиной около 7 м. Если в пределах 30 м от предполагаемого места монтажа есть постройки, то высоту конструкции корректируют в сторону увеличения. Для эффективной работы ветроустановки лопастник поднимают выше препятствия минимум на 1 м.

Основание мачты и колышки для закрепления растяжек бетонируют. К кольям приваривают хомуты с болтами. Для растяжек применяют оцинкованный 6 мм трос.

Совет. Собранная мачта обладает немалым весом, при ручной установке понадобится противовес из трубы с грузом.

Переделка генератора

Для изготовления генератора ветряка подойдёт генератор от любого автомобиля. Их конструкции схожи между собой, а переделка сводится к перемотке провода статора и изготовлению ротора на неодимовых магнитах. В полюсах ротора высверливаются отверстия для фиксации магнитов. Устанавливают их, чередуя полюса. Ротор оборачивают бумагой, а пустоты между магнитами заливают эпоксидной смолой.

Таким же способом можно переделать двигатель от старой стиральной машины. Только магниты в этом случае во избежание залипания наклеивают под углом.

Новую обмотку перематывают по катушке на зуб статора. Можно сделать всыпную обмотку, это как кому удобно. Чем больше количество витков, тем эффективнее получится генератор. Мотают катушки в одном направлении по трёхфазной схеме.

Готовый генератор стоит опробовать и измерить данные. Если при 300 оборотах генератор выдаёт порядка 30 вольт, это хороший результат.

Финальная сборка

Раму генератора сваривают из профильной трубы. Хвост изготавливают из оцинкованной жести. Поворотная ось представляет собой трубку с двумя подшипниками. Генератор крепят к мачте таким образом, чтобы расстояние от лопасти до мачты было не менее 25 см. В целях безопасности для финальной сборки и монтажа мачты стоит выбрать безветренный день. Лопасти под действием сильного ветра могут изогнуться и разбиться о мачту.

Чтобы использовать аккумуляторы для питания техники, которая работает от сети 220 В, потребуется установить инвертор преобразования напряжения. Ёмкость батареи подбирается индивидуально к ветрогенератору. Этот показатель зависит от скорости ветра на местности, мощности подключаемой техники и частоты пользования ею.

Устройство ветрогенератора

Чтобы батарея не вышла из строя от чрезмерной зарядки, понадобится контроллер напряжения. Его можно изготовить самостоятельно, если обладаете достаточными знаниями в электронике, или купить готовый. В продаже имеется множество контролеров для механизмов получения альтернативной энергии.

Совет. Чтобы лопастник не сломался при сильном ветре, устанавливают простое устройство – защитный флюгер.

Обслуживание ветрогенератора

Ветрогенератор, как и любое другое устройство, нуждается в техническом контроле и обслуживании. Для бесперебойной работы ветряка периодически проводят следующие работы.

Схема работы ветрогенератора

  1. Наибольшего внимания требует токосъёмник. Щётки генератора нуждаются в чистке, смазке и профилактической регулировке раз в два месяца.
  2. При первых признаках неисправности лопастника (дрожание и разбалансировка колеса) ветрогенератор опускают на землю и ремонтируют.
  3. Раз в три года металлические детали покрывают антикоррозийной краской.
  4. Регулярно проверяют крепления и натяжение тросов.

Теперь, когда установка окончена, можно подключать приборы и пользоваться электроэнергией. По крайней мере, пока ветрено.

Самодельный ветрогенератор для дома и дачи: принципы работы, схемы, какой и как делать. Из чего собрать мощный самодельный генератор электроэнергии Напряжение автомобильных генераторов

Уставшие от шума и смога мегаполисов горожане все чаще покидают тесные городские квартиры и переселяются в просторные загородные коттеджи поближе к лесу, речке, чистому воздуху и тут оказывается, что без электричества современная жизнь немыслима. Мы уже не можем обойтись без холодильников, кондиционеров, компьютеров, стиральных машин, зарядных устройств для сотовых телефонов и прочей бытовой техники, но мощность старых линий централизованного электроснабжения не всегда соответствует возросшей нагрузке, а нередко к участку электричество вообще еще не подведено. Чтобы жизнь загородного дома не замирала даже на мгновение, еще при его проектировании рачительные домовладельцы предусматривают автономный бензиновый, дизельный, газовый генератор электричества либо иной независимый источник электроэнергии. Статья расскажет, в каких случаях стоит выбирать тот или иной генератор электроэнергии и поможет ли самодельный генератор электроэнергии существенно сэкономить на энергоносителях.

Виды автономных генераторов энергии

Как бы далеко от цивилизации не находился загородный дом или дача, электричество позволит создать в нем самые современные атрибуты комфорта: бесперебойное водоснабжение и работу бытовых приборов, централизованное отопление, связь с внешним миром. А в черте города электрическая генераторная установка в доме избавит от таких неприятностей, как отключение электроэнергии во время техногенных аварий или природных катаклизмов.

Таким образом, автономный генератор электроэнергии — это механизм, преобразующий механическую, тепловую или любую иную энергию в электрическую. Все электрогенераторы состоят из установленных на одной раме двигателя, сжигающего топливо, и генератора, которому двигатель передает вращающий момент через механическую передачу. Электрогенераторные установки работают с высоким, близким к 95%, коэффициентом полезного действия, производят электрическую энергию сжиганием топлива и передачей генератору полученной механической энергии, а различаются по виду двигателя и типу производимого электрического тока.

Автономный стационарный генератор электроэнергии

В зависимости от типа производимого тока электрогенераторы бывают:

  • однофазные с выходным напряжением 220 вольт и частотой 50 герц;
  • трехфазные, которым соответствует напряжение 380 вольт при частоте 50 герц.

Эти исходные параметры электроснабжения сети способны обеспечить бесперебойную работу всех видов бытовых электроприборов и электроинструментов.

В зависимости от вида двигателя и используемого исходного вида топлива или источника энергии, независимые электрогенератор может быть:

  • бензиновый;
  • дизельный;
  • газовый;
  • работающий на альтернативных источниках энергии: солнца, ветра, воды;
  • бестопливный генератор электроэнергии.

Промышленные генераторы для дома

Бензиновые электрогенераторы широко используются для аварийного обеспечения электричеством дач, загородных домов и коттеджей в случаях отключения стационарного электроснабжения, а также для локального освещения открытых придомовых, автомобильных или торговых площадок. В качестве самостоятельных постоянных источников электропитания бензиновые генераторные установки почти не используются, так как их номинальная мощность редко превышает 20 кВт.

Автономные бензиновые электрогенераторы работают, в основном, на бензине марки АИ-92, в некоторых случаях можно использовать топливо марок АИ-76 или АИ-92 с добавлением масла. Выпускаются бензиновые генераторы электричества в следующем исполнении:

  • стационарные;
  • передвижные;
  • переносные.

Переносной бензиновый генератор электричества

Импортные бензиновые генераторные установки адаптированы к отечественным маркам топлива и наряду с отечественными используются для запуска и обеспечения стабильной работы двигателей в экстремальных условиях низких температур. В зависимости от потребностей можно подобрать бензиновый электрогенератор со стартерным или ручным запуском, с увеличенным или стандартным топливным баком, а также в открытом исполнении либо в звукопоглощающем кожухе.

Дизельный

Бытовой автономный дизельный электрогенератор благодаря широкому диапазону мощности от 2 кВт до 3 МВт может использоваться как в качестве резервного, так и в качестве основного источника электропитания загородного дома, дачи или любого другого объекта. Выпускаются дизельные электрогенераторы в следующем исполнении:

  • стационарные;
  • передвижные;
  • открытые;
  • в контейнере;
  • в шумозащитном кожухе.

Дизельные электрогенераторные установки, в равной степени отечественные и импортные, адаптированы к к отечественным и европейским стандартам дизельного топлива, а к их преимуществам можно отнести:

  • низкий расход топлива;
  • низкий уровень шума;
  • незначительный выброс вредных продуктов сгорания.

Дизельный электрогенератор — оптимальный вариант, идеально справляющийся с энергоснабжением частного дома

Современные дизельные электрогенераторы оснащены устройствами видеонаблюдения, контроля и управления процессом генерации электрической энергии, показателями качества электрического тока на выходе, возможностью синхронизации работы нескольких генераторов в сети, устройствами для их автоматического пуска и остановки. Сегодня дизельные электрогенераторы остаются наиболее популярными устройствами для бесперебойного обеспечения электроэнергией жилых индивидуальных домов и небольших производств.

Газовый

В газогенераторных установках в качестве топлива используется любой природный, промышленный, попутный газ, а также балонная сжиженная газовая смесь пропан-бутан. Широкий диапазон паспортной мощности газовых генераторных устройств от 20 кВт до 2 МВт обусловливает и широчайший спектр их применения в качестве источников аварийного и постоянного электроснабжения жилых загородных домов, торговых, производственных и любых других объектов.

Для обеспечения безаварийной работы газогенераторной установки еще на стадии проектирования необходимо обеспечить принудительную вентиляцию и систему отвода отработанных газов из помещения, где установка будет размещена.

Для обеспечения безаварийной работы газогенераторной установки необходимо обеспечить принудительную вентиляцию и систему отвода отработанных газов из помещения

По сравнению с бензиновым и дизельным аналогами газогенераторная установка имеет следующие преимущества:

  • невысокая цена и более высокая экологичность газа в качестве топлива;
  • повышенный моторесурс: при сгорании газа не образуются твердые продукты сгорания, приводящие к быстрому износу деталей двигателя;
  • долговечность электрогенератора: газ не вызывает коррозии металлических деталей устройства.

Благодаря перечисленным преимуществам, а также возможности адаптации к газу бензинового двигателя, газ пока остается самым эффективным видом топлива для автономных электрогенераторов. При равной мощности эффективность газогенераторной установки вдвое выше по сравнению с бензиновым и дизельным аналогами даже при использовании баллонного сжиженного газа, а при подключении к магистральному газоснабжению этот показатель увеличивается в 15-17 раз.

Генераторы электричества своими руками

Стремясь жить в гармонии с природой и сэкономить на постоянно растущих в цене энергоносителях, все больше домовладельцев пытаются создать генератор электроэнергии своими руками, используя многолетний опыт ученых и современные инновационные технологии. Можно скептически относиться к солнечным батареям, ветровым генераторам электричества, приватным мини-гидроэлектростанциям и не умирающей надежде человека изобрести если не вечный двигатель, то как минимум автономный бестопливный генератор электричества, но перечисленные устройства позволяют если не полностью удовлетворить потребность дома в электроэнергии, то прилично сэкономить.

Самодельный ветрогенератор

На просторах СНГ электрогенераторы-ветряки пока не получили должного распространения, а в вот в Дании они стали важнейшим фигурантом государственной программы энергосбережения и обеспечения станы электроэнергией.

Самодельный ветрогенератор электричества

Создать такой асинхронный стационарный генератор электричества своими руками не сложно, а в ветреных приморских или горных районах он вполне может покрыть потребность в электроэнергии небольшого частного дома. Принцип работы ветрового генератора построен на том, что двигатель работает на энергии ветра и запускает генератор, а полученная от него электроэнергия затем аккумулируется в специальных батареях и распределяется затем по назначению.

Видео: как сделать ветряной генератор

Эта разновидность генераторов электроэнергии все чаще используется в частных и многоквартирных домах солнечных южных городов, но солнечные батареи последних моделей уже способны обращать в электрическую энергию и непрямые солнечные лучи, а поэтому в ближайшем будущем энергия солнца придет и в дома северных городов. К недостаткам солнечных батарей можно отнести их высокую стоимость и наличие достаточно большой площади для установки, а поэтому используются они чаще только для подогрева воды.

Видео: постройка солнечной батареи

Видео: обзор самодельной солнечной электростанции 600 вт

Бестопливные генераторы для дома

Давнюю мечту человечества о вечном двигателе возможно удалось воплотить грузинскому изобретателю Капанадзе, создавшему первый бестопливный электрогенератор. Суть изобретения сводится к тому, что устройство запускается от любого источника электроэнергии, а, войдя в резонанс, превращается в своеобразный генератор статического электричества, извлекающий статическое электричество из окружающей среды посредством двух разнесенных заземлителей.

Несмотря на популярность идеи, промышленный образец бестопливного генератора пока не создан

Несмотря на огромную популярность идеи, промышленный образец бестопливного генератора пока не создан, а поэтому и эффективность его еще не оценена по достоинству. Автор изобретения уверен, что устройство в будущем будет использоваться в электромобилях, на электротранспорте, а также в качестве стационарного источника бытового электричества или же зарядов статического электричества для различных целей.

Схемы бестопливных генераторов электричества

Видео: бестопливный генератор своими руками

Размышляя, как сделать генератор электричества самостоятельно, не забывайте, что реализация любой понравившейся идеи получения электроэнергии нетрадиционным способом требует существенных первоначальных затрат. Правда, в случае удачи они могут окупиться за 3-5 лет, а возможно и раньше. Каждый должен сам для себя решить, купить ли генератор от известного производителя или создать его самостоятельно, но одно очевидно — дом должен быть обеспечен надежным источником электричества на случай любых неожиданных форс-мажорных обстоятельств.

Самостоятельная сборка ветрогенератора в первую очередь предполагает создание самого генератора. И, как оказывается, это можно сделать легко из подручных средств.

Варианты изготовления

За длительное время существования альтернативной энергетики были созданы электрогенераторы самых разных конструкций. Их можно сделать своими руками. Большинство людей думает, что это трудно, так как требуется определенный объем знаний, различные дорогостоящие материалы и т.д. При этом генераторы будут очень низкой производительности по причине большого количества просчетов. Именно эти мысли заставляют желающих отказаться от идеи сделать ветряк своими руками. Но все утверждения являются абсолютно неправильными, и сейчас мы это покажем.

Умельцы чаще всего создают электрогенераторы для ветряка двумя методами:

  1. Из ступицы;
  2. Переделывают готовый двигатель под генератор.

Рассмотрим эти варианты более подробно.

Изготовление из ступицы

Самым разрекламированным среди всех вариантов является обычный самодельный дисковый генератор для ветряка, который создается с использованием неодимовых магнитов. Главными его преимуществами являются: простота сборки, не требует особых знаний, возможность не придерживаться точных параметров. Даже если будут допущены ошибки — это не страшно, так как в любом случае ветряком вырабатывается электричество и его можно довести до ума с приходом практики.

Итак, для начала нам нужно подготовить основные элементы для сборки ветрогенератора:

  • ступица;
  • тормозные диски;
  • неодимовые магниты 30х10 мм;
  • медная лакированная проволока диаметром 1,35 мм;
  • клей;
  • фанера;
  • стеклоткань;
  • эпоксидная или полиэфирная смола.

Самодельные дисковые генераторы делаются на основе ступицы и двух тормозных дисков от ВАЗ 2108. Можно с уверенностью говорить, что практически у любого хозяина найдутся в гараже эти части автомобиля.

На тормозных дисках мы расположим неомагниты. Их нужно брать в количестве, делимом на 4. Рекомендуемо применять 12+12 или 16+16 единиц. Это самые приемлемые варианты по эффективности и затратам. Располагать их нужно с чередованием полюсов. Статор нашего самодельного электрогенератора для ветряка также делается с использованием фанеры, которая выпилена по форме. Далее, на него устанавливаются намотанные катушки, и все заливается эпоксидной или полиэфирной смолой. Из стеклоткани рекомендуется вырезать два круга такого же размера, как и статор. Они будут закрывать верхнюю и нижнюю стороны для большей жесткости конструкции.

Неомагниты можно применять любой формы. Старайтесь заполнять полностью все колесо с минимальными зазорами между элементами. Катушки требуется наматывать так, чтобы общее количество витков было в пределах 1000-1200. Это даст возможность генератору выдавать при 200 об/мин 30 В и 6 А. Также будет значительно лучше делать их овальными, а не круглыми. Ветровой электрогенератор станет более мощным благодаря такому решению.

=»Неомагниты для ветрогенератора» width=»640″ height=»480″ size-full wp-image-697″ />
Что касается статора нашего будущего генератора для ветряка, то его толщина обязательно должна быть меньше, чем размер магнитов, например, если магниты имеют толщину 10 мм, то статор лучше всего выполнить 8 мм (по 1 мм зазора оставить). Размеры дисков же должны быть больше толщины магнитов. Все дело в том, что через железо все магниты подпитывают друг друга и чтобы вся сила уходила именно в полезную работу требуется выполнять это условие. Если учитывать это, делая электрогенератор своими руками, то можно немного повысить его эффективность.

Подключение катушек

Собранный своими руками генератор для ветряка может быть как однофазным, так и трехфазным. Большинство начинающих выбирают первый вариант, так как он немного проще и легче. Но у однофазного подключения есть недостатки в виде повышенной вибрации под нагрузкой (гайки могут раскручиваться) и своеобразный гул. Если данные показатели не имеют значения, то катушки требуется соединять следующим образом: конец первой нужно спаять с концом второй, вторую катушку с третьей и т.д. Если что-то перепутать — схема работать не будет. Хотя здесь сложно что-то сделать не так.


Трехфазная схема хоть и требует большей внимательности, но при этом установка под нагрузкой не гудит и практически не вибрирует, а разведенные фазы под 120 градусов повышают мощность в определенных режимах работы. Трехфазное подключение катушек своими руками заключается в соединении их через 3 единицы. Например, при использовании 12 катушек распаиваются для первой фазы 1, 4, 7 и 10. Для второй — 2, 5, 8 и 11. Для третьей — 3, 6, 9 и 12. Все шесть получившихся концов можно смело выводить наружу из статора. Соединять фазы можно звездой (для получения большего напряжения) или треугольником (для получения большей силы тока).

Элементы основы можно заказать у токаря. Это будет более верным решением, так как автомобильная ступица и тормозные диски довольно массивные. Также можно сделать небольшую хитрость в виде увеличения диаметра всего колеса, ведь чем он больше, тем выше радиальная скорость ветрогенератора.

Дисковые генераторы имеют простую конструкцию, высокую эффективность и у них отсутствует эффект залипания. Дополнительно, ветровые установки, созданные на их основе, довольно легкие. Но по причине отсутствия сердечников, магнитов требуется использовать в два раза больше. Рассмотренный вариант является самым простым для создания ветряка своими руками.

Изготовление из асинхронного двигателя

Генератор для ветряка также можно сделать благодаря переделке асинхронного двигателя. Для этого требуется или переточить ротор на размер неомагнитов, или сделать его своими руками. Переточка родного ротора предполагает еще и использование стальной гильзы, которая бы замыкала магнитное поле. По этой причине нужно учитывать и ее толщину. Можно использовать как круглые, так и квадратные магниты. Последний вариант более эффективный по причине возможности установить их с большей плотностью.

Вследствие неизбежного залипания ротора, клеить неомагниты нужно с небольшим скосом. Смещение требуется делать по принципу зуб + паз. Делая генератор своими руками нужно также перематывать катушки. Причиной тому является использование обмотки из тонкого провода, который не рассчитан на большие напряжения и ампераж. Если используются низкооборотные двигатели, то перематывать их под генератор не требуется, так как у них уже используется хороший, толстый провод.

Перематывать двигатели под генераторы своими руками несложно, но рекомендуется доверить данную работу электрикам. Это позволит избежать ошибок и при этом ветряки из асинхронников получаются значительно эффективнее.


Решение оборудовать ветровые установки мультипликатором позволяет не перематывать двигатель. Также можно поставить небольшой электромагнит для самовозбуждения. Его запитка производится за счет самого вращения ветряка, а чтобы он не потреблял электричество с аккумулятора устанавливается в цепь мощный диод.

В конце хотелось бы сказать, что сделать самодельный генератор для своего ветряка довольно просто. И для этого не требуется особых знаний. Нужно запастись терпением и готовностью проводить опыты. Но при этом следует помнить о технике безопасности, так как электрогенераторы могут вырабатывать большие токи.

Бестопливный генератор электроэнергии

Стационарный электрический шихтованный электромагнитный сердечник, набранный из тонких листов до получения необходимой высоты набора, имеющий закрытые пазы, радиально распределенные, в которых расположены вместе две трехфазные обмотки, одна в центре, другая на периферии, с целью получения вращающегося электромагнитного поля.

Подводя временно трехфазный ток к одной из указанных обмоток, и, таким образом, получаем индуцированное напряжение на второй обмотке; исходя из этого, имеем выходящую энергию намного больше, чем входную. С выхода схемы энергия по обратной связи подается на вход и временный источник питания после отключается. Генератор будет работать самостоятельно неопределенно долго, постоянно вырабатывая большой избыток энергии.

(Автономный бестопливный генератор электроэнергии, бестопливный генератор своими руками,электромагнитный генератор,eco technology, свободная энергия, альтернативная энергия)

Описание рисунков

Рис.1 показывает первый вариант настоящего изобретения.

где: 1- внешний сердечник;

2- внутренний сердечник;

3- обмотки возбуждения;

4а- якорные (приемные) обмотки;

5а, 5в, 5с, 6- клеммы фазных обмоток возбуждения и нейтрали.

Рис.2 показывает схему размещения внутренних обмоток для варианта настоящего изобретения, показанного на рис.1.

где: 4в- схема соединения якорных (приемных) обмоток;

7а, 7в, 7с, 8- клеммы фазных якорных обмоток и нейтрали.

Рис.3 показывает единый наборный сердечник для второго варианта настоящего изобретения.

где: 9- сердечник;

10- пазы для обмоток.

Рис.4 показывает разделенный наборный сердечник, состоящий из двух частей для второго варианта настоящего изобретения.

где: 9а- внутренний сердечник;

10- внешний сердечник.

Рис.5 показывает схему размещения обмоток второго варианта изобретения, сделанного из наборных сердечников, показанных на рис.3 и 4.

где: 2- клеммы фазных якорных (приемных) обмоток;

11- ферромагнитный сердечник;

Рис.6 показывает пример распределения магнитного поля, производимого настоящим изобретением.

Рис.7 показывает вращение магнитного поля, производимого настоящим изобретением.

Рис.8 показывает полную систему настоящего изобретения.

где: 24- временный внешний источник питания;

25- электронный преобразователь (инвертор) постоянного напряжения в переменное трехфазное напряжение;

26- входные клеммы постоянного тока питания инвертора;

27- отбор мощности в виде постоянного тока;

28- выход переменного трехфазного напряжения из инвертора;

29- выходные клеммы генератора;

30- выходные клеммы обратной связи от генератора;

31- диодный выпрямитель;

32- выход постоянного напряжения после выпрямителя.

Рис.9 показывает расширенную схему второго варианта настоящего изобретения, показанного на рис. 3 и 4.

где: 11- ферромагнитный сердечник;

12- клеммы трехфазных обмоток возбуждения;

13, 14, 15- фазные обмотки возбуждения;

16- месторасположение фазных обмоток возбуждения;

17- месторасположение фазных якорных (приемных) обмоток;

18, 19, 20- фазные якорные (приемные) обмотки.

21- выходные клеммы генератора;

33- временный трехфазный внешний источник питания;

34- линия обратной связи генератора;

35- трансформатор для питания обмоток возбуждения;

36- трехфазный фазорегулятор;

37- размыкатель обратной связи генератора.

(0001) Существующая заявка требует приоритета от U.S. Временное Применение № серии 60/139.294, поданная 15 июня 1999 года.

(0002) Основание изобретения

(0003) Настоящее изобретение относится главным образом к области электрических энергогенерирующих систем. Конкретнее, настоящее изобретение относится к самопитающим (автономным) электроэнергогенерирующим устройствам.

(0004) Описание настоящего изобретения.

(0005) С тех пор, как Никола Тесла изобрел и запатентовал свою полифазную систему для генераторов, индуктивных двигателей и трансформаторов, никакого существенного усовершенствования не было сделано в области поля.

Генераторы производят многофазные напряжения и токи посредством механического вращательного движения, чтобы вынудить магнитное поле вращаться поперек радиально расположенных обмоток генератора. Основой системы индукционных двигателей было получение электромагнитного вращающегося поля, которое принуждает напряжения и токи производить электродвижущие силы, пригодные к использованию как механическая энергия или мощность. Наконец, трансформаторы управляли бы напряжениями и токами, чтобы делать их удобными для использования и передачи на длинные расстояния.

(0006) Во всех существующих электрических генераторах небольшое количество энергии, обычно меньше чем 1% выходной мощности больших генераторов, используется для возбуждения механически вращающихся электромагнитных полюсов, которые индуцируют напряжения и токи в проводниках, имеющих относительное движение между вращающимися и неподвижными полюсами.

(0007) Остальная часть энергии, расходуемая в процессе получения электричества, необходима, чтобы перемещать обмотки в пространстве и компенсировать потери системы: механические потери, потери на трение, потери на щетках, потери на сопротивление воздуха, потери реакции якоря, потери воздушного промежутка, потери на синхронное реактивное сопротивление, потери на вихревые токи, потери гистерезиса. Все они вместе являются причиной того, что во входной потребляемой энергии системы преобладает избыток механической энергии, необходимый для генерации всегда арифметически меньшего количества электроэнергии.

008) Непрерывный электрический генератор (далее НЭГ) состоит из стационарного цилиндрического электромагнитного сердечника, набранного из тонких листовых пластин до образования цилиндра, в пазах которого расположены две трехфазные обмотки, не имеющие возможности двигаться или смещаться относительно друг друга. Когда одна из обмоток соединяется с временным трёхфазным источником питания, ею создается вращающееся электромагнитное поле, и это поле будет пересекать неподвижные катушки вторичных обмоток, индуктируя в них напряжения и токи. Таким же образом и в той же степени, как и в обычных генераторах, приблизительно один процент и менее от выходной мощности будет необходим для возбуждения и поддержания вращающегося магнитного поля.

(0009) В НЭГ нет никаких механических потерь, потерь трения, потерь сопротивления воздуха, потерь на щетках, потерь реакции якоря и потерь воздушного промежутка, так как нет никакого механического движения любого вида. Имеются лишь следующие потери: синхронные реактивные (индуктивные) потери, потери на вихревые токи и гистерезис, которые присущи конструкции и материалам генератора, но в той же самой степени, как и для обычных генераторов.

(0010) Один процент и менее полной энергии, произведенной существующими генераторами, идет на создание их собственного магнитного поля; механическая энергия, которая превышает суммарную выходную энергию существующих генераторов, используется, чтобы заставить это поле вращаться в процессе генерации электрического тока из этого поля. В НЭГ нет никакой потребности в движении, так как поле фактически уже вращается электромагнитным образом, следовательно, надобность в механической энергии отпадает. При сходных соотношениях токов возбуждения, сечений сердечника и конструкции обмоток, НЭГ значительно более эффективен, чем существующие генераторы, что также значит, что он может произвести значительно больше энергии, чем ему нужно для управления. НЭГ может запитывать себя сам по обратной связи, и генератор, после отключения временного (пускового) источника питания, переходит в автономный режим работы.

(0011) Как и любой другой генератор, НЭГ может возбудить свое собственное электромагнитное поле, используя минимальную часть произведенной собой же электроэнергии. НЭГ только нуждается в запуске посредством подсоединения его трехфазной обмотки индуктора к трехфазному внешнему источнику питания на время, необходимое для пуска, и после отключения от временного источника работа НЭГ будет происходить так, как было здесь описано. НЭГ будет постоянно генерировать большое количество электроэнергии согласно своей конструктивной мощности.

(0012) НЭГ может быть разработан и рассчитан с применением всех существующих на сегодня математических формул и соотношений, используемых при разработке и расчете современных электрических генераторов и двигателей. В расчетах применяются все законы и соотношения, используемые для подсчетов электромагнитной индукции и генерации.

(0013) За исключением Закона Сохранения Энергии, который, по большому счету, является не математическим уравнением, а теоретической концепцией, и по этой же самой причине не играющий никакой роли в математическом исчислении работы электрического генератора любого типа, НЭГ соблюдает все законы физики и электротехники. Существование НЭГ обязывает нас пересмотреть Закон Сохранения Энергии. По моему личному убеждению, электричество никогда не получалось из механической энергии, которую мы вкладываем в машину для перемещения масс и преодоления сопротивлений. Механическая система фактически обеспечивает канал для уплотнения электричества. НЭГ обеспечивает более эффективный канал для электричества.

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ.

(0023) Настоящее изобретение- НЭГ, способный вырабатывать больше энергии, чем потреблять, и который обеспечивает себя производимой электроэнергией. Основная идея состоит в индуцировании электрического напряжения и тока без любого физического движения посредством использования вращающегося магнитного поля, полученного на трехфазном статоре, временно подключенного к трехфазному источнику питания, в размещенных неподвижных проводниках на пути указанного вращающегося магнитного поля, исключая надобность в механических силах.

(0024) Основной вариант системы представлен на рисунке 1, который показывает первый вариант настоящего изобретения. На рисунке показан стационарный ферромагнитный сердечник 1 с трехфазными обмотками возбуждения 3, расположенными под углами в 120 0 и соединенными в “звезду” 6, чтобы обеспечить вращающееся электромагнитное поле, которое в данном случае будет двухполюсным. Внутри сердечника 1 расположен второй стационарный сердечник 2 из ферромагнетика, без зазора между ними, то есть без воздушного промежутка. Этот второй сердечник имеет стационарные трехфазные обмотки 4А (рис.1), и 4В (рис.2), расположенные относительно внешних обмоток возбуждения 3 так, как показано на рисунках 1 и 2. Между этими двумя сердечниками нет никакого движения, также нет и воздушного промежутка между ними. Осей на сердечниках нет, так как нет вращения самих сердечников. Оба сердечника могут быть изготовлены из сложенных изолированных пластин или из изолированного и спрессованного ферромагнитного порошка (феррита). Система работает в обоих направлениях, индуцируя трехфазные напряжения и токи на стационарных катушках 4А внутренних обмоток 4В, выводя трехфазные токи на клеммы Т17А, Т27В и Т37С с внутренних обмоток 4В. Когда трехфазное напряжение подается на клеммы А5А, В5В и С5С, токи будут иметь одну и ту же величину, но они будут сдвинуты по времени на угол в 120 0 . Эти токи производят магнитодвижущие силы (МДС), которые, в свою очередь, создают вращающийся магнитный поток. Конструкция может варьироваться в широких пределах, так как она повторяет конструкцию современных альтернаторов (генераторов) и трехфазных моторов, однако в основе лежит один принцип: стационарное, но постоянно вращающееся магнитное поле, индуцирующее напряжения и токи в неподвижных катушках, расположенных на пути вращающегося магнитного поля. Схема показывает двухполюсное устройство обеих обмоток, но может быть использовано и множество других устройств, как в обычных двигателях и генераторах.

(0025) Рис.2 показывает размещение трехфазных внутренних обмоток 4В, которые обеспечивают практически симметричные напряжения и токи вследствие сдвига в 120 0 . Это подобно двухполюсной компоновке. Множество других трех- или полифазных компоновок может быть использовано. Везде, где проводник пересекает вращающееся магнитное поле, будет индуцироваться напряжение, снимаемое с клемм. Взаимные соединения обмоток зависят от устройства системы. В данном случае, мы получим трехфазное напряжение на клеммах Т17А, Т27В и Т37С и на нейтрали 8. Выходное напряжение зависит от плотности вращающегося магнитного потока, числа витков приемных обмоток, частоты приложенного тока (вместо скорости вращения) и длины проводника, пересекаемого полем, как и в любых других генераторах.

(0026) Рис.3 показывает второй вариант настоящего изобретения, в котором генератор изготовлен из набора одинаковых изолированных пластин, сложенных вместе в цилиндр до получения необходимой высоты. Этот вариант также может быть изготовлен из цельного куска феррита. Одни и те же пазы (окна) 10 будут содержать в себе внутренние и внешние обмотки 3, т.е. приемные обмотки и обмотки возбуждения (см. рис. 5). В данном случае показан 24- пазовый сердечник, но количество пазов может широко отличаться в зависимости от потребностей и конструктива.

(0027) Рис.4 показывает две части одной пластины для еще одного варианта настоящего изобретения. Для практического применения каждая пластина может быть разделена на две части: 9А и 9В, как показано, с целью облегчения намотки катушек. Потом эти части вставляются друг в друга без зазоров, как если бы они были единым целым.

(0028) Пластины, описанные выше, могут быть изготовлены из тонких (толщиной 0.15 мм и менее) изолированных листов 9 (или 9А и 9В) из материала с высокой магнитной проницаемостью и низкими потерями на гистерезис, такого, как, например, Hiperco 50A или аналогичного, для уменьшения потерь, или из прессованного электрически изолированного ферромагнитного порошка, который имеет более низкие потери на вихревые токи и гистерезис, что может сделать генератор более эффективным.

(0029) Принцип действия генератора.

НЭГ, как описано и показано на нижеследующих рисунках, разработан и предназначен для производства мощного вращающегося электромагнитного поля с низкими токами возбуждения. Используя слоистые материалы, типа вышеупомянутого Hiperco 50A, мы можем получить вращающиеся магнитные поля индукцией более 2 Тесла, так как нет никаких потерь воздушного промежутка, механических потерь, потерь сопротивления воздуха, потерь реакции якоря и т.п., указанных выше. Это может быть получено подачей трехфазного напряжения на клеммы А, В, С 12 обмоток возбуждения 13, 14 и 15 (5А, 5В и 5С на рис. 1), размещенных через угол 120 0 по отношению друг к другу (см. рис. 50) с внешнего источника питания.

(0030) Рис. 5 показывает пространственное размещение индукционных обмоток 13, 14 и 15 также, как и приемных обмоток 18А, 18В, 19А, 19В, 20А и 20В. Обе: и индуцирующие и приемные обмотки размещаются в одних и тех же пазах 10 или 16 и 17 одинаковым образом. Даже при том, что система работает в обоих направлениях, лучшая конфигурация, думается, следующая: обмотки возбуждения 13, 14 и 15 — в центре, а приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В — на периферии, т.к. малые обмотки более предпочтительны для возбуждения очень сильного вращающегося магнитного поля, благодаря низким потерям процесса, а с другой стороны, большие и мощные обмотки нужны для извлечения всей энергии, которую обеспечивает система. Обе обмотки соединены в “звезду” (не показано), но они могут соединяться и другими способами, как на других генераторах. Все вышесказанное справедливо и для варианта устройства, показанного на рисунках 1 и 2.

(0031) Обмотки возбуждения 13, 14 и 15 разработаны и рассчитаны таким образом, чтобы генератор мог запускаться от обычного трехфазного напряжения (230 В 60 Гц, например). Если местные напряжения в сети не подходят, можно управлять напряжением до получения желанного уровня с помощью трехфазного трансформатора, электронного преобразователя или инвертора и т.д. Как только мы получим нужное мощное магнитное поле, вращающееся и пересекающее неподвижные приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В, трехфазное напряжение может быть снято с клемм Т1, Т2, Т3 и N21 пропорционально плотности магнитного потока, количеству витков в катушках, частоты генерации (вместо угловой скорости вращения индуктора), длины проводников, пересекаемых вращающимся полем, как и в любом другом генераторе. Выходные токи будут трехфазными токами (или многофазными в зависимости от конструкции), и мы можем получить нейтраль 21, если используем соединение “звездой”, как в любых других генераторах.

(0032) Выходные переменные напряжения и токи — совершенные синусоидальные кривые, разделенные во времени и полностью симметричные. Напряжения и токи, полученные этим способом, пригодны к использованию любым существующим методом. Любые напряжения могут быть получены, в зависимости от конструкции.

0033) Рис. 6 показывает образец магнитного потока, произведенного трехфазной обмоткой возбуждения 13, 14 и 15. Этот поток подобен потоку в статорах индукционных двигателей. Так как нет воздушного зазора, все части магнитного потока гомогенны (неразрывны) вне зависимости от используемого материала. Сердечник изготовлен из тонких изолированных пластин с высокой магнитной проницаемостью и низкими потерями на гистерезис; потери на вихревые токи минимальны благодаря небольшой толщине пластин. Нет никаких встречных потоков и реакции якоря, следовательно, магнитный поток может быть близким к потоку насыщения сердечника, а получен он может быть относительно небольшим током возбуждения или малой входной энергией. Благодаря сдвигу во времени между тремя фазами и пространственному распределению обмоток возбуждения, вращающееся магнитное поле может быть получено в сердечнике, как показано на рис. 7.

(0034) После запуска генератора небольшую часть полученной энергии подают на вход (рис. 8 и 9), чтобы питать катушки возбуждения 3 (на рис.1) или 13, 14 или 15 (на рис.5), как и в любом другом генераторе с самовозбуждением. Естественно, напряжения и фазы должны быть совершенно идентичны и симметричны, и если необходимо, то напряжения обратной связи могут быть обработаны и изменены различными трансформаторами, электронными регуляторами, фазорегуляторами (для коррекции фаз) или другими видами контроллеров напряжения и фаз.

(0035) Один возможный метод заключается в использовании электронного преобразователя 25, который первоначально выпрямляет линейное напряжение с двух или трех фаз переменного тока 24 в постоянный ток электронным выпрямителем 26 и после, электронным способом, преобразует постоянный ток 27 в переменный трехфазный ток 28 для получения трехфазных токов, сдвинутых по времени на 120 0 для возбуждения электромагнитных полей А, В и С. Некоторые преобразователи или инверторы используют однофазное (двухпроводное) питание, в то время как другие используют только трехфазное питание. Настоящий вариант использует преобразователь на 3 кВА, который может быть запитан двумя источниками по 220 В.

(0036) Вращающееся магнитное поле, полученное токами, протекающими через трехфазные обмотки возбуждения 13, 14 и 15, вызывает напряжение, подающееся на клеммы Т1, Т2, Т3 и N29 (7А, 7В, 7С, 8 на рис.2). После, выходное напряжение по проводам 30 возвращается назад в систему, преобразуясь в обратный переменный ток, который выпрямляется диодным выпрямителем 31 в постоянный ток 32 и после подается на клеммы электронного инвертора 26 (см. рис.8). После того как обратная связь замкнулась, НЭГ может быть отключен от временного источника 24 и дальше производить электроэнергию автономно.

(0037) На рис.9 показан второй вариант НЭГ. Основные принципы остаются такими же, как для описанного выше генератора, так и для показанного на рис. 1 и 2. Главные отличия заключаются в форме пластин и в пространственном распределении обмоток, как описано и показано ранее. Изменения в цепях обратной связи, использовании инверторов и фазосдвигающих трансформаторов также показаны.

(0038) Ферромагнитный сердечник 11 набран из цельных пластин 9, как показано на рис.3 (или из разделенных для удобства, как показано на рис.4), до получения желаемой высоты. Пазы 10, как показано ранее, содержат обе обмотки: возбуждения 13, 14, и 15 и приемные (якорные) 18А, 18В, 19А, 19В, 20А и 20В в тех же самых окнах 10 или 16 и 17. Выводные провода трех фаз 12 ведут к трехфазным обмоткам возбуждения 13, 14 и 15. Они запитаны: первоначально от временного источника 33 и от трехфазного выходного источника 34, как только генератор выйдет на самогенерацию.

(0039) Обмотки возбуждения 13, 14 и 15 имеют двухполюсное устройство, но много других трехфазных или многофазных устройств могут быть использованы для получения вращающегося электромагнитного поля. Эти обмотки соединены в “звезду” (не показано) тем же самым способом, как в варианте на рис. 1, 2 и 8, но могут быть соединены и другими способами. Обмотки возбуждения 13, 14 и 15 расположены на внутренней части 16 пазов 10.

(0040) Якорные (приемные) обмотки 18В, 19А, 19В, 20А и 20В имеют двухполюсное устройство, точно повторяя устройство обмоток возбуждения 13, 14 и 15, но много других различных устройств могут быть применены в зависимости от конструкции и назначения. Приемные (якорные) обмотки должны быть рассчитаны в направлении того, чтобы генератор имел наименьшие возможные синхронные реактивные и активные сопротивления. Поэтому большая часть выработанной энергии должна уходить в нагрузку, а не расходоваться на внутренних сопротивлениях. Эти обмотки соединяются в “звезду” для образования нейтрали 21, таким же самым способом, как и в варианте изобретения, показанного на рис.2, но могут быть соединены и по- другому, в зависимости от потребности. Якорные (приемные) обмотки расположены во внешней части 17 пазов 10.

(0041) Выходящие провода трех фаз и нейтрали 21 идут от якорных обмоток 18В, 19А, 19В, 20А и 20В. Вращающееся магнитное поле. созданное в сердечнике (см. рис. 6 и 7) обмотками возбуждения 13, 14 и 15, индуцирует напряжение, подводимое к клеммам Т1, Т2 и Т3 плюс нейтрали 29. С каждого трехфазного вывода 21 снимается по проводам 34 обратное напряжение для самозапитки системы.

(0042) Временный трехфазный источник питания 33 для запуска системы подключается к клеммам А, В и С 12. Н.Э.Г. должен мгновенно запуститься от внешнего трехфазного источника, а потом отключиться от него.

(0043) Даже при том, что выходное вторичное линейное напряжение может быть точно рассчитано и получено на якорных (приемных) обмотках, напряжение, необходимое для питания обмоток возбуждения (в зависимости от конструкции), может быть получено с трехфазного регулируемого трансформатора или с другого преобразователя напряжения 35, включенного между входом и выходом для более точного регулирования возвращаемого напряжения.

(0044) Расположенный после регулируемого трансформатора 35, трехфазный трансформатор- фазорегулятор будет корректировать и выравнивать любой сдвиг фаз в углах напряжений и токов до того, как подать питание на обмотки возбуждения. Эта система работает аналогично изображенной на рис. 8, которая использует преобразователь 25.

ак только напряжение и фазы совпадут с временным источником 33, выходные цепи 34 соединяются с входными цепями А, В и С 12 по цепи обратной связи 37 и временный источник 33 после отключается. НЭГ останется работать неопределенно долго без подвода энергии от внешнего источника, обеспечивая постоянно большой выход энергии.

(0046) Выходящая электроэнергия, вырабатываемая в этой системе, использовалась, чтобы произвести свет и тепло, запитывались многофазные двигатели, генерировались одно- и многофазные напряжения и токи промышленных частот, преобразовывались напряжения и токи посредством трансформаторов, выпрямлялись многофазные токи в постоянный ток так же хорошо, как и для других использований. Электричество, полученное описанным выше способом, столь же универсально и совершенно, как и электричество, получаемое обычными электрогенераторами. Но НЭГ автономен и не зависит от какого-либо другого внешнего источника энергии, он запитан сам от себя; он может быть использован везде без ограничений, он может быть сконструирован любого размера и обеспечивать выработку любого количества электроэнергии постоянно, согласно своей конструкции.

(0047) НЭГ является и будет очень простой машиной. Краеугольными камнями системы являются: ультранизкие потери неподвижных генерирующих систем и очень низкие конструктивные потери на синхронные реактивные сопротивления.

(0048) Приемные (якорные) обмотки должны быть рассчитаны исходя из того, что генератор должен иметь минимально возможные активное (омическое) сопротивление и наименьшее синхронное реактивное сопротивление. Исходя из этого, большая часть выходной мощности будет уходить в нагрузку, а не расходоваться на преодоление внутренних сопротивлений.

Патентная формула заключается в следующем:

1. НЭГ, включающий в себя:

Сердечник, имеющий множество пазов;

Возбуждение заключается в производстве стационарного вращающегося электромагнитного поля, читай индукция возбуждения должна пронизывать множество пазов;

Электромагнитная индукция состоит в наведении электрической энергии, читай индукция наведения должна присутствовать во множестве пазов, также наведенная индукция должна быть источником энергии для питания обмоток возбуждения;

2. НЭГ, описанный в 1 пункте, имеет цельный, нераздельный сердечник;

3. НЭГ, описанный в 1 пункте, может также состоять из:

Внешней части, причем внутренняя и внешняя части должны быть собраны вместе без зазоров и неподвижно друг относительно друга.

4. НЭГ, описанный в 1 пункте, может иметь сердечник, набранный из множества пластин.

5. НЭГ, описанный в 1 пункте, может иметь сердечник, изготовленный из ферритового порошка, спрессованного, отформованного и изолированного.

6. НЭГ, описанный в 1 пункте, может иметь цилиндрическую цельную центральную часть.

7. НЭГ, описанный в 1 пункте, имеет множество пазов (щелей), расходящихся в стороны от цилиндрической центральной части к внешнему краю сердечника.

8. НЭГ, описанный в 1 пункте, в котором возбуждение происходит в первом (внешнем) ряду электрических обмоток.

9. НЭГ, описанный в 1 пункте, в котором наведение (индукция) происходит во втором (внутреннем) ряду электрических обмоток.

10. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток имеет двухполюсное устройство.

11. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток имеет двухполюсное устройство.

12. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 120 0 относительно друг друга.

13. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 120 0 относительно друг друга.

14. НЭГ, описанный в 7 пункте, в котором обмотки возбуждения расположены в пазах вблизи цилиндрической центральной части.

15. НЭГ, описанный в 7 пункте, в котором приемные (якорные) обмотки расположены в пазах в противоположной стороне от цилиндрической центральной части.

16. НЭГ, описанный в 1 пункте, кроме того, включает в себя систему обратной связи для отбора мощности от приемных катушек для собственных нужд генератора.

17. НЭГ, описанный в 16 пункте, в котором источник питания отключается, как только заработает система обратной связи для отбора мощности для питания обмоток возбуждения.

18. НЭГ, описанный в 16 пункте, кроме того, включает в себя регулятор, служащий для регулировки выходной мощности.

19. НЭГ, описанный в 16 пункте, кроме того, включает в себя фазорегулятор для регулирования сдвига фаз на выходе источника питания.

(альтернативная энергия,Автономный бестопливный генератор электроэнергии, бестопливный генератор своими руками,электромагнитный генератор,eco technology, свободная энергия, кулибины)

Russian portal about alternative energy and eco technology

В разделе размещена основная информация для изготовления генераторов для ветряков. Расчёты напряжения, силы тока, и мощности генераторов. Переделка асинхронных двигателей на неодимовые магниты. Дисковые аксиальные генераторы. Генераторы из автомобильных генераторов. Схемы соединения обмоток статора.

Расчёт мощности и КПД генератора, подбор винта

>

Как делать дисковый аксиальный генератор инструкция

>

Тестирование статоров на 9 и 18 катушек,
какой статор оказался лучше

>

Магниты для ветрогенераторов

>

Мощность и КПД генератора — от чего они зависят

>

Расчёт дискового генератора

>

Таблица сопротивлений медного провода различных диаметров

>

Нестандартная обмотка генератора, снижение залипания

>

Напряжение автомобильных генераторов

>

И снова Авто-генератор!

>

Авто-генератор на ветряк без переделки

>

Переделка асинхронных двигателей на неодимовые магниты

>

Расчёт и изготовление генератора

>

Как расчитать генератор для ветряка

>

Расчет аксиального генератора

>

Переделываем асинхронный вгенератор

Как измерить момент страгивания генератора Процесс измерения момента страгивания или величины залипания генератора очень прост, всего лишь нужно ускорение свободного падения умножить на длину плеча в метрах и умножить на вес груза весящего на плече в килограммах. Подробнее смотрите в статье.

Борьба с залипаниями в генераторах

Генератор переменного тока от автомобиля для ветроэлектростанции
Достоинства : дешевый, легко найти, уже собран.

Недостатки : требуется высокая скорость вращения — поэтому требуется дополнительно зубчатая передача или шкив, небольшой выход энергии, токосъемник требует постоянного техобслуживания.

: низкая.
Главная проблема при использовании автомобильных генераторов для ветряков – то, что они разработаны для слишком высоких скоростей — для получения ветряной энергии приходится выполнить множество значительных модификаций. Даже маленькая и работающая на сравнительно быстрых оборотах ветряная мельница требует скорости 600 об/мин, что даже близко нельзя назвать достаточным для автомобильного генератора. Это значит, что придется использовать зубчатые передачи или шкивы, чтобы большая часть энергии тратилась на вращение.

Стандартный автомобильный генератор электромагнитный – то есть часть вырабатываемой энергии должна быть послана на якорь через щетки и токосъемники, чтобы создать магнитное поле. Генератор, который использует электричество для возникновения поля, менее эффективный и более сложный. Тем не менее, его проще регулировать, так как магнитный поток может быть изменен настройкой мощности поля.Кроме того, щетки и токосъемники имеют тенденцию изнашиваться, требуя постоянного ухода.

Генератор также может быть перемотан для выработки энергии на более низких скоростях. Это возможно путем замены существующих витков статора более частыми витками из более тонкой легированной стали.

Как сделать ветряной генератор своими руками?

Альтернативные источники энергии — это то, о чем мечтает почти каждый владелец загородного дома, усадьбы и т. д. Такие источники могут обеспечить жилье необходимым электричеством, а платить за него не придется вовсе, особенно если сделать все своими руками. Поэтому стоит рассмотреть в качестве такого источника ветряной генератор.

Разрешается ли законом установка оборудования?

Прежде чем приступать к практическому этапу, покупке нужных вещей и прочего, стоит разобраться с тем, можно ли с точки зрения внешних факторов заняться установкой такого приспособления.

К примеру, если необходимо обеспечить электрической энергией небольшой загородный дом или усадьбу, вполне хватит небольшого ветряного генератора с мощностью на 1 кВт. На территории Российской Федерации данные приборы были приравнены к бытовым. Это значит, что нет необходимости в дополнительном пакете документов, разрешениях или прочем. К тому же налогов, которые накладываются на добычу электроэнергии, в случае ее использования для бытовых нужд человека, также не предусматривается. Это значит, что установка малого ветряка поможет добывать энергию и использовать ее в своих целях, не выплачивая при этом государству никаких средств. Единственное, о чем следует позаботиться, — это сведения о местных актах на добычу электроэнергии таким образом.

Характеристики ветряка

Несмотря на то что ветряной генератор вполне может быть установлен на участке без каких-либо претензий со стороны государства, проблемы могут возникнуть с соседями, к примеру. Может случиться так, что он будет мешать другим людям, что вызовет претензии и возможные жалобы. По этим причинам необходимо большое внимание уделить некоторым параметрам как при покупке, так и при самостоятельном изготовлении.

  1. Высота мачты. Во время сборки ветряного генератора нужно помнить о том, что существуют ограничения на высоту для построек индивидуального предназначения. Если рядом имеется аэропорт, тоннель или мост, то высота строения не может превышать 15 метров.
  2. Шум от работы оборудования. Естественно, что во время работы ротор и лопасти будут производить некоторый шум. Чтобы измерить данный параметр, есть специальные приборы. После измерения необходимо задокументировать полученные результаты. Они не должны превышать шумовых норм.
  3. Помехи в эфире. Во время обустройства ветряка необходимо озаботиться тем, чтобы он не создавал помех в эфире. Это актуально лишь для тех мест, где генератор в принципе способен создать такие неприятности.
  4. Экологическая составляющая. Редко, но все же могут быть претензии и от этой службы. Они могут быть предъявлены лишь в том случае, если ветряной генератор для дома будет находиться на пути миграции птиц, чем будет им мешать. Однако это происходит крайне редко.

Если устройство изготавливается своими руками, то этим параметрам нужно уделить особое внимание. Если же ветряк покупной, то стоит проверить его технический паспорт, чтобы ознакомиться со всеми характеристиками.

Принцип работы устройства

Для того чтобы успешно собрать ветряной генератор для дома, необходимо понимать, как он работает. Довольно часто данную установку также называют ветроэлектрической (ВЭУ). Данное оборудование используется для того, чтобы превращать кинетическую энергию, создаваемую ветром, для преобразования ее в механическую. Механическая энергия, в свою очередь, будет вращать ротор, в результате чего и будет образовываться электрическая энергия.

Состав ветроэлектрической установки следующий:

  • несколько лопастей, которые будут образовывать пропеллер;
  • вращающийся ротор турбины;
  • необходим сам генератор и ось генератора;
  • потребуется инвертор, который будет играть роль преобразователя переменного тока в постоянный, чтобы заряжать батареи;
  • аккумулятор.

Суть работы данного устройства намного проще, чем кажется на первый взгляд. Сила ветра будет вращать лопасти, которые связаны с ротором. Вращение данного приспособления будет создавать переменный ток трехфазного типа. Он, в свою очередь, будет использоваться для того, чтобы заряжать аккумуляторную батарею постоянного тока. После этого в работу вступает инвертор, который будет преобразовывать постоянный ток и делать его пригодным для использования в бытовых целях.

Принцип работы любого сделанного своими руками ветряного генератора или же купленного состоит в том, что во время вращения лопастей будет образовываться сразу три разных вида силы. Они делятся на три типа по виду своего воздействия и могут быть тормозящими, подъемными и импульсными. Два последних типа воздействия будут постоянно преодолевать тормозящую, что приведет в движение маховик. У генератора имеется неподвижная часть, статор, на котором ротор будет создавать поле магнитного типа, чтобы была возможность передавать электрическую энергию по проводам.

Разновидности устройств

На сегодняшний день существует несколько признаков, по которым можно разделить на несколько групп сделанные своими руками ветряные генераторы или покупные.

Отличие может заключаться в количестве лопастей, которые имеются у пропеллера. Материал, из которого изготавливаются данные лопасти, также играет важную роль. Можно разделить на разные группы по расположению оси вращения по отношению к поверхности земли. Последнее — это шаговый признак винта.

На сегодняшний день можно встретить модели, у которых имеется одна, две или три лопасти, а также могут быть многолопастные приспособления. Отличительная особенность многолопастных заключается в том, что они будут вращаться даже при слабом ветре. Однако стоит отметить, что такие ветряные генераторы для частного дома чаще используются в том случае, если сам процесс поворота важнее, чем выработка электроэнергии. Другими словами, его можно использовать для подъема воды из глубокого колодца, к примеру.

Сами по себе лопасти могут быть двух типов — жесткими или парусными. Отличие состоит в материале, который используется для сборки. Парусные менее прочные и изготавливаются обычно из металла или стеклопластика. К тому же они гораздо дешевле, чем жесткие, но при этом их придется достаточно часто менять или ремонтировать, так как они менее прочные.

Что касается отличия по расположению оси вращения, то, естественно, что может быть всего два вида — горизонтальные и вертикальные. Каждый из них имеет свои положительные качества. Горизонтальное расположение лопастей дает больше мощности на выходе, а вертикальное позволит им реагировать практически на любое слабое дуновение ветра. По шаговому признаку модель может быть фиксированной или изменяемой. Сделать ветряной генератор для дома своими руками с изменяющимся шагом достаточно сложно, но в таком случае появится возможность регулировать скорость вращения лопастей. Фиксированные конструкции гораздо проще и надежнее в данном случае.

ВЭУ роторного типа

Как сделать ветряной генератор в домашних условиях? В данном случае будет рассмотрен вариант изготовления ветряка с вертикально расположенной осью вращения. Данная модель с ротором вполне способна обеспечить электроэнергией небольшой садовый домик, некоторые хозяйственные постройки и освещение в темное время суток близлежащей территории.

Что потребуется для работы

Для того чтобы успешно собрать такое устройство, необходимо запастись нужными материалами. В данном случае будет представлен набор, при помощи которого получится изготовить ветряк с максимальной мощностью в 1,5 кВт.

  1. Первая необходимая деталь — это генератор автомобиля на 12 В.
  2. Потребуется аккумулятор также на 12 В гелиевого или кислотного типа.
  3. Нужно купить выключатель полугерметического типа «кнопка», также рассчитанного на 12 В.
  4. Так как нужно сделать ветряной генератор своими руками на 220 В, то потребуется преобразователь с 12 В на 220 В, а также преобразователь мощности 700 Вт — 1500 Вт.
  5. Потребуется достаточно большая емкость, которая будет выполнена из алюминия или нержавеющей стали. В данном случае можно использовать даже ведро или большую кастрюлю.
  6. Из автомобиля, кроме аккумулятора, потребуется также реле контроля лампы, отвечающее за зарядку данного аккумулятора.
  7. Вольтметр автомобильного типа.
  8. Для фиксации потребуется много болтов и шайб.
  9. Для соединения электрики нужны провода с сечением по 4 и 2,5 мм2.
  10. Чтобы закрепить генератор на мачте, нужно два мощных хомута.

Далее во время работы не обойтись без таких инструментов, как болгарка или же ножницы по металлу. Также потребуется строительный карандаш или маркер, чтобы делать разметку, рулетка для измерений, кусачки, сверла, электрическая дрель, отвертки и набор ключей. Другими словами, стандартный набор инструментов, который есть у любого хорошего хозяина.

Начало работ

Работы по изготовлению ветряного генератора энергии начинаются с того, что нужно взять емкость из нержавеющей стали или алюминия. Чаще всего используется ведро, большая кастрюля, выварка и прочее. Это будет основа для будущего ветряка.

Используя рулетку и маркер или карандаш, необходимо поделить емкость на 4 равные части. Далее, естественно, необходимо разрезать данный металл по разметке. Для этого обычно используется болгарка, однако если основа сделана из такого материала, как оцинкованный металл или окрашенная жесть, то придется работать ножницами, так как такие материалы просто перегреются во время резки болгаркой. Это будут лопасти, однако разрезать полностью конструкцию не стоит. Теперь необходимо приступить к переделыванию шкива генератора.

И в днище емкости, и в шкиве генератора нужно сделать разметку и просверлить отверстия под болты. Здесь очень важно следить за симметричным расположением, чтобы не возникло дисбаланса при вращении.

После этого необходимо отогнуть лопасти, но не слишком сильно. Здесь важно учесть сторону, в которую будет вращаться генератор. Чаще всего направление идет по ходу часовой стрелки.

Что касается изгиба лопастей, то площадь этих приспособлений будет напрямую влиять на скорость вращения, так как меняется плоскость воздействия воздушного потока на приспособление.

После всех этих манипуляций на шкив генератора крепится ведро или другая емкость с готовыми отверстиями для болтов.

Генератор крепится к мачте и фиксируется подготовленными хомутами. После этого необходимо подсоединить провода и собрать электрическую цепь.

Здесь придется иметь на руках схему, придется запомнить цвета всех проводов и маркировку контактов. Позже все это обязательно понадобится, а пока можно крепить провода также на мачте ветряка.

Домашний ветряной генератор также требует подключения аккумулятора. Чтобы его подключить, потребуются ранее купленные провода сечением 4 мм2. Протяженности в 1 метр будет вполне достаточно. Для подключения к данной сети нагрузки, то есть потребителей электрической энергии (световых ламп, бытовых приборов и т. д.), вполне хватит проводов по 2,5 мм2. После этого потребуется установить и подключить к цепи инвертор, для этого опять нужны провода 4 мм2.

Плюсы и минусы устройства

Если с тем, как сделать ветряной генератор такой модели, все стало понятно, то стоит рассмотреть, какими плюсами и минусами будет обладать собранная конструкция. Если все работы были выполнены в точной последовательности и аккуратно, то все будет работать исправно и без проблем. Если подключить к такому ветряку преобразователь, к примеру, на 1000 Вт и аккумулятор на 75 А, то мощности хватит не только на подключение бытовых приборов, но и на охранную сигнализацию или на систему видеонаблюдения. Среди основных достоинств следующие пункты:

  • экономичность;
  • все элементы достаточно простые и дешевые, а значит, их можно легко отремонтировать или же просто заменить на новые при необходимости;
  • нет необходимости в создании особых условий для работы;
  • приспособление довольно простое, а потому надежное;
  • во время работы не будет издавать сильного шума.

Отрицательных сторон не много, но все же они есть. Производительность не слишком высокая у таких установок, а также достаточно сильно зависит от порывов ветра. Слишком сильный ветер может достаточно легко сорвать самодельный пропеллер.

ВЭУ на магнитах

На территории Российской Федерации магниты неодимового типа появились достаточно недавно. По этой причине и возможность собрать ВЭУ аксиального типа с безжелезными статорами появилась недавно. Если сразу после выпуска цена была достаточно высокая, то на данный момент спрос упал, так как рынок насытился, что привело и к снижению цен. Поэтому появилась возможность использования домашними мастерами.

Краткое описание устройства

Как сделать ветряной генератор такого типа? Полное описание сборки займет огромное количество времени, а также оно требует хороших знаний в области работы магнитов и обращения с ними. Поэтому в статье представлена более краткая инструкция. Если она будет проста и понятна, то в таком случае можно углубиться в изучение этого вопроса.

Во-первых, длина мачты у таких ветряков должна быть от 6 до 12 метров.

Во-вторых, придется бетонировать площадку под установку, так как такая высота слишком велика, чтобы избежать этого этапа. Сам по себе ветряк будет крепиться на самом верху мачты, а потому внизу необходимо предусмотреть крепление, которое при помощи лебедки позволит собственноручно в любое время опускать или поднимать трубу. Это необходимо, чтобы была возможность добраться до ветряка, если его придется чинить. Для изготовления винта в данном случае можно использовать трубу из ПВХ материала с диаметром в 160 мм. Она будет использоваться в качестве основы для вырезания винта длиной в 2 метра и лопастей для него. Количество лопастей лучше всего сделать шесть, а вот их форму придется подобрать опытным путем, чтобы получить максимальную выгоду. Цель в данном случае — это достичь максимального крутящего момента при низких оборотах конструкции. Так как необходимо будет уберечь винт от очень сильного ветра, придется сделать складной хвост для него. Энергия, которая будет вырабатываться ветряным источником, должна накапливаться в аккумуляторах, как и в первом случае.

В конце следует добавить, что можно делать ветряной генератор на 10 кВт, к примеру. Однако в этом случае его мощность будет огромной и использовать его только в бытовых целях неразумно. Кроме того, потребуется разрешение на эксплуатацию мощного источника альтернативного питания. К тому же, скорее всего, придется платить налог, так как электричество будет использоваться не только для обеспечения индивидуальных потребностей человека.

В данном случае были представлены две модели, обе из которых можно собрать своими руками. Их особенности и преимущества несколько отличаются, однако оба вида вполне могут эксплуатироваться самостоятельно.

Источник http://vk.com/@raiders_daily-tihohodnyi-vetrogenerator-svoimi-rukami-iz-avtomobilnogo-gen

Источник http://tdsl.ru/samodelnyi-vetrogenerator-dlya-doma-i-dachi-principy-raboty-shemy-kakoi-i/

Источник http://www.nastroy.net/post/kak-sdelat-vetryanoy-generator-svoimi-rukami

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: