Измерение сопротивления изоляции. методика и приборы. порядок

Содержание

Измерение сопротивления изоляции. методика и приборы. порядок

Согласно действующим межотраслевым правилам по охране труда при эксплуатации ЭУ, для проверки состояния изоляционного слоя мегомметром должны соблюдаться следующие меры безопасности:

  1. Замеры должны осуществляться квалифицированными специалистами. К проверке изоляционного слоя кабельной линии напряжением менее 1000 Вольт допускаются лица с III, а при напряжении более 1000 В с IV группой по электробезопасности.
  2. Пользоваться прибором необходимо в диэлектрических перчатках.
  3. Установка зажимов мегаомметра должна производиться только на заземленный электрический проводник.
  4. По завершении измерения требуется снять потенциал с проводов, посредством установки заземления.

Измерение проводится в диэлектрических перчатках

Работы с измерительным устройством выполняются по распоряжению, наряду-допуску или в порядке текущей эксплуатации, в зависимости от уровня напряжения. Проверка изоляционного покрытия установками с подачей высокого напряжения выполняется лицами с правом проведения высоковольтных испытаний.

Нормы сопротивления изоляции для различных кабелей

Встречаются следующие виды электрических проводников:

  1. Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
  2. Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
  3. Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.

Нормы сопротивления изоляции для различных видов электрооборудования

Конкретные показатели сопротивлений для определенных марок кабеля можно узнать в следующей технической литературе:

  • ПУЭ — таблица 1.8.34;
  • ПТЭ — таблица 37.

Другие позиции

Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

  • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
  • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
  • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

Для чего проверяют сопротивление изоляции кабеля?

Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция – пластмассовая, резиновая, ПВХ, бумажная, масляная.

Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).

Сопротивление – это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.

Изоляция может ухудшаться по следующим причинам:

  • старение изоляции в течении времени
  • увеличенная влажность
  • механические повреждения
  • воздействие агрессивной среды

Для чего производятся замеры

Данное контрольное действие является обязательной частью комплекса мер по обслуживанию электрической сети.

Основная цель замера сопротивления изоляции — слежение за работой электролиний и своевременное предотвращение любых неисправностей и поломок.

Поврежденная электропроводка может привести к нанесению вреда здоровью людей (в том числе поражению электрическим током и серьезным ожогам), нештатным аварийным ситуациям. Если речь идет о производственных компаниях, то вследствие перебоев с электричеством, возникших из-за изъянов, разрывов, порчи электрокабелей и пр. электрооборудования, могут возникнуть сбои в производственных процессах и как следствие, крупные финансовые потери.

Исходя из этого, все предприятия заинтересованы в том, чтобы обслуживание электрокоммуникаций проводилось качественно и своевременно. По результатам каждой проверки состояния электросетей формируются особые отчетные документы, в том числе и акты замера сопротивления изоляции.

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (. КАБЕЛЬ ОБЕСТОЧЕН. ):

  1. Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
  2. Если есть оболочка, экран, броня – их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
  3. На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
  4. Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
  5. Снимаем с испытуемой жилы провод заземления
  6. Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
  7. На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
  8. Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно – объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) – он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром – это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей – это тема отдельной большой статьи.

Минимальное допустимое значение сопротивления изоляции. сопротивления изоляции кабеля Силовые кабельные линии / пуэ 7 / библиотека / элек.ру Минимальное допустимое значение сопротивления изоляции. сопротивления изоляции кабеля Как измерить сопротивление изоляции кабеля? Минимальное допустимое значение сопротивления изоляции. сопротивления изоляции кабеля Пуэ 7. правила устройства электроустановок. издание 7 Акт замера сопротивления изоляции Как выполняется проверка изоляции кабеля Измерение сопротивления изоляции кабельных линий мегаомметром

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат. Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Базовое предложение на испытание силовой кабельной линии

Базовое (типовое) предложение подходит для приемо-сдаточных, эксплуатационных (периодических, после ремонта) и контрольных испытаний кабельных линий до 10 кВ, исключая КЛ, выполненные кабелем с изоляцией из сшитого полиэтилена.

Испытание кабеля 10 кВ

Описание: Испытание кабеля 10(6) кВ повышенным напряжением выпрямленного тока в соответствии с текущими Нормами и Правилами с оформлением Протокола испытания силового кабеля по результатам

Примечание: Программа испытаний кабеля может быть уточнена в соответствии с требованиями Сетевой организации и Заказчика

Исходные данные: Допуск к концам кабельной линии, предварительная информация о марке кабеля и протяженности КЛ

Стоимость: 7000 RUB

Испытываются кабели — испытания:

  • вновь проложенные и после перекладки — приемосдаточные;
  • находящиеся в эксплуатации — плановые по графику;
  • после ремонта или длительного отключения — внеплановые;
  • испытание КЛ в составе работ по определению места повреждения и ремонту кабельных линий — контрольные

При проведении испытаний кабельных линий мы руководствуемся в первую очередь Нормами и Правилами, принятыми крупными электросетевыми операторами по Москве и Московской области, в частнсти, ПАО «МОЭСК».

Такая позиция связана с тем, что сети до 10 кВ включительно «упираются» в принадлежащие им Центры питания (ЦП) и при включении (подаче) рабочего напряжения потребуются протоколы, соответствующие именно их требованиям.

Нормы сопротивления изоляции для различных кабелей

Встречаются следующие виды электрических проводников:

  1. Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
  2. Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
  3. Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.

Как измеряется сопротивление

Порядок проверки состояния изоляционного слоя зависит от типа проверяемого электрического проводника. На начальной стадии выполняются идентичные действия:

  1. Проверяется работоспособность мегаомметра. Понадобится соединить два зажима устройства, и сделать замер. Прибор должен показать ноль. Затем концы проводов измерительного устройства разводятся в сторону, и выполняется замер. Если в результате получится бесконечность, то прибор исправен.
  2. Измерения ведутся со стороны кабельной линии, где установлено переносное заземление. В процессе работы необходимо использовать диэлектрические перчатки.
  3. На другом конце кабельной линии следует развести жилы проводника в стороны. Для обеспечения безопасности людей от поражения электрическим током во время проведения испытания, следует поставить человека для предупреждения об опасности.

На» завершающем этапе необходимо сравнить полученные результаты с допустимыми значениями, и составить протокол. В нем отражается последовательность выполненных действий, используемые измерительные средства, температурный режим и заключение о состоянии электрического проводника.

Методика измерения сопротивления изоляции высоковольтных силовых кабелей

Прозвонить высоковольтные проводники необходимо с использованием мегаомметра на 2500 В. Последовательность действий следующая:

  1. Один конец измерительного устройства цепляется к контуру заземления, а второй к фазе «А» кабеля.
  2. Снимается заземляющий проводник с фазы «А», и делается замер на протяжении 60 секунд.
  3. Далее понадобится установить заземление на фазу «А», и снять зажим мегаомметра.
  4. В дальнейшем аналогичные операции проводятся для фаз «В» и «С».

Схема измерения изоляции высоковольтного кабеля

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Для проведения работ потребуется использовать мегаомметр на 1000 В. После выполнения первоначальных пунктов, необходимо приступить к выполнению следующих мероприятий:

  1. Делается измерение сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
  2. Поочередно проверяется изоляция фаз кабеля относительно нулевого провода (N).
  3. Далее выполняется поочередные измерения между каждой фазой и заземляющим контуром (PE) при проверке пятижильного проводника.
  4. Отсоединяется нулевой провод от нулевой шинки и осуществляется измерение между N и PE.

Измерение сопротивления изоляции между жилами кабеля

После каждого испытания следует снимать потенциал посредством установки заземления.

Методика измерения сопротивления изоляции контрольных кабелей

Процесс проверки состояния изоляционного слоя указанной категории токопроводящих жил идентичен предыдущему пункту, за одним исключением. Жилы кабеля, которые не участвуют в проверке, необходимо закоротить и подсоединить к заземляющему контуру.

Силовые кабельные линии

1.8.37. Силовые кабельные линии напряжением до 1 кВ испытываются по п. 1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по п. 1-3, 6, 7, 11, 13, напряжением 110 кВ и выше – в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целости и фазировки жил кабеля. Проверяются целость и совпадение обозначений фаз подключаемых жил кабеля.

Сопротивление изоляции кабеля., калькулятор онлайн, конвертер Проверка сопротивления изоляции кабеля мегаомметром Сопротивление изоляции электропроводки в квартире и частном доме Сопротивление изоляции кабеля. Как измерить сопротивление изоляции кабеля Проверка изоляции кабеля Как проводится измерение сопротивления изоляции кабельных линий мегаомметром Минимальное допустимое значение сопротивления изоляции. сопротивления изоляции кабеля Испытание изоляции кабелей 0.4-6-10 кв Акт замера сопротивления изоляции

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока. Силовые кабели выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Значения испытательного напряжения и длительность приложения нормированного испытательного напряжения приведены в табл. 1.8.42.

Таблица 1.8.42. Испытательное напряжение выпрямленного тока для силовых кабелей.

Методика проведения и оформление результатов проверки заземления

Система заземления представляет собой соединение электрического оборудования с грунтом для отвода тока. Заземлительные устройства обеспечивают защиту обитателей здания и находящегося в нем имущества от разрушительного воздействия электричества. Чтобы удостовериться в необходимой функциональности системы, проводится периодическая проверка заземления.

Зачем замерять сопротивление

Измерения необходимы для определения величины сопротивления заземлительного контура. Также измеряют показатель сопротивления изоляционного слоя. Показатели должны находиться в рамках нормативов, разработанных контролирующими органами. В случае надобности сопротивление заземляющего устройства уменьшается увеличением поверхности контакта или улучшением общей проводимости среды. Для достижения нужного результата увеличивают число электродов или создают соленую среду в почве вокруг заземлителя.

Измерение величины сопротивления контура заземления

Типы заземления

Существует два типа заземления:

  1. Предотвращение последствий от ударов молнии. Заземление молниеприемниками для отвода тока по металлической конструкции в землю.
  2. Защитное заземление корпусов электробытовой техники или не токопроводящих участков электроустановок. Предотвращает поражение электричеством при случайном касании к элементам, не предназначенным для пропускания тока.

Электричество на электроустановках, где не должно появляться напряжение, возникает в таких ситуациях:

  • статическое электричество;
  • наведенное напряжение;
  • вынос потенциала;
  • электрический заряд.

Система заземления представляет собой контур, созданный из металлических прутьев, закопанных в грунт, вместе с подключенными к нему проводящими элементами. Точкой заземления называют место стыковки с заземляющим устройством проводника, идущего от защищаемой техники.

Устройство заземлительной системы частного дома

Заземлительная система подразумевает контакт устройства заземления с корпусами электробытовой техники. Причем заземление не работает до тех пор, пока по любой причине не возникнет потенциал. В исправной цепи не появляются никакие виды токов за исключением фоновых. Основной причиной появления напряжения является нарушение изоляционного слоя на оборудовании или повреждение проводящих элементов. При возникновении потенциала происходит его перенаправление в грунт посредством заземляющего контура.

Заземлительная система уменьшает напряжение на нетоковедущих металлических участках до приемлемого (безопасного для живых существ) уровня. В случае если целостность контура по каким-либо причинам нарушена, напряжение на нетоковедущих элементах не снижается, а потому представляет серьезную опасность для человека и домашних животных.

Факторы учета сопротивления

Для тестирования соответствия заземляющего устройства требованиям нормативов осуществляется замер сопротивления растеканию тока Rз. В идеале данный показатель должен быть равен нулю. Однако в реальности эта цифра недостижима.

Величина (Rз) включает в себя несколько компонентов:

  1. Сопротивление материала, установленного под землей электрода, а также сопротивление на контакте металла с проводником. Однако этот показатель не столь важен из-за отличной проводимости используемых материалов (сталь с напылением меди или же чистая медь). Показатель игнорируется только в случае качественного соединения с проводником.
  2. Сопротивление между почвой и электродом. Показатель игнорируют, если электрод плотно установлен, а контакт не покрашен или не покрыт диэлектриком. Однако с течением времени металл ржавеет, и его проводимость уменьшается. Поэтому следует использовать покрытые медью стержни или делать замеры сопротивления растеканию. Для уменьшения интенсивности коррозии сварочные швы лакируют.
  1. Сопротивление грунта. Считается самым важным фактором. Особое значение придается близлежащим слоям почвы. По мере удаления слоев сопротивление уменьшается. На определенном расстоянии сопротивление становится нулевым.
  2. Неоднородность электрических характеристик грунта с трудом поддается учету. Исходя из этого замеряют фактический Rз. Для одиночной простой заземлительной конструкции определяющее значение имеют поверхностные слои земли, а для контурной — глубинные.

Объект испытания

Проверочные действия осуществляются в отношении заземлительных устройств, выполненных как одиночные электроды или контуры. К объектам проверки не относятся PEN-проводники и PE-проводники, включенные отдельными жилами в кабели.

Заземлительные устройства создаются в одном из двух исполнений:

  1. Горизонтальное. В этом случае полосы располагаются по дну траншеи.
  2. Вертикальное. Заземлительный контур представляет собой забитые в землю и соединенные между собой полосы или трубы. Стержни располагают в грунте на глубине, превышающей длину самих металлических изделий. Чаще всего контур по своей форме создается в виде треугольника.

Замена элементов системы осуществляется при ржавлении более 50% поверхности. Проверка на коррозию на электроустановках проводится выборочно там, где наиболее заметны ее проявления. При проведении проверочных мероприятий тестируют заземление нейтралей. На высотных линиях проверяют по крайней мере 2% от имеющихся опор. Предпочтительные объекты проверок — участки заземления, находящиеся в максимально агрессивных средах.

В таблице внизу представления показатели Rз, присущие разным видам заземлителей.

Таблица показателей сопротивления току растекания

Проведение замеров

Метод амперметра-вольтметра

Чтобы провести замеры, создают электрическую цепочку, по которой ток протекает через проверяемое заземлительное устройство и токовый проводник (его также именуют вспомогательным электродом). В схеме присутствует еще и потенциальный электрод, задача которого состоит в измерении падения напряжения при протекании тока через заземлитель. Потенциальный проводник находится на участке с нулевым потенциалом — на равном удалении от вспомогательного электрода и проверяемой заземлительной системы.

Для измерений сопротивления применяют закон Ома (формула R=U/I). С помощью данной методики чаще всего определяют сопротивление в условиях частного дома. Для получения необходимого тока используют трансформатор для сварочных работ или любое другое оборудование, где отсутствует электрическая связь между вторичной и первичной обмоткой.

Использование специальной техники

В домашних условиях редко пользуются дорогостоящим многофункциональным мультиметром. Чаще всего применяются аналоговые приборы:

  • МС-08;
  • Ф4103-М-1;
  • М-416;
  • ИСЗ-2016.

Измеритель сопротивления МС-08

Один из самых распространенных приборов для проверки сопротивления — МС-08. Для измерений устанавливают два электрода на 25-метровом расстоянии от заземлительного устройства. Ток в цепочке образуется под действием генератора, вращаемого вручную с помощью редуктора. В результате задействования схемы и подключения прибора происходит компенсация сопротивления вспомогательных заземлителей. Если этого не случается, почва возле дополнительного заземлительного устройства искусственно увлажняется. Замеры осуществляют в различных диапазонах до тех пор, пока тестер не покажет значимых показателей (причем они не должны разниться после окончательной установки).

Измерительный прибор М-416 комфортен в использовании благодаря малому весу и шкале, где фиксируются полученные данные. М-416 включает в себя полупроводники с автономным электропитанием.

Пример использования прибора М-416:

  1. Проверяем наличие питания у прибора. В устройстве должны находиться три батарейки — каждая по 1,5 вольта.
  2. Устанавливаем прибор на ровную поверхность.
  3. Проводим калибровку оборудования. Настраиваем М-416 на контроль и, нажимая на красную кнопку, устанавливаем стрелку на нулевое положение.
  4. Выбираем трехзажимную схему для проведения замера.
  5. Вспомогательный проводник и стержень зонда вкапываем в землю по меньшей мере на 50 сантиметров.
  6. Соединяем провода с электродом и стержнем зонда согласно схеме.
  7. Переключатель ставим в одну из позиций «X1». Удерживая клавишу, прокручиваем ручку до тех пор, пока стрелка на шкале не достигнет нуля. Результат умножаем на ранее вычисленный множитель. Итоговое значение является искомым.

Работа токовыми клещами

Контурное сопротивление определяют также с помощью токовых клещей. Их основное достоинство том, что не нужно отключать заземлитель и использовать вспомогательные проводники.

Через проводник заземления, в роли которого выступает вторичная обмотка, проходит переменный ток. Протеканию тока способствует первичная трансформаторная обмотка, находящаяся в измерительной головке устройства. Чтобы определить показатель сопротивления, делим данные ЭДС вторичной обмотки на величину тока, полученную при измерении клещами.

В качестве примера токовых клещей приведем тестер СА 6415. Он оснащен жидкокристаллическим монитором. Для измерения сопротивления не нужны дополнительные проводники. Также отсутствует потребность в отключении PE-проводника от электродов.

Токоизмерительные клещи АТК-1010

Замер сопротивления изоляции

Чтобы измерить сопротивление изоляции, используют специальный прибор — мегомметр. Устройство состоит из нескольких элементов:

  • генератор непрерывного тока, оснащенный ручным приводом;
  • добавочные сопротивления;
  • магнитоэлектрический логометр.

До начала проверочных работ следует удостовериться, что объект отключен от электропитания. Удаляем с изоляционного слоя пыль и грязь. После этого проводим замер в течение приблизительно 3 минут. В результате получаем данные по остаточным зарядам.

К электроцепи или оборудованию мегомметр подключаем отдельными проводниками. Изоляция отличается высоким сопротивлением. Его уровень чаще всего превышает 100 мегаом.

Измерение сопротивления изоляции кабеля

Обратите внимание! Замер сопротивления изоляции проводится после того, как стрелка займет устойчивую позицию.

Периодичность измерений

Определение периодичности замеров сопротивления заземлительного устройства осуществляется в соответствии с требованиями ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Согласно регламенту, проверки производят каждые 6 лет. Также осуществляются регулярные проверки исправности контура. Визуальный осмотр наружных частей и частичное откапывание внутренних элементов контура делают по установленному на объекте графику, но не реже одного раза в год.

Указанные сроки относятся к предприятиям. Регулярность проверок в частных домах оставляется на усмотрение владельцев. Специалисты не рекомендуют пренебрегать проверочными мероприятиями, поскольку от этого зависит безопасность проживания в доме.

В теплую и сухую погоду результаты испытаний более достоверны. А вот во влажной среде они будут не столь точными, поскольку растекаемость тока приводит к повышению проводимости.

Нормативные результаты испытаний указаны в таблице ниже.

Данные результатов испытания заземлительного устройства

Оформление результатов проверки

Если решено поручить проверку специалистам, следует обратиться в специализированную электротехническую лабораторию. Проверку выполнят квалифицированные сотрудники. По результатам работы будет выдан протокол измерения сопротивления.

Протокол представляет собой бланк, в котором указаны такие данные:

  • место проведения испытаний;
  • название проверяемого объекта;
  • назначение заземлительного устройства;
  • схема установки заземлителей и их соединений;
  • расстояние между электродами.

Кроме того, в протоколе указывается сезонный поправочный коэффициент и методика, в соответствии с которой осуществлялось измерение. Для составления протокола необходим паспорт объекта и акт на скрытые работы.

Обратите внимание! Рекомендуется включать в протокол данные о приборе, с помощью которого измерялось сопротивление. Информация должна включать тип устройства, его заводской номер и другие важные показатели. Результаты измерений вносят в паспорт заземлителя.

Отдельно составляется протокол испытания переходных сопротивлений. Данное понятие (переходное сопротивление также называют металлосвязью) представляет собой потенциальные потери на пути протекания тока. Они происходят в связи с наличием на контуре каких-либо соединений, в том числе сварочных, болтовых и прочих. Испытательные работы проводят с помощью специального тестера — микроомметра.

Правом проведения официальных испытаний и выдачи протокола обладает только сертифицированная органом стандартизации испытательная лаборатория. После выдачи акта система считается пригодной к эксплуатации.

Измерение сопротивления изоляции: руководство!

Измерение сопротивления изоляции

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

 испытание электрической прочности изоляции

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения изоляции

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Источник https://oooevna.ru/kak-vypolnaetsa-proverka-izolacii-kabela/

Источник https://220.guru/electroprovodka/zazemlenie-molniezashhita/izmerenie-soprotivleniya-zazemleniya.html

Источник https://skomplekt.com/izmerenie-soprotivleniia-izoliatcii/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: